organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Pyrid­yl)[5-(2-pyridyl­carbon­yl)-2-pyrid­yl]methanone

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: qiang-hong@163.com

(Received 25 July 2010; accepted 23 August 2010; online 25 September 2010)

In the centrosymmetric title compound, C17H11N3O2, the dihedral angle between the central and pendant pyridyl rings is 50.29 (9)°. In the crystal, mol­ecules stack along the a axis by ππ inter­actions between the pyridine rings with centroid–centroid distances of 3.845 (2) Å. The N atom and one of the C atoms of the central ring are disordered by symmetry.

Related literature

For studies on other pyridinyl-based methanone species, see: Papaefstathiou & Perlepes (2002[Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249-274.]); Dendrinou-Samara et al. (2003[Dendrinou-Samara, C., Alexiou, M., Zaleski, C. M., Kampf, J. W., Kirk, M. L., Kessissoglou, D. P. & Pecoraro, V. L. (2003). Angew. Chem. Int. Ed. 42, 3763-3766.]); Crowder et al. (2004[Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72-78.]); Chen et al. (2005[Chen, X.-D. & Mak, T. C. W. (2005). Inorg. Chim. Acta, 358, 1107-1112.]); Wan et al. (2008[Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11N3O2

  • Mr = 289.30

  • Triclinic, [P \overline 1]

  • a = 3.8453 (13) Å

  • b = 8.447 (3) Å

  • c = 11.202 (3) Å

  • α = 108.672 (6)°

  • β = 97.251 (6)°

  • γ = 99.772 (6)°

  • V = 333.29 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.60 × 0.50 × 0.29 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.622, Tmax = 1.000

  • 2301 measured reflections

  • 1623 independent reflections

  • 1198 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.177

  • S = 1.07

  • 1623 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Di-2-pyridylmethanone has attracted great interest in recent years as it can exist in various forms in stabilizing its metal complexes, including its neat ketone form, singly and doubly deprotonated gem-diol forms, as well as the monoanion of its hemiacetal form (Papaefstathiou et al., 2002; Dendrinou-Samara et al., 2003; Crowder et al., 2004). Therefore, homolog compounds such as 2,6-pyridinediylbis(2-pyridyl)methanone (Chen et al., 2005) and 2,6-pyridinediylbis(3-pyridyl)methanone (Wan et al., 2008) were also synthesized and characterized.

In the present study, a new member of this family, namely 2,5-pyridinediylbis(2-pyridyl)methanone (C17H11N3O2), is reported. X-ray diffraction analysis shows that the N2 and C9 atoms of the 2,5-pyridinediyl ring have an equal occupancy at the same site. Thus the molecule is centrosymmetric with two 2-pyridyl methanone groups bonding to the 2,5-pyridinediyl ring at the 2 and 5 positions, respectively. The 2-pyridyl and the center 2,5-pyridinediyl rings exhibit a dihedral angle of 50.29 (9)° (Fig. 1). Along the a axis, the packing between the molecules is provided by weak un-covalent interaction only: /p-electron···/p-electron ring interaction. The distance between the centroids of the proximate pyridyl rings equals 3.845 (2) Å, as shown in Fig. 2.

Related literature top

For studies on other pyridinyl-based methanone species, see: Papaefstathiou et al. (2003); Dendrinou-Samara et al. (2003); Crowder et al. (2004); Chen et al. (2005); Wan et al. (2008).

Experimental top

The preparation of the title compound followed the procedure previously developed for 2,6-pyridinediylbis(3-pyridyl)methanone (Wan et al., 2008).The crude product was extracted with chloroform, and the combined organic extract was dried over anhydrous sodium sulfate and finally concentrated in vacuo to give a brown oil. Further purification by chromatography on silica gel (Rf= 0.44, eluent: ether acetate/dichloromethane = 1:6, v/v), giving 2.96 g of light yellow powder of 2,5-pyridinediylbis(2-pyridyl)methanone in 41% yield; m.p. 108-110°C; The yellow crystals of the title compound having a average 0.40 × 0.30 × 0.20 mm dimension were obtained by slow evaporation from its solution of dichloromethane/N,N-dimethylformamide 1/1 (v/v).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and Uĩso~(H) = 1.2U~eq~(C).

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: APEX2 and SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title compound C17H11N3O2. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as sticks of arbitrary radii. Symmetry code: i -x + 2, -y + 2, -z.
[Figure 2] Fig. 2. The packing illustration of the title compound, C17H11N3O2. The red-dashed lines indicate weak π···π stacking interactions.
2,5-pyridinediylbis(2-pyridinyl)methanone top
Crystal data top
C17H11N3O2Z = 1
Mr = 289.30F(000) = 150
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Melting point: 401 K
a = 3.8453 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.447 (3) ÅCell parameters from 230 reflections
c = 11.202 (3) Åθ = 1.9–28.1°
α = 108.672 (6)°µ = 0.10 mm1
β = 97.251 (6)°T = 293 K
γ = 99.772 (6)°Block, yellow
V = 333.29 (19) Å30.60 × 0.50 × 0.29 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1623 independent reflections
Radiation source: fine-focus sealed tube1198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω–scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
SADABS (Bruker, 2007)
h = 54
Tmin = 0.622, Tmax = 1.000k = 1111
2301 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.096P)2 + 0.0878P]
where P = (Fo2 + 2Fc2)/3
1623 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H11N3O2γ = 99.772 (6)°
Mr = 289.30V = 333.29 (19) Å3
Triclinic, P1Z = 1
a = 3.8453 (13) ÅMo Kα radiation
b = 8.447 (3) ŵ = 0.10 mm1
c = 11.202 (3) ÅT = 293 K
α = 108.672 (6)°0.60 × 0.50 × 0.29 mm
β = 97.251 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1623 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2007)
1198 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 1.000Rint = 0.016
2301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
1623 reflectionsΔρmin = 0.26 e Å3
100 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.3180 (5)1.09147 (19)0.33644 (14)0.0620 (6)
N10.7459 (5)0.6838 (2)0.16816 (16)0.0402 (4)
N20.9591 (5)1.1260 (2)0.10902 (16)0.0377 (4)0.50
C90.9591 (5)1.1260 (2)0.10902 (16)0.0377 (4)0.50
H9A0.93311.21270.17980.045*0.50
C10.9713 (5)0.8073 (2)0.26845 (17)0.0339 (4)
C21.0530 (6)0.7939 (3)0.38842 (19)0.0435 (5)
H2A1.21080.88260.45560.052*
C30.8934 (7)0.6452 (3)0.4057 (2)0.0517 (6)
H3A0.93780.63310.48550.062*
C40.6689 (7)0.5157 (3)0.3033 (2)0.0524 (6)
H4A0.56330.41340.31200.063*
C50.6028 (6)0.5402 (3)0.1870 (2)0.0485 (6)
H5A0.45020.45190.11810.058*
C61.1320 (5)0.9691 (2)0.24786 (17)0.0372 (5)
C71.0544 (5)0.9809 (2)0.11607 (17)0.0333 (4)
C81.0969 (5)0.8553 (2)0.00732 (18)0.0369 (5)
H8A1.16420.75730.01410.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0862 (13)0.0422 (8)0.0381 (8)0.0157 (8)0.0097 (8)0.0113 (7)
N10.0422 (10)0.0355 (8)0.0394 (9)0.0001 (7)0.0059 (7)0.0136 (7)
N20.0467 (11)0.0295 (8)0.0341 (9)0.0035 (7)0.0096 (7)0.0092 (7)
C90.0467 (11)0.0295 (8)0.0341 (9)0.0035 (7)0.0096 (7)0.0092 (7)
C10.0360 (10)0.0330 (9)0.0334 (9)0.0065 (7)0.0077 (7)0.0128 (7)
C20.0538 (13)0.0404 (10)0.0373 (10)0.0106 (9)0.0065 (9)0.0157 (8)
C30.0712 (16)0.0510 (12)0.0471 (12)0.0209 (11)0.0180 (11)0.0299 (10)
C40.0632 (15)0.0379 (10)0.0671 (15)0.0110 (10)0.0239 (12)0.0291 (10)
C50.0511 (13)0.0355 (10)0.0534 (13)0.0015 (9)0.0097 (10)0.0140 (9)
C60.0421 (11)0.0328 (9)0.0326 (9)0.0012 (8)0.0041 (8)0.0108 (7)
C70.0333 (10)0.0298 (8)0.0335 (9)0.0016 (7)0.0047 (7)0.0116 (7)
C80.0418 (11)0.0302 (8)0.0380 (10)0.0041 (7)0.0075 (8)0.0132 (7)
Geometric parameters (Å, º) top
O1—C61.216 (2)C3—C41.372 (3)
N1—C51.336 (3)C3—H3A0.9300
N1—C11.341 (2)C4—C51.383 (3)
N2—C8i1.358 (2)C4—H4A0.9300
N2—C71.360 (3)C5—H5A0.9300
N2—H9A0.9207C6—C71.507 (2)
C1—C21.386 (3)C7—C81.385 (3)
C1—C61.501 (3)C8—C9i1.358 (2)
C2—C31.385 (3)C8—N2i1.358 (2)
C2—H2A0.9300C8—H8A0.9300
C5—N1—C1116.84 (17)C5—C4—H4A120.6
C8i—N2—C7118.59 (16)N1—C5—C4123.62 (19)
C8i—N2—H9A118.5N1—C5—H5A118.2
C7—N2—H9A123.0C4—C5—H5A118.2
N1—C1—C2123.47 (17)O1—C6—C1120.89 (17)
N1—C1—C6117.03 (16)O1—C6—C7119.68 (16)
C2—C1—C6119.48 (17)C1—C6—C7119.42 (15)
C3—C2—C1118.27 (19)N2—C7—C8120.92 (17)
C3—C2—H2A120.9N2—C7—C6116.89 (16)
C1—C2—H2A120.9C8—C7—C6122.09 (16)
C4—C3—C2119.06 (19)C9i—C8—C7120.49 (17)
C4—C3—H3A120.5N2i—C8—C7120.49 (17)
C2—C3—H3A120.5C9i—C8—H8A119.8
C3—C4—C5118.71 (18)N2i—C8—H8A119.8
C3—C4—H4A120.6C7—C8—H8A119.8
C5—N1—C1—C21.5 (3)C2—C1—C6—C7177.66 (17)
C5—N1—C1—C6179.82 (19)C8i—N2—C7—C80.5 (3)
N1—C1—C2—C30.0 (3)C8i—N2—C7—C6177.03 (17)
C6—C1—C2—C3178.27 (19)O1—C6—C7—N245.2 (3)
C1—C2—C3—C41.6 (3)C1—C6—C7—N2133.4 (2)
C2—C3—C4—C51.6 (4)O1—C6—C7—C8131.2 (2)
C1—N1—C5—C41.5 (3)C1—C6—C7—C850.2 (3)
C3—C4—C5—N10.0 (4)N2—C7—C8—C9i0.5 (3)
N1—C1—C6—O1174.7 (2)C6—C7—C8—C9i176.85 (17)
C2—C1—C6—O13.7 (3)N2—C7—C8—N2i0.5 (3)
N1—C1—C6—C74.0 (3)C6—C7—C8—N2i176.85 (17)
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H11N3O2
Mr289.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)3.8453 (13), 8.447 (3), 11.202 (3)
α, β, γ (°)108.672 (6), 97.251 (6), 99.772 (6)
V3)333.29 (19)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.50 × 0.29
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2007)
Tmin, Tmax0.622, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2301, 1623, 1198
Rint0.016
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.177, 1.07
No. of reflections1623
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: APEX2 (Bruker 2007), APEX2 and SAINT (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-D. & Mak, T. C. W. (2005). Inorg. Chim. Acta, 358, 1107–1112.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem. 43, 72–78.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDendrinou-Samara, C., Alexiou, M., Zaleski, C. M., Kampf, J. W., Kirk, M. L., Kessissoglou, D. P. & Pecoraro, V. L. (2003). Angew. Chem. Int. Ed. 42, 3763–3766.  Web of Science CSD CrossRef CAS Google Scholar
First citationPapaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249–274.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds