metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1325-m1326

Bromidobis(1,10-phenanthroline-κ2N,N′)copper(II) dicyanamidate

aDepartment of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia
*Correspondence e-mail: ivan.potocnak@upjs.sk

(Received 8 September 2010; accepted 22 September 2010; online 30 September 2010)

The title compound, [CuBr(C12H8N2)2][N(CN)2], is formed of discrete [CuBr(phen)2]+ complex cations and uncoordinated [N(CN)2] anions (phen is 1,10-phenanthroline). The Cu atom is five-coordinated in a distorted trigonal-bipyramidal geometry by two phen mol­ecules and one bromide ligand, which coordinates in the equatorial plane at a distance of 2.5228 (4) Å and lying along with the Cu and the amide N atoms on a twofold rotation axis. The two axial Cu—N distances [1.9926 (15) Å] are slightly shorter than the two equatorial Cu—N bonds [2.0979 (15) Å]. The structure is stabilized by a weak C—H⋯N hydrogen bond, with a cyanide N atom of the dicyanamide ligand as an acceptor, and ππ inter­actions between nearly parallel phenyl and pyridine rings of two adjacent phen mol­ecules [centroid–centroid distance = 3.589 (1) Å], and between π electrons of the dicyanamide anion and the pyridine ring [N⋯Cg(pyridine) = 3.511 (3) Å; C—N⋯Cg(pyridine) = 80.2 (2)°].

Related literature

For structures containing [Cu(phen)2Br]+ cations, see: Murphy et al. (1998[Murphy, G., O'Sullivan, C., Murphy, B. & Hathaway, B. (1998). Inorg. Chem. 37, 240-248.]); Parker et al. (1994[Parker, O. J., Greiner, G. T., Breneman, G. L. & Willet, R. D. (1994). Polyhedron, 13, 267-271.]); Lu et al. (2004[Lu, L., Qin, S., Yang, P. & Zhu, M. (2004). Acta Cryst. E60, m574-m576.]). For penta­coordinated Cu(II) in [Cu(L)2dca]Y complexes [L = 1,10- phenanthroline (phen) and 2,2′-bipyridine (bpy), Y is a monovalent anion], see: Potočňák et al. (2005[Potočňák, I., Burčák, M., Baran, P. & Jäger, L. (2005). Transition Met. Chem. 30, 889-896.], 2006[Potočňák, I., Burčák, M., Dušek, M. & Fejfarová, K. (2006). Acta Cryst. E62, m1009-m1011.], 2008a[Potočňák, I., Špilovský, M. & Trávníček, Z. (2008a). Acta Cryst. C64, m161-m163.],b[Potočňák, I., Vavra, M., Jäger, L., Baran, P. & Wagner, C. (2008b). Transition Met. Chem. 33, 1-8.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For the τ parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For reference bond lengths, see: Jolly (1991[Jolly, W. L. (1991). Modern Inorganic Chemistry, 2nd ed., pp. 54-55. New York: McGraw-Hill Inc.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C12H8N2)2]C2N3

  • Mr = 569.91

  • Monoclinic, C 2/c

  • a = 15.2317 (4) Å

  • b = 10.8270 (3) Å

  • c = 14.7408 (5) Å

  • β = 114.030 (4)°

  • V = 2220.27 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 293 K

  • 0.68 × 0.17 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.328, Tmax = 0.819

  • 11517 measured reflections

  • 2182 independent reflections

  • 1799 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.062

  • S = 1.06

  • 2182 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯N2i 0.93 2.60 3.346 (3) 137
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structures of five-coordinated [Cu(L)2X]Y complexes (L is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy), X and Y are monovalent anions) exhibit an extensive variability ranging from trigonal bipyramid to square pyramidal stereochemistries, with majority complexes displaying a structure which is intermediate between these two extremes (Allen, 2002). In our previous work we have used dicyanamide (dca) within our study on the spectral-structural correlations of penta-coordinated [Cu(L)2dca]Y complexes (L = 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy) and Y is a monovalent anion) (Potočňák et al., 2008a; Potočňák et al., 2005). Within this study we also tried to prepare a [Cu(phen)2dca]Cl complex but the synthesis resulted in the complex with exchanged anions, [Cu(phen)2Cl]dca (Potočňák et al., 2006). With the aim to continue in this work and with the hope that a larger anion, namely Br-, enables dca to enter the inner coordination sphere of the copper atom we decided to prepare a [Cu(phen)2dca]Br complex. Nevertheless, X-ray structure analysis revealed that the prepared complex is [Cu(phen)2Br]dca (I) and here we present its structure (Fig. 1). The crystal and molecular symmetry has a twofold axis parallel to the b axis through the copper, bromine and amide nitrogen atoms. The same symmetry was observed in the [Cu(phen)2Cl]dca (II) (Potočňák et al., 2006) and [Cu(phen)2Br]ClO4 (III) complexes (Parker et al., 1994) (the twofold axis passes through chlorine atoms of the chloride and perchlorate anions, respectively) which are isostructural to (I). Structures of other [Cu(phen)2Br]Y complexes are described by Murphy et al. (1998). The structure of (I) is formed by [Cu(phen)2Br] cations and dca anions. The structure of the cation consists of two phen molecules and one bromide ion coordinated to a copper(II) atom in a five-coordinate distorted trigonal bipyramidal geometry as evidenced by the τ parameter of of Addison et al. (1984); the value being 70.9 (69.6 and 94.0 for (II) and (III), respectively) (the τ parameter is 100 for an ideal trigonal bipyramid and 0 for an ideal square pyramid). Each of the two phen molecules possesses one nitrogen atom (N20) occupying an equatorial position and one nitrogen atom (N10) coordinated in an axial position. The two axial Cu1—N10 bonds are almost collinear (Table 1) and are shorter by 0.105 Å than the two equatorial Cu1—N20 bonds, which is a feature generally observed for compounds with [Cu(phen)2X]+ cations (Murphy et al., 1998, Lu et al., 2004, Parker et al., 1994, Potočňák et al., 2005, Potočňák et al., 2008a,b). Aromatic rings of phen molecules are nearly planar; the largest deviation of atoms from their mean planes is 0.112 (2) Å and the bond distances and angles are normal. The bromide ion occupies the third equatorial position at a distance of 2.5228 (4) Å, which is slightly longer than corresponding distances observed in other [Cu(phen)2Br]Y complexes (Murphy et al., 1998, Parker et al., 1994).

Each distinct [Cu(phen)2Br] cation has a separate dca anion, which is settled under the umbrella of the copper and the two phenanthrolines. The NcyanideC (1.145 (3) Å) as well as the Namide=C distance (1.288 (4) Å) are usual for triple NC (1.15 Å) and double N=C (1.27 Å) bonds (Jolly, 1991). The bond angle around cyanido C2 atom is, as expected, nearly linear (174.8 (3)°) and the angle around amide N1 atom is consistent with sp2 hybridization (120.7 (4)°). All mentioned values of bonds and angles are close to the values observed in the previously mentioned [Cu(L)2dca]Y compounds.

The structure of (I) is stabilised by a weak C—H···N hydrogen bond with cyanide N2 atom as acceptor (Table 3). The next stabilization comes from two kinds of π-π interactions (Janiak, 2000). There are face to face π-π interactions between nearly parallel phenyl and pyridine rings of two adjacent phen molecules (Fig. 2) as evidenced by the distance of Cg(phenyl)-Cg(pyridine)i = 3.589 (1) Å and by the angle between phenyl ring normal and vector connecting the two centroids of 9.48° (i = 1.5 - x, 1.5 - y, 1 - z). The next type of π-π interaction is an interaction between π electrons of the dca anion and the pyridine ring. This interaction is described by the C2—N2···Cg(pyridine) angle of 80.2 (2)° and by the N2···Cg(pyridine) distance of 3.511 (3) Å (Fig. 3).

Related literature top

For structures containing [Cu(phen)2Br]+ cations, see: Murphy et al. (1998); Parker et al. (1994); Lu et al. (2004). For pentacoordinated Cu(II) in [Cu(L)2dca]Y complexes [L = 1,10- phenanthroline (phen) and 2,2'-bipyridine (bpy), Y is a monovalent anion], see: Potočňák et al. (2005, 2006, 2008a,b). For ππ interactions see: Janiak (2000). For the τ parameter, see: Addison et al. (1984). For a description of the Cambridge Structural Database, see: Allen (2002). For reference bond lengths, see: Jolly (1991).

Experimental top

The title compound was prepared by chance during our attempts to prepare [Cu(phen)2(dca)]Br compound. Crystals of (I) were prepared by mixing a 0.1 M aqueous solution of CuBr2 (5 ml; 0.5 mmol) with a 0.1 M ethanolic solution of phen (10 ml; 1 mmol). To the resulting dark green solution, a 0.1 M ethanolic solution of NaN(CN)2 (5 ml; 0.5 mmol) was added (all solutions were warmed before mixing). After a few days, green crystals were filtered off and dried in air.

Refinement top

Anisotropic displacement parameters were refined for all non-H atoms. H-atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms. [Symmetry code: (i) 1 - x, y, 1/2 - z]
[Figure 2] Fig. 2. π-π interactions (dashed lines) between nearly parallel phenyl and pyridine rings in (I).
[Figure 3] Fig. 3. π-π Interactions (dashed lines) between dca and pyridine ring in (I).
Bromidobis(1,10-phenanthroline-κ2N,N')copper(II) dicyanamidate top
Crystal data top
[CuBr(C12H8N2)2]C2N3F(000) = 1140
Mr = 569.91Dx = 1.705 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 7148 reflections
a = 15.2317 (4) Åθ = 3.0–29.5°
b = 10.8270 (3) ŵ = 2.82 mm1
c = 14.7408 (5) ÅT = 293 K
β = 114.030 (4)°Prism, green
V = 2220.27 (11) Å30.68 × 0.17 × 0.09 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
2182 independent reflections
Radiation source: Enhance (Mo) X-ray Source1799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3438 pixels mm-1θmax = 26.0°, θmin = 3.0°
Rotation method data acquisition using ω scansh = 1818
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.328, Tmax = 0.819l = 1818
11517 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[CuBr(C12H8N2)2]C2N3V = 2220.27 (11) Å3
Mr = 569.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.2317 (4) ŵ = 2.82 mm1
b = 10.8270 (3) ÅT = 293 K
c = 14.7408 (5) Å0.68 × 0.17 × 0.09 mm
β = 114.030 (4)°
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
2182 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
1799 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 0.819Rint = 0.026
11517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
2182 reflectionsΔρmin = 0.43 e Å3
160 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.72646 (3)0.25000.03323 (11)
N100.62123 (11)0.71984 (14)0.22918 (11)0.0327 (4)
N200.59053 (11)0.64969 (13)0.38697 (12)0.0321 (4)
Br10.50000.95947 (2)0.25000.03604 (10)
C110.69628 (13)0.66725 (15)0.30537 (13)0.0308 (4)
C120.63710 (15)0.76473 (19)0.15301 (15)0.0396 (5)
H120.58690.80390.10170.047*
C130.72584 (16)0.75547 (19)0.14697 (16)0.0434 (5)
H130.73420.78770.09250.052*
C140.80010 (15)0.6989 (2)0.22157 (16)0.0415 (5)
H140.85900.68980.21730.050*
C150.78767 (14)0.65401 (16)0.30513 (15)0.0348 (4)
C160.86264 (14)0.6003 (2)0.38968 (15)0.0445 (5)
H160.92310.58880.38940.053*
C210.67959 (13)0.63020 (16)0.39026 (14)0.0295 (4)
C220.57510 (15)0.62008 (19)0.46690 (15)0.0380 (5)
H220.51390.63100.46510.046*
C230.64771 (16)0.57311 (19)0.55360 (15)0.0443 (5)
H230.63470.55520.60860.053*
C240.73686 (16)0.55385 (18)0.55692 (15)0.0428 (5)
H240.78530.52240.61420.051*
C250.75581 (14)0.58155 (17)0.47343 (14)0.0356 (4)
C260.84725 (16)0.56610 (19)0.46978 (16)0.0455 (5)
H260.89740.53160.52400.055*
N10.50000.4095 (4)0.25000.0987 (14)
C20.5311 (2)0.3506 (2)0.3332 (2)0.0560 (6)
N20.56044 (18)0.3068 (3)0.41052 (18)0.0749 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02710 (19)0.0454 (2)0.03011 (19)0.0000.01467 (14)0.000
N100.0319 (9)0.0372 (9)0.0308 (9)0.0010 (7)0.0146 (7)0.0012 (7)
N200.0348 (9)0.0320 (8)0.0295 (9)0.0022 (7)0.0131 (7)0.0029 (6)
Br10.03279 (16)0.03849 (17)0.03668 (17)0.0000.01399 (12)0.000
C110.0322 (10)0.0290 (10)0.0307 (10)0.0017 (8)0.0122 (8)0.0071 (8)
C120.0405 (12)0.0453 (12)0.0371 (11)0.0029 (9)0.0200 (9)0.0040 (9)
C130.0479 (13)0.0485 (12)0.0450 (12)0.0028 (10)0.0303 (11)0.0002 (10)
C140.0358 (11)0.0456 (11)0.0522 (13)0.0021 (10)0.0271 (10)0.0103 (10)
C150.0323 (10)0.0347 (10)0.0397 (11)0.0015 (8)0.0169 (8)0.0103 (8)
C160.0288 (11)0.0509 (12)0.0500 (14)0.0032 (10)0.0121 (10)0.0099 (11)
C210.0320 (10)0.0265 (9)0.0290 (10)0.0029 (7)0.0114 (8)0.0056 (7)
C220.0418 (12)0.0423 (11)0.0338 (11)0.0044 (9)0.0194 (9)0.0004 (9)
C230.0558 (14)0.0457 (13)0.0304 (11)0.0075 (10)0.0164 (10)0.0021 (9)
C240.0463 (13)0.0424 (12)0.0299 (11)0.0039 (9)0.0055 (10)0.0018 (9)
C250.0368 (11)0.0319 (10)0.0318 (10)0.0020 (9)0.0075 (9)0.0059 (9)
C260.0346 (11)0.0499 (13)0.0413 (12)0.0059 (9)0.0048 (10)0.0021 (10)
N10.139 (4)0.065 (2)0.055 (2)0.0000.001 (2)0.000
C20.0556 (15)0.0599 (15)0.0556 (16)0.0062 (12)0.0257 (13)0.0226 (14)
N20.0795 (17)0.1034 (18)0.0465 (14)0.0076 (15)0.0304 (12)0.0144 (13)
Geometric parameters (Å, º) top
Cu1—N10i1.9926 (15)C14—H140.9300
Cu1—N101.9926 (15)C15—C161.427 (3)
Cu1—N20i2.0979 (15)C16—C261.346 (3)
Cu1—N202.0979 (15)C16—H160.9300
Cu1—Br12.5228 (4)C21—C251.403 (3)
N10—C121.333 (3)C22—C231.401 (3)
N10—C111.359 (2)C22—H220.9300
N20—C221.331 (2)C23—C241.355 (3)
N20—C211.354 (2)C23—H230.9300
C11—C151.401 (3)C24—C251.406 (3)
C11—C211.432 (3)C24—H240.9300
C12—C131.394 (3)C25—C261.425 (3)
C12—H120.9300C26—H260.9300
C13—C141.361 (3)N1—C21.288 (4)
C13—H130.9300N1—C2i1.288 (4)
C14—C151.407 (3)C2—N21.145 (3)
N10i—Cu1—N10175.88 (9)C15—C14—H14120.0
N10i—Cu1—N20i81.19 (6)C11—C15—C14117.07 (18)
N10—Cu1—N20i97.16 (6)C11—C15—C16118.83 (19)
N10i—Cu1—N2097.16 (6)C14—C15—C16124.07 (19)
N10—Cu1—N2081.19 (6)C26—C16—C15121.0 (2)
N20i—Cu1—N20133.32 (8)C26—C16—H16119.5
N10i—Cu1—Br192.06 (4)C15—C16—H16119.5
N10—Cu1—Br192.06 (4)N20—C21—C25123.38 (18)
N20i—Cu1—Br1113.34 (4)N20—C21—C11117.18 (16)
N20—Cu1—Br1113.34 (4)C25—C21—C11119.38 (18)
C12—N10—C11117.96 (17)N20—C22—C23122.4 (2)
C12—N10—Cu1127.88 (14)N20—C22—H22118.8
C11—N10—Cu1114.09 (12)C23—C22—H22118.8
C22—N20—C21117.78 (17)C24—C23—C22119.7 (2)
C22—N20—Cu1131.57 (14)C24—C23—H23120.1
C21—N20—Cu1110.64 (12)C22—C23—H23120.1
N10—C11—C15122.90 (18)C23—C24—C25119.70 (19)
N10—C11—C21116.79 (16)C23—C24—H24120.1
C15—C11—C21120.25 (17)C25—C24—H24120.1
N10—C12—C13122.74 (19)C21—C25—C24116.94 (19)
N10—C12—H12118.6C21—C25—C26118.98 (19)
C13—C12—H12118.6C24—C25—C26124.06 (19)
C14—C13—C12119.3 (2)C16—C26—C25121.52 (19)
C14—C13—H13120.3C16—C26—H26119.2
C12—C13—H13120.3C25—C26—H26119.2
C13—C14—C15119.94 (19)C2—N1—C2i120.7 (4)
C13—C14—H14120.0N2—C2—N1174.8 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N2ii0.932.603.346 (3)137
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuBr(C12H8N2)2]C2N3
Mr569.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.2317 (4), 10.8270 (3), 14.7408 (5)
β (°) 114.030 (4)
V3)2220.27 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.68 × 0.17 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur2 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.328, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
11517, 2182, 1799
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.062, 1.06
No. of reflections2182
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.43

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Selected bond lengths (Å) top
Cu1—N101.9926 (15)N1—C21.288 (4)
Cu1—N202.0979 (15)C2—N21.145 (3)
Cu1—Br12.5228 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···N2i0.932.603.346 (3)137.0
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by grant No. 1/0079/08 from the Slovak Grant Agency VEGA and by the grants from the Slovak Research and Development Agency (Nos. APVV-VVCE-0058–07 and APVV-0006–07). DR thanks the Inter­national Visegrad Fund for financial support and P·J. Šafárik University for hospitality.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJolly, W. L. (1991). Modern Inorganic Chemistry, 2nd ed., pp. 54–55. New York: McGraw-Hill Inc.  Google Scholar
First citationLu, L., Qin, S., Yang, P. & Zhu, M. (2004). Acta Cryst. E60, m574–m576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurphy, G., O'Sullivan, C., Murphy, B. & Hathaway, B. (1998). Inorg. Chem. 37, 240–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParker, O. J., Greiner, G. T., Breneman, G. L. & Willet, R. D. (1994). Polyhedron, 13, 267–271.  CSD CrossRef CAS Web of Science Google Scholar
First citationPotočňák, I., Burčák, M., Baran, P. & Jäger, L. (2005). Transition Met. Chem. 30, 889–896.  Google Scholar
First citationPotočňák, I., Burčák, M., Dušek, M. & Fejfarová, K. (2006). Acta Cryst. E62, m1009–m1011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPotočňák, I., Špilovský, M. & Trávníček, Z. (2008a). Acta Cryst. C64, m161–m163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPotočňák, I., Vavra, M., Jäger, L., Baran, P. & Wagner, C. (2008b). Transition Met. Chem. 33, 1–8.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1325-m1326
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds