metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1195-m1196

[μ-N,N,N′,N′-Tetra­kis(2-pyridyl­meth­yl)butane-1,4-di­amine]­bis­­[di­acetato­cadmium(II)] nona­hydrate

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 29 July 2010; accepted 26 August 2010; online 4 September 2010)

The title dinuclear complex, [Cd2(CH3CO2)4(C28H32N6)]·9H2O, is located on a crystallographic inversion center. The unique CdII ion displays a 5 + 2 coordination. A distorted square-pyramidal geometry is formed by the dipicolyl­amine unit of the ligand via the N atoms in a meridional fashion and two O atoms of the acetate ligands with short Cd—O distances. The coordination is completed by two loosely bound O atoms of the acetate ligands. The Cd—N distances involving the pyridine N atoms differ slightly from each other and the Cd—N distance involving the tertiary N atom is the longest. In the crystal structure, complex mol­ecules and solvent water mol­ecules are connected into a three-dimensional network via inter­molecular O—H⋯O hydrogen bonds. One of the water mol­ecules lies on a twofold rotation axis.

Related literature

For related crystal structures of tetra­kis­(pyridin-2-yl-meth­yl)alkyl-diamine compounds, see: Fujihara et al. (2004[Fujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o1126-o1128.]); Mambanda et al. (2007[Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676-o680.]). For dinuclear platinum complexes of similar ligands, see: Ertürk et al. (2007[Ertürk, H., Hofmann, A., Puchta, R. & van Eldik, R. (2007). Dalton Trans. pp. 2295-2301.]). For the superoxide dismutase activity of iron complexes, see: Tamura et al. (2000[Tamura, M., Urano, Y., Kikuchi, K., Higuchi, T., Hirobe, M. & Nagano, T. (2000). J. Organomet. Chem. 611, 586-592.]). For the use of the dipicolyl­amine moiety for binding of the M(CO)3 core (M = Re, 99mTc), see: Bartholomä et al. (2009[Bartholomä, M., Valliant, J., Maresca, K. P., Babich, J. & Zubieta, J. (2009). Chem. Commun. 5, 473-604.]). For crystal structures closely related to the title compound, see: Bartholomä et al. (2010a[Bartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1197.],b[Bartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1198.],c[Bartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1199-m1200.],d[Bartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010d). Acta Cryst. E66, m1201-m1202.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C2H3O2)4(C28H32N6)]·9H2O

  • Mr = 1075.72

  • Monoclinic, C 2/c

  • a = 15.9680 (17) Å

  • b = 11.4320 (12) Å

  • c = 26.451 (3) Å

  • β = 100.127 (2)°

  • V = 4753.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 90 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.910

  • 23441 measured reflections

  • 5847 independent reflections

  • 5621 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.20

  • 5847 reflections

  • 314 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.55 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O4 2.240 (2)
Cd1—O2 2.251 (3)
Cd1—N3 2.313 (3)
Cd1—N2 2.379 (3)
Cd1—N1 2.405 (3)
Cd1—O1 2.550 (3)
Cd1—O3 2.729 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O3 0.80 (6) 2.06 (6) 2.829 (5) 160 (6)
O6—H6A⋯O4 0.77 (5) 1.98 (5) 2.745 (4) 170 (5)
O9—H9B⋯O5i 0.79 (5) 2.07 (5) 2.852 (3) 170 (5)
O7—H7C⋯O1ii 0.76 (5) 1.91 (5) 2.673 (4) 177 (5)
O8—H8A⋯O9iii 0.73 (5) 2.04 (5) 2.769 (4) 172 (5)
O6—H6B⋯O8iv 0.85 (5) 1.97 (5) 2.792 (4) 164 (5)
O5—H5A⋯O7ii 0.76 (4) 1.96 (4) 2.708 (3) 170 (5)
O8—H8B⋯O6v 0.78 (5) 2.06 (5) 2.825 (4) 166 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) -x, -y+1, -z; (v) x, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The described ligand N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine has been used as starting material in the hydrothermal synthesis of metal-organic transition metal/molybdateoxide frameworks in the principal author's laboratory. The dipicolylamine moiety has originally been used in our laboratory as metal chelating entity for binding of the M(CO)3 core (M = Re,99mTc) for radiopharmaceutical purposes. However, a different coordination mode has been observed for the M(CO)3 core in which the dipicolylamine metal chelate is bound in a facial manner (Bartholomä, 2009).

Crystal structures of the ligands N1,N1,N3,N3-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine have been described recently (Fujihara, 2004; Mambanda, 2007). Superoxide dismutase activity of iron(II) complexes of N1,N1,N3,N3-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and related ligands has been investigated by Tamura et al. (2000). Studies on the thermodynamic and kinetic behaviour of the reaction of platinum(II) complexes of higher ligand homologues with chloride have been performed by Ertürk et al. (2007).

The title complex was prepared as part of a series with different cadmium and copper salts to study the coordination properties of the ligand with these metals without the interaction of metaloxide clusters (Bartholomä, 2010b,c,d). We have reported another crystal structure of a molecular dinuclear cadmium complex using the corresponding nitrate salt as metal source (Bartholomä, 2010a). In the cadmium nitrate structure, the Cd—N distances involving the pyridine N atoms [2.250 (2) Å and 2.251 (2) Å] are slightly shorter whereas the Cd—N distance involving the tertiary nitrogen atom [2.427 (2) Å] is marginally longer when compared to the related distances in the title compound.

Related literature top

For related crystal structures of tetrakis(pyridin-2-yl-methyl)alkyl-diamine compounds, see: Fujihara et al. (2004); Mambanda et al. (2007). For dinuclear platinum complexes of similar ligands, see: Ertürk et al. (2007). For the superoxide dismutase activity of iron complexes, see: Tamura et al. (2000). For the use of the dipicolylamine moiety for binding of the M(CO)3 core (M = Re, 99mTc) see: Bartholomä et al. (2009). For crystal structures closely related to the title compound, see: Bartholomä et al. (2010a,b,c,d).

Experimental top

N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine. An amount of 1.00 g (11.34 mmol) 1,4-diaminobutane was dissolved in 30 ml anhydrous dichloroethane under an inert atmosphere (argon) followed by the addition of 4.55 ml (47.65 mmol) pyridine-2-carboxaldehyde. The mixture was stirred for 15 min at r.t. and then cooled with an ice bath prior to the portionwise addition of 14.43 g (68.06 mmol) sodium triacetoxyborohydride (gas evolution, exothermic reaction). The reaction was stirred overnight allowing the temperature slowly to rise to room temperature. The reaction was quenched by the dropwise addition of saturated sodium bicarbonate solution and stirring was continued until the gas evolution ceased. The mixture was separated and the organic layer was further washed with saturated sodium bicarbonate solution, water and brine. The organic phase was dried with anhydrous sodium sulfate, filtered and the solvent removed under reduced pressure. The crude reaction mixture was then purified by silica gel column chromatography starting with chloroform and increasing gradient to chloroform:methanol 10:1 (v/v). Yield: 4.02 g (78%). 1H NMR (CDCl3): δ = 8.40 (m, 4H), 7.51 (m, 4H), 7.39 (d, J = 7.81 Hz, 4H), 7.02 (m, 4H), 3.67 (s, 8H), 2.39 (m, 4H), 1.42 (m, 4H) p.p.m..

Synthesis of metal complex. To 2 ml of an aqueous solution of cadmium acetate, two equivalents (50 mg, 0.11 mmol) of N1,N1,N4,N4-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine in 2 ml methanol were added followed by the addition of 2 ml N,N-dimethylformamide. Single crystals were obtained after a week by slow evaporation of the solvents at room temperature.

Refinement top

All H atoms were placed in idealized positions and refined using a riding-model approximation with C—H(aryl) = 0.95Å, C—H(methyl) = 0.98Å and C—H (methylene) = 0.99Å and Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(Cmethylene/aryl). Water hydrogen atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title complex. The displacement ellipsoids are drawn at 50% probability level. Water of crystallization and hydrogen atoms are omitted for clarity. Unlabeled atoms are related by the symmetry code (-x, -y+1, -z).
[µ-N,N,N',N'-Tetrakis(2-pyridylmethyl)butane- 1,4-diamine]bis[diacetatocadmium(II)] nonahydrate top
Crystal data top
[Cd2(C2H3O2)4(C28H32N6)]·9H2OF(000) = 2208
Mr = 1075.72Dx = 1.503 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5663 reflections
a = 15.9680 (17) Åθ = 2.6–28.3°
b = 11.4320 (12) ŵ = 0.97 mm1
c = 26.451 (3) ÅT = 90 K
β = 100.127 (2)°Block, colourless
V = 4753.3 (9) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5847 independent reflections
Radiation source: fine-focus sealed tube5621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 2021
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1515
Tmin = 0.760, Tmax = 0.910l = 3534
23441 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0355P)2 + 21.0991P]
where P = (Fo2 + 2Fc2)/3
5847 reflections(Δ/σ)max = 0.001
314 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cd2(C2H3O2)4(C28H32N6)]·9H2OV = 4753.3 (9) Å3
Mr = 1075.72Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.9680 (17) ŵ = 0.97 mm1
b = 11.4320 (12) ÅT = 90 K
c = 26.451 (3) Å0.30 × 0.20 × 0.10 mm
β = 100.127 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5847 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
5621 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.910Rint = 0.022
23441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0355P)2 + 21.0991P]
where P = (Fo2 + 2Fc2)/3
5847 reflectionsΔρmax = 1.55 e Å3
314 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.165978 (14)0.604997 (19)0.132379 (8)0.02575 (8)
O10.2134 (2)0.4939 (3)0.21610 (10)0.0556 (9)
O20.2542 (2)0.6682 (3)0.20295 (11)0.0560 (8)
O30.2906 (2)0.7203 (3)0.09388 (13)0.0616 (9)
O40.15464 (17)0.7426 (2)0.07125 (11)0.0423 (6)
O50.00000.2308 (3)0.25000.0322 (7)
O60.00239 (19)0.8361 (3)0.02426 (12)0.0402 (6)
O70.85601 (17)0.3567 (3)0.22061 (12)0.0377 (6)
O80.0253 (2)0.0574 (3)0.07224 (12)0.0418 (6)
O90.4442 (2)0.6321 (3)0.15079 (13)0.0437 (7)
N10.05268 (16)0.4637 (2)0.12010 (9)0.0228 (5)
N20.04401 (19)0.6870 (3)0.15915 (10)0.0300 (6)
N30.21759 (17)0.4384 (2)0.09883 (10)0.0259 (5)
C10.0067 (2)0.4816 (3)0.16377 (12)0.0276 (6)
H1A0.04190.45170.19570.033*
H1B0.04710.43660.15750.033*
C20.0127 (2)0.6095 (3)0.17043 (11)0.0273 (6)
C30.0848 (2)0.6442 (3)0.18900 (13)0.0349 (7)
H30.12410.58780.19710.042*
C40.0988 (3)0.7620 (4)0.19562 (14)0.0407 (8)
H40.14740.78760.20880.049*
C50.0413 (3)0.8423 (3)0.18282 (13)0.0396 (8)
H50.05000.92390.18640.047*
C60.0289 (3)0.8011 (3)0.16482 (13)0.0361 (8)
H60.06860.85610.15600.043*
C70.0917 (2)0.3463 (3)0.12297 (12)0.0270 (6)
H7A0.04980.28990.10490.032*
H7B0.10560.32220.15940.032*
C80.17205 (19)0.3403 (3)0.09967 (11)0.0246 (6)
C90.1976 (2)0.2339 (3)0.08241 (12)0.0299 (7)
H90.16380.16580.08320.036*
C100.2736 (2)0.2291 (3)0.06395 (13)0.0339 (7)
H100.29280.15720.05210.041*
C110.3211 (2)0.3300 (3)0.06300 (13)0.0332 (7)
H110.37330.32840.05050.040*
C120.2915 (2)0.4325 (3)0.08031 (12)0.0301 (7)
H120.32400.50180.07930.036*
C130.00785 (19)0.4817 (3)0.07122 (11)0.0264 (6)
H13A0.03800.55670.07330.032*
H13B0.05090.41850.06750.032*
C140.03306 (18)0.4836 (3)0.02357 (11)0.0246 (6)
H14A0.05710.40570.01840.029*
H14B0.08010.54130.02810.029*
C150.2586 (2)0.5762 (3)0.23017 (13)0.0387 (8)
C160.3163 (3)0.5767 (5)0.28214 (16)0.0603 (14)
H16A0.29530.51990.30470.090*
H16B0.31660.65500.29730.090*
H16C0.37420.55550.27800.090*
C170.2281 (3)0.7765 (4)0.07178 (16)0.0440 (9)
C180.2414 (3)0.8863 (4)0.0423 (2)0.0635 (14)
H18A0.29590.88130.03020.095*
H18B0.24190.95450.06480.095*
H18C0.19510.89440.01280.095*
H8B0.017 (3)0.008 (4)0.0639 (16)0.033 (11)*
H5A0.039 (2)0.271 (4)0.2553 (17)0.035 (11)*
H6B0.001 (3)0.859 (4)0.007 (2)0.048 (13)*
H8A0.002 (3)0.071 (4)0.093 (2)0.049 (15)*
H7C0.835 (3)0.395 (4)0.2383 (19)0.048 (14)*
H9B0.463 (3)0.653 (4)0.1789 (19)0.043 (13)*
H6A0.047 (3)0.812 (4)0.0345 (19)0.052 (15)*
H7D0.824 (3)0.309 (5)0.2106 (19)0.054 (15)*
H9A0.400 (4)0.665 (5)0.141 (2)0.069 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02604 (13)0.02573 (12)0.02352 (12)0.00736 (8)0.00101 (8)0.00419 (8)
O10.0564 (18)0.072 (2)0.0323 (14)0.0304 (16)0.0097 (12)0.0150 (14)
O20.0591 (19)0.0571 (19)0.0434 (16)0.0261 (15)0.0137 (14)0.0117 (14)
O30.0560 (19)0.065 (2)0.0574 (19)0.0113 (16)0.0089 (15)0.0048 (16)
O40.0395 (14)0.0400 (14)0.0471 (15)0.0045 (11)0.0070 (12)0.0182 (12)
O50.0285 (18)0.0317 (18)0.0355 (18)0.0000.0031 (15)0.000
O60.0330 (15)0.0471 (16)0.0420 (16)0.0024 (12)0.0104 (12)0.0054 (13)
O70.0262 (13)0.0366 (14)0.0509 (16)0.0037 (11)0.0086 (12)0.0113 (12)
O80.0517 (17)0.0372 (16)0.0395 (15)0.0072 (13)0.0165 (13)0.0059 (12)
O90.0422 (16)0.0450 (16)0.0430 (17)0.0027 (13)0.0049 (13)0.0166 (13)
N10.0230 (12)0.0252 (12)0.0198 (11)0.0018 (10)0.0026 (9)0.0023 (9)
N20.0377 (15)0.0313 (14)0.0202 (12)0.0047 (12)0.0033 (11)0.0014 (10)
N30.0250 (13)0.0292 (13)0.0209 (12)0.0040 (10)0.0025 (10)0.0043 (10)
C10.0308 (16)0.0300 (16)0.0225 (14)0.0035 (13)0.0062 (12)0.0055 (12)
C20.0330 (16)0.0311 (16)0.0172 (13)0.0019 (13)0.0022 (11)0.0031 (11)
C30.0371 (18)0.0418 (19)0.0265 (16)0.0007 (15)0.0072 (14)0.0027 (14)
C40.045 (2)0.047 (2)0.0302 (17)0.0088 (17)0.0070 (15)0.0028 (15)
C50.055 (2)0.0332 (18)0.0279 (17)0.0057 (16)0.0014 (16)0.0036 (14)
C60.048 (2)0.0319 (17)0.0264 (16)0.0060 (15)0.0022 (14)0.0021 (13)
C70.0287 (15)0.0219 (14)0.0302 (15)0.0033 (12)0.0047 (12)0.0038 (12)
C80.0237 (14)0.0273 (15)0.0210 (13)0.0030 (12)0.0014 (11)0.0036 (11)
C90.0296 (16)0.0307 (16)0.0280 (15)0.0045 (13)0.0009 (12)0.0026 (12)
C100.0331 (17)0.0369 (18)0.0294 (16)0.0033 (14)0.0007 (13)0.0011 (14)
C110.0255 (16)0.0435 (19)0.0298 (16)0.0024 (14)0.0027 (13)0.0017 (14)
C120.0246 (15)0.0388 (17)0.0250 (15)0.0062 (13)0.0005 (12)0.0039 (13)
C130.0232 (14)0.0348 (16)0.0195 (13)0.0054 (12)0.0009 (11)0.0000 (12)
C140.0211 (14)0.0299 (15)0.0211 (14)0.0029 (12)0.0007 (11)0.0003 (11)
C150.041 (2)0.045 (2)0.0262 (16)0.0158 (16)0.0051 (14)0.0073 (14)
C160.056 (3)0.081 (3)0.035 (2)0.033 (2)0.0160 (19)0.016 (2)
C170.047 (2)0.041 (2)0.041 (2)0.0010 (17)0.0010 (17)0.0084 (16)
C180.055 (3)0.053 (3)0.085 (4)0.008 (2)0.019 (3)0.030 (3)
Geometric parameters (Å, º) top
Cd1—O42.240 (2)C3—H30.9500
Cd1—O42.240 (2)C4—C51.382 (6)
Cd1—O22.251 (3)C4—H40.9500
Cd1—N32.313 (3)C5—C61.376 (6)
Cd1—N22.379 (3)C5—H50.9500
Cd1—N12.405 (3)C6—H60.9500
Cd1—O12.550 (3)C7—C81.519 (4)
Cd1—O32.729 (4)C7—H7A0.9900
O1—C151.205 (5)C7—H7B0.9900
O2—C151.269 (5)C8—C91.386 (5)
O3—C171.242 (5)C9—C101.386 (5)
O4—C171.233 (5)C9—H90.9500
O5—H5A0.76 (4)C10—C111.384 (5)
O6—H6B0.85 (5)C10—H100.9500
O6—H6A0.77 (5)C11—C121.371 (5)
O7—H7C0.76 (5)C11—H110.9500
O7—H7D0.77 (5)C12—H120.9500
O8—H8B0.78 (5)C13—C141.518 (4)
O8—H8A0.73 (5)C13—H13A0.9900
O9—H9B0.79 (5)C13—H13B0.9900
O9—H9A0.80 (6)C14—C14i1.532 (6)
N1—C71.475 (4)C14—H14A0.9900
N1—C131.486 (4)C14—H14B0.9900
N1—C11.488 (4)C15—C161.514 (5)
N2—C21.338 (4)C16—H16A0.9800
N2—C61.340 (5)C16—H16B0.9800
N3—C81.339 (4)C16—H16C0.9800
N3—C121.357 (4)C17—O41.233 (5)
C1—C21.512 (5)C17—O31.242 (5)
C1—H1A0.9900C17—C181.513 (6)
C1—H1B0.9900C18—H18A0.9800
C2—C31.387 (5)C18—H18B0.9800
C3—C41.381 (5)C18—H18C0.9800
O4—Cd1—O40.0 (2)C6—C5—C4118.3 (3)
O4—Cd1—O2109.44 (11)C6—C5—H5120.8
O4—Cd1—O2109.44 (11)C4—C5—H5120.8
O4—Cd1—N3106.87 (10)N2—C6—C5123.1 (4)
O4—Cd1—N3106.87 (10)N2—C6—H6118.5
O2—Cd1—N3111.66 (11)C5—C6—H6118.5
O4—Cd1—N288.38 (10)N1—C7—C8113.6 (2)
O4—Cd1—N288.38 (10)N1—C7—H7A108.9
O2—Cd1—N293.01 (12)C8—C7—H7A108.9
N3—Cd1—N2143.54 (9)N1—C7—H7B108.9
O4—Cd1—N1114.26 (9)C8—C7—H7B108.9
O4—Cd1—N1114.26 (9)H7A—C7—H7B107.7
O2—Cd1—N1132.37 (10)N3—C8—C9122.5 (3)
N3—Cd1—N172.86 (9)N3—C8—C7117.9 (3)
N2—Cd1—N170.68 (9)C9—C8—C7119.5 (3)
O4—Cd1—O1161.92 (10)C8—C9—C10118.5 (3)
O4—Cd1—O1161.92 (10)C8—C9—H9120.7
O2—Cd1—O152.59 (10)C10—C9—H9120.7
N3—Cd1—O181.46 (10)C11—C10—C9119.3 (3)
N2—Cd1—O194.11 (10)C11—C10—H10120.3
N1—Cd1—O183.35 (9)C9—C10—H10120.3
O4—Cd1—O350.44 (9)C12—C11—C10119.0 (3)
O4—Cd1—O350.44 (9)C12—C11—H11120.5
O2—Cd1—O376.31 (11)C10—C11—H11120.5
N3—Cd1—O385.54 (10)N3—C12—C11122.4 (3)
N2—Cd1—O3127.56 (10)N3—C12—H12118.8
N1—Cd1—O3148.74 (9)C11—C12—H12118.8
O1—Cd1—O3116.10 (9)N1—C13—C14114.5 (2)
C15—O1—Cd187.1 (2)N1—C13—H13A108.6
C15—O2—Cd199.7 (2)C14—C13—H13A108.6
C17—O3—Cd181.2 (3)N1—C13—H13B108.6
C17—O4—Cd1104.9 (2)C14—C13—H13B108.6
H6B—O6—H6A108 (5)H13A—C13—H13B107.6
H7C—O7—H7D106 (5)C13—C14—C14i110.1 (3)
H8B—O8—H8A110 (5)C13—C14—H14A109.6
H9B—O9—H9A109 (5)C14i—C14—H14A109.6
C7—N1—C13112.0 (2)C13—C14—H14B109.6
C7—N1—C1110.3 (2)C14i—C14—H14B109.6
C13—N1—C1108.8 (2)H14A—C14—H14B108.2
C7—N1—Cd1107.62 (18)O1—C15—O2120.1 (3)
C13—N1—Cd1112.52 (18)O1—C15—C16121.2 (3)
C1—N1—Cd1105.36 (18)O2—C15—C16118.5 (3)
C2—N2—C6118.6 (3)C15—C16—H16A109.5
C2—N2—Cd1115.3 (2)C15—C16—H16B109.5
C6—N2—Cd1126.1 (2)H16A—C16—H16B109.5
C8—N3—C12118.3 (3)C15—C16—H16C109.5
C8—N3—Cd1116.9 (2)H16A—C16—H16C109.5
C12—N3—Cd1124.8 (2)H16B—C16—H16C109.5
N1—C1—C2111.3 (2)O4—C17—O3121.8 (4)
N1—C1—H1A109.4O4—C17—O3121.8 (4)
C2—C1—H1A109.4O4—C17—O3121.8 (4)
N1—C1—H1B109.4O4—C17—O3121.8 (4)
C2—C1—H1B109.4O4—C17—C18118.3 (4)
H1A—C1—H1B108.0O4—C17—C18118.3 (4)
N2—C2—C3121.7 (3)O3—C17—C18119.8 (4)
N2—C2—C1117.0 (3)O3—C17—C18119.8 (4)
C3—C2—C1121.2 (3)C17—C18—H18A109.5
C4—C3—C2119.2 (4)C17—C18—H18B109.5
C4—C3—H3120.4H18A—C18—H18B109.5
C2—C3—H3120.4C17—C18—H18C109.5
C3—C4—C5119.1 (4)H18A—C18—H18C109.5
C3—C4—H4120.4H18B—C18—H18C109.5
C5—C4—H4120.4
O4—Cd1—O1—C152.7 (5)N3—Cd1—N2—C6160.9 (2)
O4—Cd1—O1—C152.7 (5)N1—Cd1—N2—C6160.6 (3)
O2—Cd1—O1—C154.0 (3)O1—Cd1—N2—C6117.9 (3)
N3—Cd1—O1—C15121.8 (3)O3—Cd1—N2—C69.8 (3)
N2—Cd1—O1—C1594.7 (3)O4—Cd1—N3—C8125.3 (2)
N1—Cd1—O1—C15164.7 (3)O4—Cd1—N3—C8125.3 (2)
O3—Cd1—O1—C1541.0 (3)O2—Cd1—N3—C8115.0 (2)
O4—Cd1—O2—C15173.9 (3)N2—Cd1—N3—C814.2 (3)
O4—Cd1—O2—C15173.9 (3)N1—Cd1—N3—C814.5 (2)
N3—Cd1—O2—C1555.8 (3)O1—Cd1—N3—C871.1 (2)
N2—Cd1—O2—C1596.7 (3)O3—Cd1—N3—C8171.6 (2)
N1—Cd1—O2—C1530.4 (3)O4—Cd1—N3—C1257.2 (3)
O1—Cd1—O2—C153.9 (3)O4—Cd1—N3—C1257.2 (3)
O3—Cd1—O2—C15135.3 (3)O2—Cd1—N3—C1262.5 (3)
O4—Cd1—O3—O30.00 (18)N2—Cd1—N3—C12168.3 (2)
O4—Cd1—O3—O30.00 (18)N1—Cd1—N3—C12168.0 (3)
O2—Cd1—O3—O30.00 (11)O1—Cd1—N3—C12106.4 (2)
N3—Cd1—O3—O30.00 (13)O3—Cd1—N3—C1210.9 (2)
N2—Cd1—O3—O30.00 (13)C7—N1—C1—C2164.2 (3)
N1—Cd1—O3—O30.00 (6)C13—N1—C1—C272.5 (3)
O1—Cd1—O3—O30.00 (16)Cd1—N1—C1—C248.4 (3)
O4—Cd1—O3—C177.3 (2)C6—N2—C2—C31.8 (5)
O4—Cd1—O3—C177.3 (2)Cd1—N2—C2—C3176.7 (2)
O2—Cd1—O3—C17122.9 (3)C6—N2—C2—C1179.7 (3)
N3—Cd1—O3—C17123.5 (3)Cd1—N2—C2—C11.2 (3)
N2—Cd1—O3—C1739.8 (3)N1—C1—C2—N233.5 (4)
N1—Cd1—O3—C1777.8 (3)N1—C1—C2—C3148.6 (3)
O1—Cd1—O3—C17158.3 (3)N2—C2—C3—C40.6 (5)
O2—Cd1—O4—O40.0 (3)C1—C2—C3—C4178.4 (3)
N3—Cd1—O4—O40.0 (3)C2—C3—C4—C51.0 (5)
N2—Cd1—O4—O40.0 (3)C3—C4—C5—C61.2 (5)
N1—Cd1—O4—O40.0 (2)C2—N2—C6—C51.5 (5)
O1—Cd1—O4—O40.0 (4)Cd1—N2—C6—C5176.8 (2)
O3—Cd1—O4—O40.0 (2)C4—C5—C6—N20.0 (5)
O4—Cd1—O4—C170 (19)C13—N1—C7—C888.0 (3)
O2—Cd1—O4—C1744.4 (3)C1—N1—C7—C8150.7 (3)
N3—Cd1—O4—C1776.6 (3)Cd1—N1—C7—C836.2 (3)
N2—Cd1—O4—C17137.0 (3)C12—N3—C8—C90.0 (4)
N1—Cd1—O4—C17155.0 (3)Cd1—N3—C8—C9177.7 (2)
O1—Cd1—O4—C1738.8 (5)C12—N3—C8—C7176.9 (3)
O3—Cd1—O4—C177.5 (3)Cd1—N3—C8—C70.7 (3)
O4—Cd1—N1—C7127.65 (19)N1—C7—C8—N326.7 (4)
O4—Cd1—N1—C7127.65 (19)N1—C7—C8—C9156.3 (3)
O2—Cd1—N1—C777.5 (2)N3—C8—C9—C100.5 (5)
N3—Cd1—N1—C726.46 (18)C7—C8—C9—C10176.4 (3)
N2—Cd1—N1—C7153.4 (2)C8—C9—C10—C110.4 (5)
O1—Cd1—N1—C756.62 (19)C9—C10—C11—C120.1 (5)
O3—Cd1—N1—C774.8 (3)C8—N3—C12—C110.5 (4)
O4—Cd1—N1—C133.7 (2)Cd1—N3—C12—C11176.9 (2)
O4—Cd1—N1—C133.7 (2)C10—C11—C12—N30.6 (5)
O2—Cd1—N1—C13158.6 (2)C7—N1—C13—C1466.3 (3)
N3—Cd1—N1—C1397.5 (2)C1—N1—C13—C14171.5 (3)
N2—Cd1—N1—C1382.7 (2)Cd1—N1—C13—C1455.2 (3)
O1—Cd1—N1—C13179.5 (2)N1—C13—C14—C14i173.6 (3)
O3—Cd1—N1—C1349.1 (3)Cd1—O1—C15—O26.6 (4)
O4—Cd1—N1—C1114.65 (19)Cd1—O1—C15—C16178.5 (4)
O4—Cd1—N1—C1114.65 (19)Cd1—O2—C15—O17.5 (5)
O2—Cd1—N1—C140.2 (2)Cd1—O2—C15—C16177.4 (4)
N3—Cd1—N1—C1144.16 (19)Cd1—O4—C17—O40 (66)
N2—Cd1—N1—C135.66 (18)O4—O4—C17—O30.00 (9)
O1—Cd1—N1—C161.08 (19)Cd1—O4—C17—O315.0 (5)
O3—Cd1—N1—C1167.51 (19)O4—O4—C17—O30.00 (9)
O4—Cd1—N2—C2137.5 (2)Cd1—O4—C17—O315.0 (5)
O4—Cd1—N2—C2137.5 (2)O4—O4—C17—C180.00 (7)
O2—Cd1—N2—C2113.1 (2)Cd1—O4—C17—C18168.0 (4)
N3—Cd1—N2—C220.7 (3)O3—O3—C17—O40.00 (10)
N1—Cd1—N2—C221.0 (2)Cd1—O3—C17—O412.0 (4)
O1—Cd1—N2—C260.4 (2)O3—O3—C17—O40.00 (10)
O3—Cd1—N2—C2171.8 (2)Cd1—O3—C17—O412.0 (4)
O4—Cd1—N2—C644.1 (3)Cd1—O3—C17—O30 (100)
O4—Cd1—N2—C644.1 (3)O3—O3—C17—C180.0 (2)
O2—Cd1—N2—C665.3 (3)Cd1—O3—C17—C18171.1 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O30.80 (6)2.06 (6)2.829 (5)160 (6)
O6—H6A···O40.77 (5)1.98 (5)2.745 (4)170 (5)
O9—H9B···O5ii0.79 (5)2.07 (5)2.852 (3)170 (5)
O7—H7C···O1iii0.76 (5)1.91 (5)2.673 (4)177 (5)
O8—H8A···O9iv0.73 (5)2.04 (5)2.769 (4)172 (5)
O6—H6B···O8i0.85 (5)1.97 (5)2.792 (4)164 (5)
O5—H5A···O7iii0.76 (4)1.96 (4)2.708 (3)170 (5)
O8—H8B···O6v0.78 (5)2.06 (5)2.825 (4)166 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2; (iv) x1/2, y1/2, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C2H3O2)4(C28H32N6)]·9H2O
Mr1075.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)15.9680 (17), 11.4320 (12), 26.451 (3)
β (°) 100.127 (2)
V3)4753.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.760, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
23441, 5847, 5621
Rint0.022
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.103, 1.20
No. of reflections5847
No. of parameters314
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0355P)2 + 21.0991P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.55, 0.57

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O42.240 (2)Cd1—N12.405 (3)
Cd1—O22.251 (3)Cd1—O12.550 (3)
Cd1—N32.313 (3)Cd1—O32.729 (4)
Cd1—N22.379 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O30.80 (6)2.06 (6)2.829 (5)160 (6)
O6—H6A···O40.77 (5)1.98 (5)2.745 (4)170 (5)
O9—H9B···O5i0.79 (5)2.07 (5)2.852 (3)170 (5)
O7—H7C···O1ii0.76 (5)1.91 (5)2.673 (4)177 (5)
O8—H8A···O9iii0.73 (5)2.04 (5)2.769 (4)172 (5)
O6—H6B···O8iv0.85 (5)1.97 (5)2.792 (4)164 (5)
O5—H5A···O7ii0.76 (4)1.96 (4)2.708 (3)170 (5)
O8—H8B···O6v0.78 (5)2.06 (5)2.825 (4)166 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x1/2, y1/2, z; (iv) x, y+1, z; (v) x, y1, z.
 

Footnotes

Current address: Harvard Medical School, Children's Hospital Boston, Department of Radiology, 300 Longwood Ave, Enders 4, Boston, MA 02115, USA.

Acknowledgements

This work was supported by funding from Syracuse University.

References

First citationBartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010d). Acta Cryst. E66, m1201–m1202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1199–m1200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Valliant, J., Maresca, K. P., Babich, J. & Zubieta, J. (2009). Chem. Commun. 5, 473–604.  Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErtürk, H., Hofmann, A., Puchta, R. & van Eldik, R. (2007). Dalton Trans. pp. 2295–2301.  Web of Science PubMed Google Scholar
First citationFujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o1126–o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676–o680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamura, M., Urano, Y., Kikuchi, K., Higuchi, T., Hirobe, M. & Nagano, T. (2000). J. Organomet. Chem. 611, 586–592.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1195-m1196
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds