metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1293-m1294

Bis(2-amino-3-methyl­pyridine)­di­chlorido­cobalt(II)

aDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: tajarodi@iust.ac.ir

(Received 5 September 2010; accepted 13 September 2010; online 25 September 2010)

In the title compound, [CoCl2(C6H8N2)2], the CoII ion is four-coordinated by two pyridine N atoms from the 2-amino-3-methyl­pyridine ligands and two chloride ions in a distorted tetra­hedral geometry. A weak intra­molecular N—H⋯Cl inter­action occurs. The crystal packing is stabilized by inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen-bond inter­actions.

Related literature

2-Amino-3-methyl­pyridine (ampy) can potentially coordinate to metal centers through the N atom of the amino group (Chen et al., 2005[Chen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561-565.]) or the pyridyl nitro­gen atom (Amani Komaei et al., 1999[Amani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991-1997.]; Ziegler et al., 2000[Ziegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774-783.]; Castillo et al., 2001[Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350-353.]). For the structures of [(ampyH)2CoX4] proton-transfer compounds (X = Cl, Br), see: Carnevale et al. (2010[Carnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223-2238.]). Polar metal–halogen bonds are good hydrogen-bond acceptors, see: Aullón et al. (1998[Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. & Orpen, A. G. (1998). Chem. Commun. pp. 653-654.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C6H8N2)2]

  • Mr = 346.12

  • Monoclinic, P 21 /n

  • a = 9.3768 (19) Å

  • b = 13.841 (3) Å

  • c = 12.175 (2) Å

  • β = 100.31 (3)°

  • V = 1554.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 298 K

  • 0.50 × 0.38 × 0.30 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical shape of crystal determined optically (XRED and XSHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])Tmin = 0.517, Tmax = 0.642

  • 11996 measured reflections

  • 4174 independent reflections

  • 2803 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.132

  • S = 1.07

  • 4174 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N3 2.034 (2)
Co1—N1 2.038 (3)
Co1—Cl2 2.2303 (11)
Co1—Cl1 2.2635 (11)
N3—Co1—N1 106.66 (10)
N3—Co1—Cl2 110.23 (8)
N1—Co1—Cl2 111.26 (9)
N3—Co1—Cl1 109.94 (8)
N1—Co1—Cl1 108.24 (8)
Cl2—Co1—Cl1 110.42 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Cl1i 0.86 2.72 3.427 (4) 140
N4—H4A⋯Cl1 0.86 2.67 3.363 (4) 138
N4—H4B⋯Cl2ii 0.86 2.68 3.350 (4) 136
C3—H3⋯Cl2iii 0.93 2.81 3.701 (4) 161
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-amino-3-methylpyridine (ampy) is a common ligand and potentially can coordinate to metal centers through the N atom of amino group (Chen et al., 2005) or the pyridyl nitrogen atom (Amani Komaei et al., 1999; Ziegler et al., 2000; Castillo et al., 2001). Recently, the structure of [(ampyH)2CoX4] proton transfer compounds (X=Cl, Br) have been reported (Carnevale et al., 2010). Polar metal-halogen bonds are good hydrogen bond acceptors (Aullón et al., 1998). We report herein the synthesis and molecular structure of the title compound, [Co(ampy)2Cl2]. The compound is mononuclear with the cobalt (II) ion coordinated by two pyridyl nitrogen atoms from two ampy ligands and two chloride ions in a distorted tetrahedral geometry (Fig. 1). The Co—N and Co—Cl bond lengths and angles are within normal ranges (Table 1). The dihedral angle formed between the least squares planes of two pyridine rings is 69.5 (5)°. Crystal packing is stabilized by weak intramolecular N–H···Cl and intermolecular N—H···Cl, C—H···Cl hydrogen bond interactions (Table 2). Cl1 forms a bifurcated acceptor bond with H4A and H2B from nearby neighbors (Fig. 2).

Related literature top

2-Amino-3-methylpyridine (ampy) can potentially coordinate to metal centers through the N atom of the amino group (Chen et al., 2005) or the pyridyl nitrogen atom (Amani Komaei et al., 1999; Ziegler et al., 2000; Castillo et al., 2001). For the structures of [(ampyH)2CoX4] proton-transfer compounds (X = Cl, Br), see: Carnevale et al. (2010). Polar metal–halogen bonds are good hydrogen-bond acceptors, see: Aullón et al. (1998).

Experimental top

A solution of 2-amino-3-methylpyridine (0.1 ml, 1 mmol) in ethanol (10 ml) was added to a solution of CoCl2.6H2O (0.12 g, 0.5 mmol) in water (10 ml) and stirred for 20 min at 50 °C. Slow evaporation of the resulting solution gave a blue precipitate which was then recrystallized from ethanol and acetonitrile (3:1 v/v). After one week, blue crystals of the title compound suitable for X-ray analysis were isolated (yield; 0.1583 g, 91.4% based on Co, decomposition > 168 °C).

Refinement top

All of the H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (CH), with C—H = 0.96Å (CH3), and Uiso(H) = 1.2, 1.49Ueq(C), and with N—H = 0.86Å (NH2) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Co(ampy)2Cl2] with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of [Co(ampy)2Cl2] showing hydrogen bonding as blue dashed lines.
Bis(2-amino-3-methylpyridine)dichloridocobalt(II) top
Crystal data top
[CoCl2(C6H8N2)2]F(000) = 708.0
Mr = 346.12Dx = 1.479 Mg m3
Monoclinic, P21/nMelting point: 441 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.3768 (19) ÅCell parameters from 4174 reflections
b = 13.841 (3) Åθ = 2.3–29.2°
c = 12.175 (2) ŵ = 1.44 mm1
β = 100.31 (3)°T = 298 K
V = 1554.6 (5) Å3Block, blue
Z = 40.5 × 0.38 × 0.3 mm
Data collection top
Stoe IPDS II
diffractometer
4174 independent reflections
Radiation source: fine-focus sealed tube2803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 2.3°
rotation method scansh = 1210
Absorption correction: numerical
shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005)
k = 1818
Tmin = 0.517, Tmax = 0.642l = 1616
11996 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.6654P]
where P = (Fo2 + 2Fc2)/3
4174 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[CoCl2(C6H8N2)2]V = 1554.6 (5) Å3
Mr = 346.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3768 (19) ŵ = 1.44 mm1
b = 13.841 (3) ÅT = 298 K
c = 12.175 (2) Å0.5 × 0.38 × 0.3 mm
β = 100.31 (3)°
Data collection top
Stoe IPDS II
diffractometer
4174 independent reflections
Absorption correction: numerical
shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005)
2803 reflections with I > 2σ(I)
Tmin = 0.517, Tmax = 0.642Rint = 0.055
11996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
4174 reflectionsΔρmin = 0.52 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.14951 (4)0.99824 (3)0.31175 (3)0.04765 (14)
Cl20.09365 (12)1.14810 (7)0.35642 (8)0.0730 (3)
Cl10.24844 (11)0.99925 (9)0.15526 (7)0.0738 (3)
N30.2899 (3)0.93750 (18)0.43978 (19)0.0450 (6)
N10.0296 (3)0.9120 (2)0.2839 (2)0.0484 (6)
C50.0369 (4)0.8380 (3)0.3553 (3)0.0579 (8)
H50.03760.83100.41640.069*
C10.1395 (3)0.9237 (3)0.1967 (2)0.0509 (7)
C70.3589 (3)0.8548 (2)0.4302 (3)0.0490 (7)
C20.2593 (4)0.8599 (3)0.1783 (3)0.0552 (8)
C90.4738 (4)0.8617 (3)0.6192 (3)0.0641 (9)
H90.53630.83670.68050.077*
C110.3132 (4)0.9843 (2)0.5399 (3)0.0541 (8)
H110.26541.04230.54640.065*
C60.3807 (4)0.8754 (4)0.0808 (3)0.0829 (13)
H6A0.45670.82960.08440.124*
H6B0.34490.86650.01240.124*
H6C0.41790.93980.08350.124*
C80.4538 (4)0.8119 (3)0.5215 (3)0.0546 (8)
N20.1321 (4)0.9997 (2)0.1281 (3)0.0756 (10)
H2A0.05931.03850.14090.091*
H2B0.20031.00930.07180.091*
C100.4044 (4)0.9485 (3)0.6308 (3)0.0664 (10)
H100.41950.98140.69850.080*
C30.2594 (4)0.7855 (3)0.2517 (3)0.0680 (10)
H30.33590.74180.24100.082*
C40.1470 (4)0.7738 (3)0.3422 (3)0.0705 (10)
H40.14770.72320.39230.085*
N40.3322 (4)0.8108 (3)0.3292 (3)0.0793 (10)
H4A0.27300.83650.27490.095*
H4B0.37450.75720.31930.095*
C120.5285 (5)0.7188 (3)0.5056 (4)0.0809 (12)
H12A0.58940.70050.57440.121*
H12B0.58660.72670.44880.121*
H12C0.45740.66930.48330.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0456 (2)0.0545 (2)0.0391 (2)0.0008 (2)0.00267 (15)0.00612 (18)
Cl20.0862 (7)0.0581 (5)0.0698 (5)0.0198 (5)0.0008 (5)0.0085 (4)
Cl10.0666 (5)0.1115 (8)0.0421 (4)0.0138 (6)0.0066 (4)0.0074 (5)
N30.0440 (13)0.0488 (14)0.0392 (12)0.0019 (11)0.0004 (10)0.0034 (10)
N10.0436 (14)0.0585 (15)0.0405 (12)0.0034 (11)0.0005 (10)0.0044 (11)
C50.0514 (18)0.075 (2)0.0442 (16)0.0008 (17)0.0012 (14)0.0128 (15)
C10.0452 (16)0.0637 (19)0.0419 (15)0.0024 (14)0.0024 (13)0.0021 (14)
C70.0448 (16)0.0516 (17)0.0499 (16)0.0021 (14)0.0059 (13)0.0013 (14)
C20.0454 (16)0.076 (2)0.0431 (16)0.0095 (16)0.0038 (13)0.0002 (15)
C90.058 (2)0.078 (2)0.0525 (19)0.0033 (18)0.0009 (16)0.0191 (18)
C110.0531 (17)0.060 (2)0.0454 (15)0.0001 (15)0.0011 (13)0.0006 (14)
C60.057 (2)0.121 (4)0.062 (2)0.025 (2)0.0139 (18)0.015 (2)
C80.0425 (15)0.0540 (18)0.066 (2)0.0001 (14)0.0062 (14)0.0155 (16)
N20.0690 (19)0.082 (2)0.0641 (18)0.0192 (17)0.0205 (15)0.0253 (17)
C100.070 (2)0.084 (3)0.0393 (16)0.002 (2)0.0054 (15)0.0015 (17)
C30.056 (2)0.086 (3)0.061 (2)0.023 (2)0.0079 (16)0.0053 (19)
C40.059 (2)0.085 (3)0.065 (2)0.015 (2)0.0053 (17)0.024 (2)
N40.093 (2)0.075 (2)0.0648 (19)0.0253 (19)0.0001 (17)0.0170 (16)
C120.074 (3)0.067 (2)0.102 (3)0.019 (2)0.016 (2)0.019 (2)
Geometric parameters (Å, º) top
Co1—N32.034 (2)C9—H90.9300
Co1—N12.038 (3)C11—C101.365 (5)
Co1—Cl22.2303 (11)C11—H110.9300
Co1—Cl12.2635 (11)C6—H6A0.9600
N3—C71.330 (4)C6—H6B0.9600
N3—C111.363 (4)C6—H6C0.9600
N1—C11.350 (4)C8—C121.495 (6)
N1—C51.353 (4)N2—H2A0.8600
C5—C41.349 (5)N2—H2B0.8600
C5—H50.9300C10—H100.9300
C1—N21.352 (4)C3—C41.391 (5)
C1—C21.415 (5)C3—H30.9300
C7—N41.355 (4)C4—H40.9300
C7—C81.424 (4)N4—H4A0.8600
C2—C31.363 (5)N4—H4B0.8600
C2—C61.506 (5)C12—H12A0.9600
C9—C81.358 (5)C12—H12B0.9600
C9—C101.385 (6)C12—H12C0.9600
N3—Co1—N1106.66 (10)C2—C6—H6A109.5
N3—Co1—Cl2110.23 (8)C2—C6—H6B109.5
N1—Co1—Cl2111.26 (9)H6A—C6—H6B109.5
N3—Co1—Cl1109.94 (8)C2—C6—H6C109.5
N1—Co1—Cl1108.24 (8)H6A—C6—H6C109.5
Cl2—Co1—Cl1110.42 (5)H6B—C6—H6C109.5
C7—N3—C11119.0 (3)C9—C8—C7116.1 (3)
C7—N3—Co1123.1 (2)C9—C8—C12123.8 (3)
C11—N3—Co1117.8 (2)C7—C8—C12120.0 (3)
C1—N1—C5118.5 (3)C1—N2—H2A120.0
C1—N1—Co1123.4 (2)C1—N2—H2B120.0
C5—N1—Co1118.1 (2)H2A—N2—H2B120.0
C4—C5—N1123.2 (3)C11—C10—C9118.0 (3)
C4—C5—H5118.4C11—C10—H10121.0
N1—C5—H5118.4C9—C10—H10121.0
N1—C1—N2117.6 (3)C2—C3—C4121.1 (3)
N1—C1—C2121.4 (3)C2—C3—H3119.4
N2—C1—C2121.0 (3)C4—C3—H3119.4
N3—C7—N4117.0 (3)C5—C4—C3118.2 (3)
N3—C7—C8122.4 (3)C5—C4—H4120.9
N4—C7—C8120.6 (3)C3—C4—H4120.9
C3—C2—C1117.5 (3)C7—N4—H4A120.0
C3—C2—C6122.3 (3)C7—N4—H4B120.0
C1—C2—C6120.2 (3)H4A—N4—H4B120.0
C8—C9—C10122.4 (3)C8—C12—H12A109.5
C8—C9—H9118.8C8—C12—H12B109.5
C10—C9—H9118.8H12A—C12—H12B109.5
N3—C11—C10122.0 (3)C8—C12—H12C109.5
N3—C11—H11119.0H12A—C12—H12C109.5
C10—C11—H11119.0H12B—C12—H12C109.5
N1—Co1—N3—C769.9 (3)C11—N3—C7—C81.6 (5)
Cl2—Co1—N3—C7169.2 (2)Co1—N3—C7—C8178.2 (2)
Cl1—Co1—N3—C747.3 (3)N1—C1—C2—C30.4 (5)
N1—Co1—N3—C11109.9 (2)N2—C1—C2—C3179.4 (4)
Cl2—Co1—N3—C1111.0 (3)N1—C1—C2—C6179.5 (4)
Cl1—Co1—N3—C11133.0 (2)N2—C1—C2—C60.5 (6)
N3—Co1—N1—C1172.4 (3)C7—N3—C11—C100.4 (5)
Cl2—Co1—N1—C167.4 (3)Co1—N3—C11—C10179.3 (3)
Cl1—Co1—N1—C154.1 (3)C10—C9—C8—C71.1 (5)
N3—Co1—N1—C56.1 (3)C10—C9—C8—C12179.1 (4)
Cl2—Co1—N1—C5114.1 (2)N3—C7—C8—C91.9 (5)
Cl1—Co1—N1—C5124.4 (2)N4—C7—C8—C9179.8 (4)
C1—N1—C5—C41.6 (5)N3—C7—C8—C12180.0 (3)
Co1—N1—C5—C4176.9 (3)N4—C7—C8—C121.8 (5)
C5—N1—C1—N2178.2 (3)N3—C11—C10—C90.3 (6)
Co1—N1—C1—N23.3 (4)C8—C9—C10—C110.1 (6)
C5—N1—C1—C20.9 (5)C1—C2—C3—C41.1 (6)
Co1—N1—C1—C2177.6 (2)C6—C2—C3—C4178.9 (4)
C11—N3—C7—N4179.9 (3)N1—C5—C4—C31.0 (6)
Co1—N3—C7—N40.1 (4)C2—C3—C4—C50.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl1i0.862.723.427 (4)140
N4—H4A···Cl10.862.673.363 (4)138
N4—H4B···Cl2ii0.862.683.350 (4)136
C3—H3···Cl2iii0.932.813.701 (4)161
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C6H8N2)2]
Mr346.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.3768 (19), 13.841 (3), 12.175 (2)
β (°) 100.31 (3)
V3)1554.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.5 × 0.38 × 0.3
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.517, 0.642
No. of measured, independent and
observed [I > 2σ(I)] reflections
11996, 4174, 2803
Rint0.055
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.132, 1.07
No. of reflections4174
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.52

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co1—N32.034 (2)Co1—Cl22.2303 (11)
Co1—N12.038 (3)Co1—Cl12.2635 (11)
N3—Co1—N1106.66 (10)N3—Co1—Cl1109.94 (8)
N3—Co1—Cl2110.23 (8)N1—Co1—Cl1108.24 (8)
N1—Co1—Cl2111.26 (9)Cl2—Co1—Cl1110.42 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl1i0.862.723.427 (4)140
N4—H4A···Cl10.862.673.363 (4)138
N4—H4B···Cl2ii0.862.683.350 (4)136
C3—H3···Cl2iii0.932.813.701 (4)161
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge Iran University of Science and Technology (IUST) for financial support.

References

First citationAmani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991–1997.  Google Scholar
First citationAullón, G., Bellamy, D., Brammer, L., Bruton, E. A. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.  Google Scholar
First citationCarnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223–2238.  Web of Science CSD CrossRef CAS Google Scholar
First citationCastillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561–565.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZiegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774–783.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1293-m1294
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds