metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1249-m1250

Aqua­{μ-N-[3-(di­methyl­amino)­prop­yl]-N′-(2-oxidophen­yl)oxamidato(3−)}(1,10-phenanthroline)dicopper(II) nitrate

aDepartment of Chemistry, Jining University, Shandong 273155, People's Republic of China
*Correspondence e-mail: zhongjungao@yahoo.cn

(Received 12 August 2010; accepted 7 September 2010; online 11 September 2010)

The title complex, [Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3, consists of a nitrate ion and a binuclear CuII unit in which the oxamide ligand has a cis geometry, is fully deprotonated and acts in a bidentate fashion to one CuII atom and in a tetradentate fashion to the other CuII atom. The CuII atom coordination geometries are distorted square-planar and distorted square-pyramidal. In the crystal structure, binuclear complexes and nitrate ions are connected by classical O—H⋯O and non-classical C—H⋯O hydrogen bonds into a three-dimensional framework. The alkyl chains of the anion are equally disorded over two positions.

Related literature

For background to oxamide-bridged transition metal complexes, see: Kou et al. (1999[Kou, H. Z., Zhou, B. C., Gao, S. & Wang, R. J. (1999). Angew. Chem. Int. Ed. 42, 3288-3291.]); Ojima & Nonoyama (1988[Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-92.]). For a related structure, see: Wang et al. (2003[Wang, S. B., Yang, G. M., Yu, L. H., Wang, Q. L. & Liao, D. Z. (2003). Transition Met. Chem. 28, 632-634.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3

  • Mr = 649.60

  • Triclinic, [P \overline 1]

  • a = 10.543 (2) Å

  • b = 11.070 (2) Å

  • c = 11.404 (2) Å

  • α = 89.88 (3)°

  • β = 82.28 (3)°

  • γ = 78.24 (3)°

  • V = 1290.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 296 K

  • 0.56 × 0.51 × 0.46 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.448, Tmax = 0.508

  • 12596 measured reflections

  • 5984 independent reflections

  • 4281 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.00

  • 5984 reflections

  • 397 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu2—O2 1.938 (2)
Cu2—O3 1.967 (2)
Cu2—N5 1.986 (3)
Cu2—N4 1.998 (3)
Cu2—O4 2.275 (2)
Cu1—N1 1.924 (3)
Cu1—O1 1.950 (2)
Cu1—N2 1.976 (2)
Cu1—N3 2.007 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.91 1.84 2.745 (3) 172
O4—H4B⋯O5 0.89 1.97 2.839 (5) 164
C19—H19⋯O4ii 0.93 2.51 3.355 (5) 152
C21—H21⋯O5ii 0.93 2.53 3.437 (7) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Much research effort has been dedicated to studying oxamide-bridged transition metal complexes because of their bioactivities and the versatile bridging function (Kou et al., 1999; Ojima & Nonoyama, 1988).

The title compound, C25H25N6O4Cu2+, NO3-is a binuclear copper(II) complex and the structure is similar to that seen previously in a resemble compound (Wang et al., 2003)(Fig. 1). In the dinuclear cation, the oxalate groups bridge the two copper(II) ions. The separation of copper atoms is 5.192 (2) Å. The Cu-atom coordination geometries are regarded as distorted square and square pyramid, respectively. The oxamide ligand has a cis geometry, is fully deprotonated and acts in a hexadentate fashion. Cu—O and Cu—N bond lengths are shown in Table 1. For Cu1, the four atoms (O1, N1, N2, N3) from the oxalate groups build the square plane. The average value of the copper to N1, N2 and N3 bond distance is 1.969 Å. For Cu2, the donors on the oxamide (O2, O3) and the phen (N4, N5) offer the basal plane and the oxygen of a water molecule occupies an apical position with a bond length of 2.275 (2) Å. The maximum displacement from the least-square plane is 0.0055 (2) Å for O2 and the Cu2 atom lies 0.1282 (8) Å out of this plane.

In the crystal, the neutral binuclear complexes and nitrate ions are connected by classcial O—H···O and non-classical C—H···O hydrogen bonds into a three-dimensional framework (Fig. 2, Table 2).

Related literature top

For background to oxamide-bridged transition metal complexes, see: Kou et al., (1999), Ojima & Nonoyama, (1988). For a related structure, see: Wang et al. (2003).

Experimental top

A water solution (10ml) of Cu(NO3)2.3H2O (0.484g, 2mmol) was added slowly into a ethanol solution (10ml) containing N-benzyl-N'-(3-amino-3-dimethylpropyl)oxamide (1mmol, 0.262g) and sodium ethoxide (0.204 g, 3mmol). The mixture was stirred quickly for 2h, then an aqueous solution (5ml) of 1,10-phenanthroline (0.180 g, 1mmol) was added dropwise into the mixture. The reaction solution was heated at 303K with stirring for 12h. The resulting solution was filtered and the filtrate was kept at room temperature. Green crystals suitable for X-ray analysis were obtained from the filtrate by slow evaporation for about three weeks. Yield, 69%, analysis, calculated for C25H26N6O7Cu2: C 46.22, H, 26.21; N 12.94%; found: C 46.26, H 26.29, N, 12.96%.

Refinement top

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2), 0.96 (CH3) and 0.84 (OH)Å] and constrained to ride on their parent atoms with Uiso(H) =1.2(1.5 for methyl and hydroxy O)Ueq(C/N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of C25H25N6O4Cu2+, NO3- with 30% displacement ellipsoids. Symmetry code as in Table 2.
[Figure 2] Fig. 2. Packing diagram for C25H25N6O4Cu2+, NO3-. The O—H···O and C—H···O hydrogen bonds are shown by the dashed lines.
Aqua{µ-N-[3-(dimethylamino)propyl]-N'-(2- oxidophenyl)oxamidato(3-)}(1,10-phenanthroline)dicopper(II) nitrate top
Crystal data top
[Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3Z = 2
Mr = 649.60F(000) = 664
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.543 (2) ÅCell parameters from 3568 reflections
b = 11.070 (2) Åθ = 2.5–26.1°
c = 11.404 (2) ŵ = 1.71 mm1
α = 89.88 (3)°T = 296 K
β = 82.28 (3)°Block, green
γ = 78.24 (3)°0.56 × 0.51 × 0.46 mm
V = 1290.7 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
5984 independent reflections
Radiation source: fine-focus sealed tube4281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.448, Tmax = 0.508k = 1414
12596 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.4001P]
where P = (Fo2 + 2Fc2)/3
5984 reflections(Δ/σ)max = 0.015
397 parametersΔρmax = 0.62 e Å3
24 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3γ = 78.24 (3)°
Mr = 649.60V = 1290.7 (4) Å3
Triclinic, P1Z = 2
a = 10.543 (2) ÅMo Kα radiation
b = 11.070 (2) ŵ = 1.71 mm1
c = 11.404 (2) ÅT = 296 K
α = 89.88 (3)°0.56 × 0.51 × 0.46 mm
β = 82.28 (3)°
Data collection top
Bruker SMART CCD
diffractometer
5984 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4281 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.508Rint = 0.022
12596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04224 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.62 e Å3
5984 reflectionsΔρmin = 0.36 e Å3
397 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu20.40128 (4)0.40843 (4)0.11469 (3)0.04961 (14)
Cu10.71425 (4)0.40018 (3)0.43073 (3)0.04054 (13)
O10.7295 (2)0.5469 (2)0.5175 (2)0.0502 (6)
O20.4700 (2)0.5278 (2)0.1980 (2)0.0492 (5)
O30.5323 (2)0.2830 (2)0.1794 (2)0.0511 (6)
O40.2339 (2)0.3919 (2)0.2581 (2)0.0543 (6)
H4A0.24540.40470.33430.081*
H4B0.22220.31440.25330.081*
N10.6041 (2)0.5181 (2)0.3446 (2)0.0405 (6)
N20.6665 (3)0.2809 (2)0.3246 (2)0.0425 (6)
N30.8428 (3)0.2807 (2)0.5112 (2)0.0502 (7)
N50.3419 (3)0.2952 (3)0.0091 (3)0.0575 (8)
N40.2882 (3)0.5395 (3)0.0326 (2)0.0563 (8)
C10.6697 (3)0.6510 (3)0.4709 (3)0.0421 (7)
C20.5972 (3)0.6414 (3)0.3765 (3)0.0395 (6)
C30.5358 (3)0.7454 (3)0.3233 (3)0.0463 (7)
H30.48930.73760.26090.056*
C40.5437 (3)0.8605 (3)0.3631 (3)0.0553 (9)
H40.50300.93090.32760.066*
C50.6123 (3)0.8709 (3)0.4561 (3)0.0557 (9)
H50.61570.94900.48390.067*
C60.6760 (3)0.7680 (3)0.5090 (3)0.0506 (8)
H60.72330.77740.57040.061*
C80.5473 (3)0.4728 (3)0.2668 (3)0.0404 (7)
C70.5848 (3)0.3321 (3)0.2560 (3)0.0411 (7)
C90.7093 (4)0.1462 (3)0.3177 (3)0.0552 (9)
H9A0.72290.11880.23540.066*0.50
H9B0.64080.10920.35900.066*0.50
H9C0.76430.12200.24290.066*0.50
H9D0.63390.10810.32110.066*0.50
C10A0.8329 (7)0.1021 (9)0.3701 (7)0.052 (2)0.50
H10A0.90370.13320.32500.063*0.50
H10B0.85540.01270.36570.063*0.50
C11A0.8168 (7)0.1460 (5)0.4988 (5)0.0425 (14)0.50
H11A0.87720.08940.54050.051*0.50
H11B0.72870.14460.53570.051*0.50
C12A0.808 (2)0.3076 (12)0.6411 (7)0.045 (3)0.50
H12A0.71880.30220.66510.067*0.50
H12B0.81950.38930.65850.067*0.50
H12C0.86420.24870.68320.067*0.50
C13A0.9744 (7)0.2859 (10)0.4700 (11)0.070 (3)0.50
H13A0.99250.26670.38660.104*0.50
H13B1.03170.22710.51100.104*0.50
H13C0.98810.36730.48430.104*0.50
C10B0.7860 (8)0.1011 (9)0.4207 (9)0.065 (3)0.50
H10C0.72320.10800.49200.078*0.50
H10D0.82280.01390.40620.078*0.50
C11B0.8951 (8)0.1617 (7)0.4474 (8)0.070 (2)0.50
H11C0.95080.10750.49500.084*0.50
H11D0.94780.17500.37390.084*0.50
C12B0.807 (3)0.2723 (13)0.6375 (8)0.051 (3)0.50
H12D0.77410.35370.67170.077*0.50
H12E0.88220.23330.67240.077*0.50
H12F0.74020.22440.65200.077*0.50
C13B0.9643 (8)0.3396 (9)0.4984 (10)0.062 (3)0.50
H13D0.99320.34890.41600.093*0.50
H13E1.03300.28740.53330.093*0.50
H13F0.94240.41910.53790.093*0.50
C140.3686 (4)0.1724 (4)0.0033 (4)0.0696 (11)
H140.43120.12930.04660.083*
C150.3054 (5)0.1069 (5)0.0656 (4)0.0860 (14)
H150.32520.02110.06840.103*
C160.2135 (5)0.1706 (6)0.1293 (4)0.0894 (16)
H160.17080.12710.17550.107*
C170.1827 (4)0.2987 (5)0.1264 (3)0.0746 (13)
C180.0877 (4)0.3755 (7)0.1880 (4)0.0936 (19)
H180.04340.33800.23790.112*
C190.0609 (4)0.4953 (7)0.1771 (4)0.0887 (17)
H190.00220.54020.21880.106*
C200.1263 (4)0.5612 (5)0.1017 (3)0.0718 (13)
C210.1012 (4)0.6888 (5)0.0819 (4)0.0835 (15)
H210.03870.73960.12010.100*
C220.1681 (4)0.7399 (5)0.0064 (4)0.0789 (13)
H220.15130.82480.00770.095*
C230.2617 (4)0.6610 (4)0.0485 (4)0.0669 (11)
H230.30790.69530.09890.080*
C240.2208 (3)0.4897 (4)0.0416 (3)0.0608 (10)
C250.2498 (3)0.3585 (4)0.0538 (3)0.0597 (10)
N60.1811 (5)0.0538 (5)0.2109 (4)0.0969 (13)
O50.1519 (4)0.1668 (4)0.2262 (4)0.1159 (13)
O60.2803 (6)0.0114 (7)0.2088 (7)0.234 (4)
O70.0940 (7)0.0076 (5)0.1804 (5)0.172 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0456 (2)0.0637 (3)0.0430 (2)0.01150 (19)0.01790 (17)0.00329 (19)
Cu10.0434 (2)0.0357 (2)0.0437 (2)0.00387 (15)0.01655 (16)0.00239 (15)
O10.0609 (14)0.0401 (12)0.0532 (13)0.0054 (10)0.0281 (11)0.0036 (10)
O20.0479 (12)0.0504 (13)0.0528 (13)0.0077 (10)0.0228 (10)0.0007 (10)
O30.0535 (13)0.0517 (14)0.0529 (14)0.0131 (11)0.0210 (11)0.0075 (11)
O40.0598 (14)0.0626 (15)0.0434 (12)0.0153 (12)0.0127 (10)0.0018 (11)
N10.0398 (13)0.0376 (13)0.0459 (15)0.0055 (10)0.0163 (11)0.0016 (11)
N20.0496 (15)0.0349 (13)0.0462 (15)0.0094 (11)0.0168 (12)0.0026 (11)
N30.0547 (16)0.0449 (15)0.0490 (16)0.0026 (12)0.0199 (13)0.0062 (12)
N50.0494 (16)0.083 (2)0.0421 (16)0.0157 (15)0.0117 (13)0.0098 (15)
N40.0475 (16)0.084 (2)0.0384 (15)0.0123 (15)0.0112 (12)0.0075 (15)
C10.0408 (16)0.0395 (16)0.0465 (17)0.0064 (13)0.0102 (13)0.0017 (13)
C20.0394 (15)0.0363 (15)0.0434 (17)0.0076 (12)0.0081 (13)0.0011 (12)
C30.0425 (16)0.0457 (18)0.0501 (19)0.0043 (14)0.0120 (14)0.0023 (14)
C40.056 (2)0.0373 (17)0.069 (2)0.0013 (15)0.0087 (17)0.0053 (16)
C50.057 (2)0.0368 (17)0.072 (2)0.0082 (15)0.0089 (18)0.0062 (16)
C60.0534 (19)0.0430 (18)0.058 (2)0.0090 (15)0.0174 (16)0.0075 (15)
C80.0361 (15)0.0442 (17)0.0433 (17)0.0108 (12)0.0101 (12)0.0020 (13)
C70.0400 (15)0.0436 (17)0.0420 (17)0.0124 (13)0.0079 (13)0.0021 (13)
C90.070 (2)0.0364 (17)0.062 (2)0.0106 (16)0.0221 (18)0.0026 (15)
C10A0.039 (4)0.037 (4)0.079 (6)0.004 (4)0.007 (4)0.005 (4)
C11A0.037 (3)0.039 (3)0.052 (4)0.002 (3)0.016 (3)0.006 (3)
C12A0.052 (5)0.035 (8)0.048 (5)0.006 (6)0.011 (4)0.007 (3)
C13A0.039 (4)0.079 (7)0.078 (8)0.011 (4)0.002 (4)0.019 (5)
C10B0.041 (5)0.039 (4)0.118 (9)0.007 (4)0.023 (5)0.011 (6)
C11B0.061 (5)0.066 (5)0.078 (6)0.003 (4)0.015 (4)0.020 (4)
C12B0.063 (6)0.032 (8)0.063 (6)0.014 (7)0.016 (4)0.008 (4)
C13B0.039 (4)0.082 (7)0.050 (6)0.016 (4)0.008 (3)0.001 (5)
C140.068 (2)0.085 (3)0.059 (2)0.019 (2)0.0169 (19)0.014 (2)
C150.087 (3)0.103 (4)0.073 (3)0.029 (3)0.015 (3)0.029 (3)
C160.084 (3)0.136 (5)0.059 (3)0.046 (3)0.012 (2)0.031 (3)
C170.054 (2)0.133 (4)0.040 (2)0.027 (2)0.0074 (17)0.017 (2)
C180.053 (2)0.192 (6)0.041 (2)0.032 (3)0.0163 (19)0.016 (3)
C190.051 (2)0.170 (6)0.044 (2)0.014 (3)0.0178 (18)0.008 (3)
C200.047 (2)0.126 (4)0.038 (2)0.009 (2)0.0063 (15)0.016 (2)
C210.058 (2)0.125 (4)0.057 (3)0.004 (3)0.007 (2)0.036 (3)
C220.068 (3)0.098 (4)0.064 (3)0.005 (2)0.005 (2)0.026 (2)
C230.064 (2)0.081 (3)0.054 (2)0.011 (2)0.0093 (18)0.014 (2)
C240.0444 (18)0.106 (3)0.0308 (17)0.0124 (19)0.0050 (14)0.0052 (18)
C250.0413 (18)0.106 (3)0.0328 (17)0.0168 (19)0.0052 (14)0.0071 (18)
N60.102 (4)0.099 (3)0.088 (3)0.015 (3)0.013 (3)0.020 (3)
O50.126 (3)0.112 (3)0.111 (3)0.044 (3)0.009 (2)0.024 (3)
O60.127 (4)0.271 (7)0.272 (7)0.036 (4)0.028 (5)0.155 (6)
O70.185 (5)0.153 (5)0.188 (5)0.061 (4)0.023 (4)0.042 (4)
Geometric parameters (Å, º) top
Cu2—O21.938 (2)C10A—H10A0.9700
Cu2—O31.967 (2)C10A—H10B0.9700
Cu2—N51.986 (3)C11A—H11A0.9700
Cu2—N41.998 (3)C11A—H11B0.9700
Cu2—O42.275 (2)C12A—H12A0.9600
Cu1—N11.924 (3)C12A—H12B0.9600
Cu1—O11.950 (2)C12A—H12C0.9600
Cu1—N21.976 (2)C13A—H13A0.9600
Cu1—N32.007 (3)C13A—H13B0.9600
O1—C11.341 (4)C13A—H13C0.9600
O2—C81.272 (4)C10B—C11B1.508 (8)
O3—C71.273 (4)C10B—H10C0.9700
O4—H4A0.9085C10B—H10D0.9700
O4—H4B0.8938C11B—H11C0.9700
N1—C81.289 (4)C11B—H11D0.9700
N1—C21.398 (4)C12B—H12D0.9600
N2—C71.286 (4)C12B—H12E0.9600
N2—C91.467 (4)C12B—H12F0.9600
N3—C13A1.416 (7)C13B—H13D0.9600
N3—C12B1.446 (8)C13B—H13E0.9600
N3—C11B1.472 (6)C13B—H13F0.9600
N3—C12A1.493 (8)C14—C151.388 (5)
N3—C13B1.542 (8)C14—H140.9300
N3—C11A1.580 (6)C15—C161.368 (7)
N5—C141.331 (5)C15—H150.9300
N5—C251.362 (5)C16—C171.388 (7)
N4—C231.325 (5)C16—H160.9300
N4—C241.359 (5)C17—C251.406 (5)
C1—C61.385 (4)C17—C181.435 (7)
C1—C21.418 (4)C18—C191.301 (8)
C2—C31.383 (4)C18—H180.9300
C3—C41.376 (4)C19—C201.454 (7)
C3—H30.9300C19—H190.9300
C4—C51.379 (5)C20—C211.396 (7)
C4—H40.9300C20—C241.396 (5)
C5—C61.381 (5)C21—C221.374 (7)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—C231.394 (6)
C8—C71.528 (4)C22—H220.9300
C9—C10A1.497 (7)C23—H230.9300
C9—C10B1.539 (8)C24—C251.425 (6)
C9—H9A0.9700N6—O61.140 (6)
C9—H9B0.9700N6—O71.227 (6)
C9—H9C0.9700N6—O51.232 (6)
C9—H9D0.9700N6—O51.232 (6)
C10A—C11A1.523 (8)
O2—Cu2—O385.77 (9)H9A—C9—H9D82.9
O2—Cu2—N5172.13 (11)H9C—C9—H9D108.1
O3—Cu2—N596.96 (12)C9—C10A—C11A110.7 (5)
O2—Cu2—N492.76 (12)C9—C10A—H10A109.5
O3—Cu2—N4172.21 (10)C11A—C10A—H10A109.5
N5—Cu2—N483.54 (14)C9—C10A—H10B109.5
O2—Cu2—O496.91 (9)C11A—C10A—H10B109.5
O3—Cu2—O495.19 (10)H10A—C10A—H10B108.1
N5—Cu2—O490.21 (11)C10A—C11A—N3112.4 (5)
N4—Cu2—O492.58 (10)C10A—C11A—H11A109.1
N1—Cu1—O183.22 (10)N3—C11A—H11A109.1
N1—Cu1—N282.68 (11)C10A—C11A—H11B109.1
O1—Cu1—N2165.80 (10)N3—C11A—H11B109.1
N1—Cu1—N3174.91 (11)H11A—C11A—H11B107.9
O1—Cu1—N396.11 (10)N3—C12A—H12A109.5
N2—Cu1—N398.09 (11)N3—C12A—H12B109.5
C1—O1—Cu1111.94 (19)H12A—C12A—H12B109.5
C8—O2—Cu2110.0 (2)N3—C12A—H12C109.5
C7—O3—Cu2110.2 (2)H12A—C12A—H12C109.5
Cu2—O4—H4A117.3H12B—C12A—H12C109.5
Cu2—O4—H4B106.6N3—C13A—H13A109.5
H4A—O4—H4B106.1N3—C13A—H13B109.5
C8—N1—C2129.5 (3)H13A—C13A—H13B109.5
C8—N1—Cu1116.0 (2)N3—C13A—H13C109.5
C2—N1—Cu1114.5 (2)H13A—C13A—H13C109.5
C7—N2—C9118.3 (3)H13B—C13A—H13C109.5
C7—N2—Cu1113.2 (2)C11B—C10B—C9120.0 (7)
C9—N2—Cu1128.5 (2)C11B—C10B—H10C107.3
C13A—N3—C12B117.5 (12)C9—C10B—H10C107.3
C13A—N3—C11B76.3 (5)C11B—C10B—H10D107.3
C12B—N3—C11B115.1 (7)C9—C10B—H10D107.3
C13A—N3—C12A112.4 (10)H10C—C10B—H10D106.9
C11B—N3—C12A129.6 (7)N3—C11B—C10B111.0 (7)
C12B—N3—C13B104.9 (10)N3—C11B—H11C109.4
C11B—N3—C13B101.5 (4)C10B—C11B—H11C109.4
C12A—N3—C13B94.9 (9)N3—C11B—H11D109.4
C13A—N3—C11A111.8 (5)C10B—C11B—H11D109.4
C12B—N3—C11A87.3 (6)H11C—C11B—H11D108.0
C12A—N3—C11A102.6 (5)N3—C12B—H12D109.5
C13B—N3—C11A135.8 (4)N3—C12B—H12E109.5
C13A—N3—Cu1112.8 (6)H12D—C12B—H12E109.5
C12B—N3—Cu1114.8 (10)N3—C12B—H12F109.5
C11B—N3—Cu1114.9 (4)H12D—C12B—H12F109.5
C12A—N3—Cu1106.9 (9)H12E—C12B—H12F109.5
C13B—N3—Cu1103.2 (5)N3—C13B—H13D109.5
C11A—N3—Cu1109.7 (3)N3—C13B—H13E109.5
C14—N5—C25119.3 (3)H13D—C13B—H13E109.5
C14—N5—Cu2129.2 (3)N3—C13B—H13F109.5
C25—N5—Cu2111.0 (3)H13D—C13B—H13F109.5
C23—N4—C24118.1 (4)H13E—C13B—H13F109.5
C23—N4—Cu2130.2 (3)N5—C14—C15121.7 (4)
C24—N4—Cu2111.3 (3)N5—C14—H14119.2
O1—C1—C6123.6 (3)C15—C14—H14119.2
O1—C1—C2118.6 (3)C16—C15—C14119.0 (5)
C6—C1—C2117.8 (3)C16—C15—H15120.5
C3—C2—N1127.4 (3)C14—C15—H15120.5
C3—C2—C1121.2 (3)C15—C16—C17121.4 (4)
N1—C2—C1111.4 (3)C15—C16—H16119.3
C4—C3—C2119.6 (3)C17—C16—H16119.3
C4—C3—H3120.2C16—C17—C25116.4 (4)
C2—C3—H3120.2C16—C17—C18126.5 (5)
C3—C4—C5119.7 (3)C25—C17—C18117.1 (5)
C3—C4—H4120.2C19—C18—C17122.8 (5)
C5—C4—H4120.2C19—C18—H18118.6
C4—C5—C6121.4 (3)C17—C18—H18118.6
C4—C5—H5119.3C18—C19—C20122.1 (5)
C6—C5—H5119.3C18—C19—H19118.9
C5—C6—C1120.2 (3)C20—C19—H19118.9
C5—C6—H6119.9C21—C20—C24117.1 (4)
C1—C6—H6119.9C21—C20—C19126.1 (5)
O2—C8—N1129.6 (3)C24—C20—C19116.8 (5)
O2—C8—C7117.3 (3)C22—C21—C20120.5 (4)
N1—C8—C7113.0 (3)C22—C21—H21119.7
O3—C7—N2129.5 (3)C20—C21—H21119.7
O3—C7—C8115.4 (3)C21—C22—C23118.1 (5)
N2—C7—C8115.1 (3)C21—C22—H22121.0
N2—C9—C10A112.8 (4)C23—C22—H22121.0
N2—C9—C10B110.3 (5)N4—C23—C22123.4 (4)
N2—C9—H9A109.0N4—C23—H23118.3
C10A—C9—H9A109.0C22—C23—H23118.3
C10B—C9—H9A131.0N4—C24—C20122.8 (4)
N2—C9—H9B109.0N4—C24—C25116.4 (3)
C10A—C9—H9B109.0C20—C24—C25120.9 (4)
C10B—C9—H9B85.6N5—C25—C17122.3 (4)
H9A—C9—H9B107.8N5—C25—C24117.4 (3)
N2—C9—H9C109.4C17—C25—C24120.3 (4)
C10A—C9—H9C84.3O6—N6—O7115.5 (7)
C10B—C9—H9C109.7O6—N6—O5129.4 (7)
H9B—C9—H9C129.6O7—N6—O5114.5 (6)
N2—C9—H9D109.7O6—N6—O5129.4 (7)
C10A—C9—H9D128.2O7—N6—O5114.5 (6)
C10B—C9—H9D109.5
N1—Cu1—O1—C15.2 (2)Cu1—N2—C7—O3178.5 (3)
N2—Cu1—O1—C112.1 (5)C9—N2—C7—C8178.8 (3)
N3—Cu1—O1—C1169.7 (2)Cu1—N2—C7—C82.6 (3)
O3—Cu2—O2—C810.2 (2)O2—C8—C7—O31.2 (4)
N4—Cu2—O2—C8177.5 (2)N1—C8—C7—O3179.3 (2)
O4—Cu2—O2—C884.6 (2)O2—C8—C7—N2177.8 (2)
O2—Cu2—O3—C79.6 (2)N1—C8—C7—N20.3 (4)
N5—Cu2—O3—C7177.8 (2)C7—N2—C9—C10A161.3 (4)
O4—Cu2—O3—C787.0 (2)Cu1—N2—C9—C10A20.4 (5)
O1—Cu1—N1—C8175.3 (2)C7—N2—C9—C10B169.8 (4)
N2—Cu1—N1—C83.0 (2)Cu1—N2—C9—C10B8.5 (6)
O1—Cu1—N1—C24.5 (2)N2—C9—C10A—C11A57.4 (8)
N2—Cu1—N1—C2177.2 (2)C10B—C9—C10A—C11A33.0 (10)
N1—Cu1—N2—C73.1 (2)C9—C10A—C11A—N384.7 (7)
O1—Cu1—N2—C73.8 (6)C13A—N3—C11A—C10A65.0 (8)
N3—Cu1—N2—C7178.0 (2)C12B—N3—C11A—C10A176.4 (12)
N1—Cu1—N2—C9178.6 (3)C11B—N3—C11A—C10A44.5 (7)
O1—Cu1—N2—C9174.5 (4)C12A—N3—C11A—C10A174.4 (11)
N3—Cu1—N2—C93.6 (3)C13B—N3—C11A—C10A74.9 (9)
O1—Cu1—N3—C13A76.3 (5)Cu1—N3—C11A—C10A61.0 (5)
N2—Cu1—N3—C13A104.2 (5)N2—C9—C10B—C11B49.2 (10)
O1—Cu1—N3—C12B62.0 (8)C10A—C9—C10B—C11B51.2 (10)
N2—Cu1—N3—C12B117.6 (7)C13A—N3—C11B—C10B163.7 (9)
O1—Cu1—N3—C11B161.2 (4)C12B—N3—C11B—C10B82.0 (13)
N2—Cu1—N3—C11B19.3 (4)C12A—N3—C11B—C10B88.3 (14)
O1—Cu1—N3—C12A47.8 (7)C13B—N3—C11B—C10B165.3 (8)
N2—Cu1—N3—C12A131.8 (7)C11A—N3—C11B—C10B35.8 (6)
O1—Cu1—N3—C13B51.6 (4)Cu1—N3—C11B—C10B54.7 (8)
N2—Cu1—N3—C13B128.9 (4)C9—C10B—C11B—N377.8 (11)
O1—Cu1—N3—C11A158.3 (3)C25—N5—C14—C150.2 (6)
N2—Cu1—N3—C11A21.2 (3)Cu2—N5—C14—C15171.6 (3)
O3—Cu2—N5—C1410.2 (3)N5—C14—C15—C160.1 (7)
N4—Cu2—N5—C14177.6 (3)C14—C15—C16—C170.1 (7)
O4—Cu2—N5—C1485.0 (3)C15—C16—C17—C250.7 (6)
O3—Cu2—N5—C25177.9 (2)C15—C16—C17—C18179.3 (4)
N4—Cu2—N5—C255.7 (2)C16—C17—C18—C19177.3 (5)
O4—Cu2—N5—C2586.9 (2)C25—C17—C18—C191.4 (7)
O2—Cu2—N4—C238.5 (3)C17—C18—C19—C200.5 (8)
N5—Cu2—N4—C23178.5 (3)C18—C19—C20—C21177.9 (4)
O4—Cu2—N4—C2388.6 (3)C18—C19—C20—C240.4 (6)
O2—Cu2—N4—C24178.7 (2)C24—C20—C21—C220.3 (6)
N5—Cu2—N4—C245.7 (2)C19—C20—C21—C22178.6 (4)
O4—Cu2—N4—C2484.2 (2)C20—C21—C22—C230.5 (6)
Cu1—O1—C1—C6173.9 (3)C24—N4—C23—C220.3 (5)
Cu1—O1—C1—C25.2 (3)Cu2—N4—C23—C22172.1 (3)
C8—N1—C2—C36.4 (5)C21—C22—C23—N40.8 (6)
Cu1—N1—C2—C3173.9 (3)C23—N4—C24—C200.5 (5)
C8—N1—C2—C1176.8 (3)Cu2—N4—C24—C20174.3 (3)
Cu1—N1—C2—C12.9 (3)C23—N4—C24—C25178.4 (3)
O1—C1—C2—C3178.6 (3)Cu2—N4—C24—C254.7 (4)
C6—C1—C2—C30.6 (4)C21—C20—C24—N40.8 (5)
O1—C1—C2—N11.7 (4)C19—C20—C24—N4179.3 (3)
C6—C1—C2—N1177.5 (3)C21—C20—C24—C25178.1 (3)
N1—C2—C3—C4177.1 (3)C19—C20—C24—C250.4 (5)
C1—C2—C3—C40.7 (5)C14—N5—C25—C170.9 (5)
C2—C3—C4—C50.3 (5)Cu2—N5—C25—C17173.7 (3)
C3—C4—C5—C61.4 (5)C14—N5—C25—C24177.7 (3)
C4—C5—C6—C11.5 (5)Cu2—N5—C25—C244.9 (4)
O1—C1—C6—C5179.6 (3)C16—C17—C25—N51.1 (5)
C2—C1—C6—C50.5 (5)C18—C17—C25—N5179.9 (3)
Cu2—O2—C8—N1173.3 (3)C16—C17—C25—C24177.5 (4)
Cu2—O2—C8—C79.0 (3)C18—C17—C25—C241.3 (5)
C2—N1—C8—O20.2 (5)N4—C24—C25—N50.1 (5)
Cu1—N1—C8—O2179.9 (3)C20—C24—C25—N5179.1 (3)
C2—N1—C8—C7177.9 (3)N4—C24—C25—C17178.5 (3)
Cu1—N1—C8—C72.4 (3)C20—C24—C25—C170.5 (5)
Cu2—O3—C7—N2174.0 (3)O6—N6—O5—O50.0 (3)
Cu2—O3—C7—C87.2 (3)O7—N6—O5—O50.00 (17)
C9—N2—C7—O30.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.911.842.745 (3)172
O4—H4B···O50.891.972.839 (5)164
C19—H19···O4ii0.932.513.355 (5)152
C21—H21···O5ii0.932.533.437 (7)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3
Mr649.60
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.543 (2), 11.070 (2), 11.404 (2)
α, β, γ (°)89.88 (3), 82.28 (3), 78.24 (3)
V3)1290.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.56 × 0.51 × 0.46
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.448, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
12596, 5984, 4281
Rint0.022
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.00
No. of reflections5984
No. of parameters397
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu2—O21.938 (2)Cu1—N11.924 (3)
Cu2—O31.967 (2)Cu1—O11.950 (2)
Cu2—N51.986 (3)Cu1—N21.976 (2)
Cu2—N41.998 (3)Cu1—N32.007 (3)
Cu2—O42.275 (2)
O2—Cu2—O385.77 (9)N5—Cu2—O490.21 (11)
O2—Cu2—N5172.13 (11)N4—Cu2—O492.58 (10)
O3—Cu2—N596.96 (12)N1—Cu1—O183.22 (10)
O2—Cu2—N492.76 (12)N1—Cu1—N282.68 (11)
O3—Cu2—N4172.21 (10)O1—Cu1—N2165.80 (10)
N5—Cu2—N483.54 (14)N1—Cu1—N3174.91 (11)
O2—Cu2—O496.91 (9)O1—Cu1—N396.11 (10)
O3—Cu2—O495.19 (10)N2—Cu1—N398.09 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.911.842.745 (3)171.8
O4—H4B···O50.891.972.839 (5)164.2
C19—H19···O4ii0.932.513.355 (5)152.0
C21—H21···O5ii0.932.533.437 (7)166.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

We acknowledge the financial support of the Science Foundation of Shandong.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKou, H. Z., Zhou, B. C., Gao, S. & Wang, R. J. (1999). Angew. Chem. Int. Ed. 42, 3288–3291.  Web of Science CSD CrossRef Google Scholar
First citationOjima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85–92.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. B., Yang, G. M., Yu, L. H., Wang, Q. L. & Liao, D. Z. (2003). Transition Met. Chem. 28, 632–634.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1249-m1250
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds