organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,5-Di­chloro-3-thien­yl)ethanone: infinite sheets mediated by O⋯Cl halogen bonds

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cSeQuent Scientific Limited, New Mangalore 575 011, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 6 August 2010; accepted 31 August 2010; online 4 September 2010)

In the title compound, C6H4Cl2OS, the acetyl group is almost coplanar with the thio­phene ring [dihedral angle = 4.01 (2)°]. In the crystal, short inter­molecular O⋯Cl contacts [2.9494 (14) and 3.1191 (14) Å] link the mol­ecules into infinite (100) sheets and aromatic ππ stacking [centroid–centroid separation = 3.5422 (10) Å] consolidates the packing.

Related literature

For a related structure and background references, see: Jasinski et al. (2010[Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.]). For a related structure, see: Wen & Rasmussen (2007[Wen, L. & Rasmussen, S. C. (2007). J. Chem. Crystallogr. 37, 387-398.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a discussion of halogen bonding, see: Metrangalo & Resnati (2001[Metrangalo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4Cl2OS

  • Mr = 195.05

  • Orthorhombic, P b c a

  • a = 13.0980 (3) Å

  • b = 7.1790 (1) Å

  • c = 16.3290 (3) Å

  • V = 1535.42 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 120 K

  • 0.22 × 0.14 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.922

  • 12928 measured reflections

  • 1758 independent reflections

  • 1538 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.07

  • 1758 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound, (I), (Fig. 1), was determined as part of our ongoing studies (Jasinski et al., 2010) of thiophene derivatives as possible candidates for non-linear optical materials.

The five-membered ring in (I) is almost planar (r.m.s. deviation = 0.002 Å) and the pendant atoms deviate from the ring plane by 0.019 (1)Å (Cl1), 0.011 (1)Å (Cl2), 0.110 (1)Å (O1), 0.026 (2)Å (C5) and -0.045(20Å (C6). The dihedral angle between C1/C2/C3/C4/S1 and C5/C6/O1 is 4.01 (2)°. Otherwise, the bond lengths for (I) fall within their expected ranges (Allen et al., 1987) and are similar to those in related structures (Wen & Rasmussen, 2007).

In the crystal of (I), short O···Cl contacts of 2.9494 (14)Å and 3.1191 (14)Å are evident, compared to an expected van der Waals' separation of about 3.27Å for these atoms. If theses contacts are considered to be bonding interactions (Metrangalo & Resnati, 2001), then infinite (100) sheets result (Fig. 2). Seventeen-membered rings containining four O···Cl bonds are apparent within the sheet. The packing is consolidated by aromatic π-π stacking interactions, with a centroid–centroid separation of 3.5422 (10)Å between inversion-related thiophene rings.

Related literature top

For a related structure and background references, see: Jasinski et al. (2010). For a related structure, see: Wen & Rasmussen (2007). For reference structural data, see: Allen et al. (1987). For a discussion of halogen bonding, see: Metrangalo & Resnati (2001).

Experimental top

2,5-Dichloro-3-acetylthiophene was obtained as a gift sample from SeQuent Scientific Ltd., New Mangalore, India. Colourless blocks of (I) were grown by the slow evaporation of a methanol solution (M.P.: 314–316 K).

Refinement top

The hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating rigid-group model was applied to the methyl group.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Partial packing diagram for (I) showing part of a (100) sheet arising from short O···Cl contacts (H atoms omitted for clarity). Symmetry codes: (i) x, 3/2–y, 1/2 + z; (ii) x, 1 + y, z.
1-(2,5-Dichloro-3-thienyl)ethanone top
Crystal data top
C6H4Cl2OSF(000) = 784
Mr = 195.05Dx = 1.688 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 12696 reflections
a = 13.0980 (3) Åθ = 2.9–27.5°
b = 7.1790 (1) ŵ = 1.04 mm1
c = 16.3290 (3) ÅT = 120 K
V = 1535.42 (5) Å3Cut block, colourless
Z = 80.22 × 0.14 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1758 independent reflections
Radiation source: fine-focus sealed tube1538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1717
Tmin = 0.804, Tmax = 0.922k = 99
12928 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0196P)2 + 1.1699P]
where P = (Fo2 + 2Fc2)/3
1758 reflections(Δ/σ)max = 0.002
92 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C6H4Cl2OSV = 1535.42 (5) Å3
Mr = 195.05Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0980 (3) ŵ = 1.04 mm1
b = 7.1790 (1) ÅT = 120 K
c = 16.3290 (3) Å0.22 × 0.14 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1758 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1538 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.922Rint = 0.050
12928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
1758 reflectionsΔρmin = 0.28 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36993 (13)0.4974 (3)0.44792 (10)0.0181 (4)
C20.36763 (13)0.5824 (2)0.52170 (11)0.0178 (4)
H20.36180.71340.52850.021*
C30.37494 (12)0.4537 (2)0.58881 (10)0.0153 (4)
C40.38165 (13)0.2736 (2)0.56061 (11)0.0172 (4)
C50.37563 (13)0.5245 (3)0.67461 (11)0.0181 (4)
C60.37733 (14)0.3927 (3)0.74569 (11)0.0227 (4)
H6A0.37300.46340.79690.034*
H6B0.44100.32100.74480.034*
H6C0.31910.30740.74180.034*
O10.37515 (11)0.69263 (19)0.68546 (8)0.0299 (3)
S10.38011 (3)0.25777 (6)0.45563 (3)0.02062 (14)
Cl10.36483 (4)0.60020 (7)0.35316 (3)0.02524 (14)
Cl20.39243 (4)0.06821 (6)0.61358 (3)0.02400 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (9)0.0234 (10)0.0134 (9)0.0004 (7)0.0011 (6)0.0017 (7)
C20.0191 (9)0.0176 (8)0.0168 (9)0.0001 (7)0.0000 (7)0.0017 (7)
C30.0154 (8)0.0162 (8)0.0144 (9)0.0004 (6)0.0010 (6)0.0010 (7)
C40.0174 (9)0.0179 (8)0.0163 (8)0.0007 (7)0.0008 (7)0.0006 (7)
C50.0190 (9)0.0198 (8)0.0154 (9)0.0003 (7)0.0005 (6)0.0007 (7)
C60.0310 (11)0.0227 (10)0.0145 (10)0.0001 (7)0.0021 (7)0.0022 (7)
O10.0548 (10)0.0174 (7)0.0175 (7)0.0006 (6)0.0007 (6)0.0024 (6)
S10.0244 (3)0.0215 (3)0.0160 (3)0.00193 (17)0.00004 (17)0.00486 (17)
Cl10.0251 (3)0.0372 (3)0.0134 (2)0.00171 (19)0.00100 (16)0.00583 (18)
Cl20.0332 (3)0.0138 (2)0.0250 (3)0.00051 (17)0.00035 (19)0.00208 (17)
Geometric parameters (Å, º) top
C1—C21.351 (2)C4—Cl21.7151 (18)
C1—Cl11.7156 (18)C4—S11.7181 (19)
C1—S11.7303 (19)C5—O11.220 (2)
C2—C31.437 (2)C5—C61.498 (2)
C2—H20.9500C6—H6A0.9800
C3—C41.376 (2)C6—H6B0.9800
C3—C51.490 (2)C6—H6C0.9800
C2—C1—Cl1127.54 (15)Cl2—C4—S1116.58 (10)
C2—C1—S1112.71 (13)O1—C5—C3118.28 (16)
Cl1—C1—S1119.75 (10)O1—C5—C6120.83 (16)
C1—C2—C3112.84 (16)C3—C5—C6120.88 (16)
C1—C2—H2123.6C5—C6—H6A109.5
C3—C2—H2123.6C5—C6—H6B109.5
C4—C3—C2110.71 (15)H6A—C6—H6B109.5
C4—C3—C5129.40 (16)C5—C6—H6C109.5
C2—C3—C5119.88 (15)H6A—C6—H6C109.5
C3—C4—Cl2130.13 (14)H6B—C6—H6C109.5
C3—C4—S1113.28 (13)C4—S1—C190.45 (8)
Cl1—C1—C2—C3179.10 (13)C4—C3—C5—O1175.49 (17)
S1—C1—C2—C30.4 (2)C2—C3—C5—O13.7 (3)
C1—C2—C3—C40.5 (2)C4—C3—C5—C64.2 (3)
C1—C2—C3—C5178.80 (15)C2—C3—C5—C6176.57 (15)
C2—C3—C4—Cl2179.62 (14)C3—C4—S1—C10.14 (14)
C5—C3—C4—Cl20.4 (3)Cl2—C4—S1—C1179.47 (11)
C2—C3—C4—S10.40 (19)C2—C1—S1—C40.18 (14)
C5—C3—C4—S1178.85 (14)Cl1—C1—S1—C4179.40 (11)

Experimental details

Crystal data
Chemical formulaC6H4Cl2OS
Mr195.05
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)13.0980 (3), 7.1790 (1), 16.3290 (3)
V3)1535.42 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.22 × 0.14 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.804, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
12928, 1758, 1538
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.07
No. of reflections1758
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

CSC thanks the University of Mysore for providing research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetrangalo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.  PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L. & Rasmussen, S. C. (2007). J. Chem. Crystallogr. 37, 387–398.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds