metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­pyridine­copper(II)]-μ-2,3,5,6-tetra­methyl­benzene-1,4-di­carboxyl­ato] monohydrate]

aDepartment of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
*Correspondence e-mail: hxqyxt8888@163.com

(Received 24 July 2010; accepted 15 September 2010; online 25 September 2010)

In the title complex, {[Cu(C12H12O4)(C5H5N)2]·H2O}n, the CuII ion lies on an inversion center and is coordinated by two O atoms from two 2,3,5,6-tetra­methyl­benzene-1,4-dicarboxyl­ate (TBDC) ligands and two N atoms from two pyridine ligands in a slightly distorted square-planar environment. The TBDC ligands act as bridging ligands, forming chains along [110]. These chains are further linked into a two-dimensional network via inter­molecular O—H⋯O hydrogen bonds. The solvent water mol­ecule lies on a twofold rotation axis.

Related literature

For related structures, see: Chun et al. (2005[Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521-3529.]); Diniz et al. (2002[Diniz, R., de Abreu, H. A., de Almeida, W. B., Sansiviero, M. T. C. & Fernandes, N. G. (2002). Eur. J. Inorg. Chem. pp. 1115-1123.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H12O4)(C5H5N)2]·H2O

  • Mr = 459.98

  • Monoclinic, C 2/c

  • a = 13.3280 (8) Å

  • b = 17.1434 (11) Å

  • c = 10.7390 (7) Å

  • β = 108.481 (1)°

  • V = 2327.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.926

  • 6747 measured reflections

  • 2594 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.086

  • S = 1.06

  • 2594 reflections

  • 142 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O01—H1A⋯O1 0.92 (3) 1.93 (3) 2.854 (2) 173 (3)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I), was designed as a ligand for preparing MOF materials and its single-crystal is presented herein. Some crystal structures containing TBDC and 1,2,4,5-benzenetetracarboxylate as ligands have already appeared in the literature (Chun et al., 2005; Diniz et al., 2002). The asymmetric unit (labeled in Fig. 1) contains one half copper ion, one pyridine ligand, one half solvent water molecule and half of a TBDC ligand (Fig 1.). The CuII ion lies on an inversion center and is coordinated by two oxygen atoms from two TBDC ligands and two nitrogen atoms from two pyridine ligands in a slightly distorted square-planar environment. The TBDC ligands act as bridiging to form one-dimensional chains along [110] (Fig 2.). These chains are further linked into a two-dimensional network via intermolecular O-H···O hydrogen bonds (Fig. 3).

Related literature top

For related structures, see: Chun et al. (2005); Diniz et al. (2002).

Experimental top

A mixture of Cu(NO3)2(20 mg, 0.08 mmol),H2TBDC (10 mg,0.05 mmol) and two drops of pyridine was suspended in 15 ml water and heated in a teflon-lined steel bomb at 100 centigrade degree for 3 days. The block blue crystals of the title compound were obtained, washed with water and dried in the air.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C-H = 0.93-0.96Å and included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The unique H atom of the water molecule was refined indpendently with an isotropic displacement parameter. Since our goal was to prepare a porous material the solvent accessible voids of 138.00Å3 present in the structure might be expected.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the coordination around the CuII ion in the title compound. Probabilty ellipsoids are drawn at the 50% level. Only the atoms of the asymmetric unit are labeled.
[Figure 2] Fig. 2. Part of the one-dimensional chain of the title compound.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are showm.
catena-Poly[[[dipyridinecopper(II)]-µ-2,3,5,6-tetramethylbenzene- 1,4-dicarboxylato] monohydrate] top
Crystal data top
[Cu(C12H12O4)(C5H5N)2]·H2OF(000) = 956
Mr = 459.98Dx = 1.313 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3713 reflections
a = 13.3280 (8) Åθ = 2.4–27.5°
b = 17.1434 (11) ŵ = 0.97 mm1
c = 10.7390 (7) ÅT = 298 K
β = 108.481 (1)°Block, blue
V = 2327.2 (3) Å30.15 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2594 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADBAS; Sheldrick, 1996)
h = 1710
Tmin = 0.868, Tmax = 0.926k = 1921
6747 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0467P)2 + 1.775P]
where P = (Fo2 + 2Fc2)/3
2594 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C12H12O4)(C5H5N)2]·H2OV = 2327.2 (3) Å3
Mr = 459.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.3280 (8) ŵ = 0.97 mm1
b = 17.1434 (11) ÅT = 298 K
c = 10.7390 (7) Å0.15 × 0.10 × 0.08 mm
β = 108.481 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2594 independent reflections
Absorption correction: multi-scan
(SADBAS; Sheldrick, 1996)
2283 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.926Rint = 0.017
6747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
2594 reflectionsΔρmin = 0.31 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.02763 (11)
O20.07772 (9)0.07930 (7)0.06903 (12)0.0326 (3)
N10.12716 (11)0.06855 (8)0.04454 (14)0.0313 (3)
O10.10913 (11)0.10867 (8)0.14011 (13)0.0418 (3)
C10.12054 (13)0.12134 (9)0.03160 (17)0.0294 (3)
C20.18792 (13)0.18884 (9)0.01433 (16)0.0289 (3)
C30.13967 (13)0.25988 (10)0.03235 (17)0.0312 (4)
C50.29738 (13)0.17762 (10)0.04732 (17)0.0315 (4)
C110.17376 (16)0.08364 (12)0.0463 (2)0.0416 (4)
H110.14550.06190.12940.050*
C70.16747 (16)0.10076 (13)0.1635 (2)0.0451 (5)
H70.13520.09100.22700.054*
C40.02162 (15)0.26957 (12)0.0624 (2)0.0474 (5)
H4A0.00850.22130.04620.071*
H4B0.00970.28400.15280.071*
H4C0.00810.30960.00730.071*
C60.34512 (16)0.09915 (12)0.0956 (3)0.0512 (5)
H6A0.29040.06400.10010.077*
H6B0.39610.10480.18130.077*
H6C0.37930.07880.03610.077*
C90.3036 (2)0.16249 (18)0.1002 (3)0.0691 (7)
H90.36360.19380.11930.083*
C100.2619 (2)0.13013 (15)0.0210 (3)0.0598 (6)
H100.29280.13940.08610.072*
C80.2556 (2)0.14817 (16)0.1942 (2)0.0634 (7)
H80.28230.17020.27740.076*
O010.00000.21858 (15)0.25000.0601 (6)
H1A0.040 (2)0.1861 (19)0.216 (3)0.094 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02676 (16)0.02207 (16)0.03625 (18)0.00754 (10)0.01309 (12)0.00071 (10)
O20.0348 (6)0.0276 (6)0.0381 (7)0.0120 (5)0.0153 (5)0.0013 (5)
N10.0316 (7)0.0265 (7)0.0372 (8)0.0057 (6)0.0128 (6)0.0004 (6)
O10.0521 (8)0.0389 (7)0.0396 (7)0.0136 (6)0.0222 (6)0.0006 (6)
C10.0286 (8)0.0235 (8)0.0385 (9)0.0048 (6)0.0140 (7)0.0024 (6)
C20.0308 (8)0.0242 (8)0.0332 (8)0.0089 (6)0.0121 (6)0.0012 (6)
C30.0280 (8)0.0278 (8)0.0382 (9)0.0059 (6)0.0113 (7)0.0009 (7)
C50.0307 (8)0.0245 (8)0.0400 (9)0.0049 (6)0.0120 (7)0.0023 (7)
C110.0478 (11)0.0397 (10)0.0400 (10)0.0014 (8)0.0180 (8)0.0000 (8)
C70.0462 (11)0.0508 (12)0.0397 (10)0.0010 (9)0.0154 (8)0.0041 (9)
C40.0315 (9)0.0413 (11)0.0705 (14)0.0024 (8)0.0178 (9)0.0140 (10)
C60.0395 (10)0.0303 (10)0.0824 (16)0.0018 (8)0.0175 (10)0.0143 (10)
C90.0547 (14)0.0729 (18)0.0800 (18)0.0285 (13)0.0219 (13)0.0116 (14)
C100.0622 (14)0.0614 (15)0.0669 (15)0.0164 (12)0.0364 (12)0.0021 (12)
C80.0574 (14)0.0753 (17)0.0524 (13)0.0182 (12)0.0102 (11)0.0181 (12)
O010.0687 (16)0.0490 (14)0.0683 (15)0.0000.0296 (13)0.000
Geometric parameters (Å, º) top
Cu1—O21.9894 (11)C11—H110.9300
Cu1—O2i1.9894 (11)C7—C81.380 (3)
Cu1—N11.9920 (15)C7—H70.9300
Cu1—N1i1.9921 (15)C4—H4A0.9600
O2—C11.273 (2)C4—H4B0.9600
N1—C111.337 (2)C4—H4C0.9600
N1—C71.338 (3)C6—H6A0.9600
O1—C11.241 (2)C6—H6B0.9600
C1—C21.512 (2)C6—H6C0.9600
C2—C31.394 (2)C9—C101.361 (4)
C2—C51.401 (2)C9—C81.377 (4)
C3—C5ii1.401 (2)C9—H90.9300
C3—C41.512 (2)C10—H100.9300
C5—C3ii1.401 (2)C8—H80.9300
C5—C61.508 (3)O01—H1A0.92 (3)
C11—C101.374 (3)
O2—Cu1—O2i180.00 (6)N1—C7—C8121.7 (2)
O2—Cu1—N190.64 (5)N1—C7—H7119.1
O2i—Cu1—N189.36 (5)C8—C7—H7119.1
O2—Cu1—N1i89.36 (5)C3—C4—H4A109.5
O2i—Cu1—N1i90.65 (5)C3—C4—H4B109.5
N1—Cu1—N1i180.0H4A—C4—H4B109.5
C1—O2—Cu1102.52 (10)C3—C4—H4C109.5
C11—N1—C7118.53 (17)H4A—C4—H4C109.5
C11—N1—Cu1119.71 (13)H4B—C4—H4C109.5
C7—N1—Cu1121.76 (13)C5—C6—H6A109.5
O1—C1—O2122.84 (15)C5—C6—H6B109.5
O1—C1—C2120.22 (15)H6A—C6—H6B109.5
O2—C1—C2116.93 (14)C5—C6—H6C109.5
C3—C2—C5122.37 (14)H6A—C6—H6C109.5
C3—C2—C1119.25 (14)H6B—C6—H6C109.5
C5—C2—C1118.37 (15)C10—C9—C8119.0 (2)
C2—C3—C5ii118.98 (15)C10—C9—H9120.5
C2—C3—C4120.19 (15)C8—C9—H9120.5
C5ii—C3—C4120.80 (16)C9—C10—C11119.3 (2)
C2—C5—C3ii118.64 (15)C9—C10—H10120.4
C2—C5—C6120.10 (15)C11—C10—H10120.4
C3ii—C5—C6121.25 (16)C9—C8—C7119.2 (2)
N1—C11—C10122.3 (2)C9—C8—H8120.4
N1—C11—H11118.9C7—C8—H8120.4
C10—C11—H11118.9
O2i—Cu1—O2—C193.10 (11)C1—C2—C3—C5ii179.58 (16)
N1—Cu1—O2—C189.16 (11)C5—C2—C3—C4178.05 (18)
N1i—Cu1—O2—C190.84 (11)C3—C2—C5—C3ii0.2 (3)
O2—Cu1—N1—C11129.39 (14)C1—C2—C5—C3ii179.59 (16)
O2i—Cu1—N1—C1150.61 (14)C3—C2—C5—C6179.15 (18)
O2—Cu1—N1—C750.15 (15)C1—C2—C5—C61.5 (3)
O2i—Cu1—N1—C7129.85 (15)C7—N1—C11—C100.8 (3)
Cu1—O2—C1—O10.1 (2)Cu1—N1—C11—C10179.66 (18)
Cu1—O2—C1—C2179.68 (12)C11—N1—C7—C80.5 (3)
O1—C1—C2—C394.9 (2)Cu1—N1—C7—C8179.92 (18)
O2—C1—C2—C385.3 (2)C8—C9—C10—C110.5 (4)
O1—C1—C2—C584.5 (2)N1—C11—C10—C90.3 (4)
O2—C1—C2—C595.3 (2)C10—C9—C8—C70.7 (4)
C5—C2—C3—C5ii0.2 (3)N1—C7—C8—C90.2 (4)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O01—H1A···O10.92 (3)1.93 (3)2.854 (2)173 (3)

Experimental details

Crystal data
Chemical formula[Cu(C12H12O4)(C5H5N)2]·H2O
Mr459.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)13.3280 (8), 17.1434 (11), 10.7390 (7)
β (°) 108.481 (1)
V3)2327.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADBAS; Sheldrick, 1996)
Tmin, Tmax0.868, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
6747, 2594, 2283
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.086, 1.06
No. of reflections2594
No. of parameters142
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O01—H1A···O10.92 (3)1.93 (3)2.854 (2)173 (3)
 

Acknowledgements

The author is grateful for funding support from the Natural Science Foundation of Shanxi Province (2007011033).

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521–3529.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDiniz, R., de Abreu, H. A., de Almeida, W. B., Sansiviero, M. T. C. & Fernandes, N. G. (2002). Eur. J. Inorg. Chem. pp. 1115–1123.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds