metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)copper(I)]-μ-thio­cyanato-κ2N:S]

aBinzhou Key Laboratory of Material Chemistry, Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China
*Correspondence e-mail: honglizhang1968@yahoo.cn

(Received 16 August 2010; accepted 31 August 2010; online 8 September 2010)

In the title complex, [Cu(NCS)(C12H8N2)]n, the CuI ion is in a distorted tetra­hedral CuN3S coordination geometry. The thio­cyanate ligand acts as bridging ligand, forming chains along [100]. A crystallographic mirror plane runs through the CuI ion, the thio­cyanate ligand and the middle of the phenanthroline ligand.

Related literature

For related structures, see: Shi et al. (2006[Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376-380.]); Tadashi et al. (1990[Tadashi, T., Naofumi, W., Michio, N., Yoneichiro, M., Mitsuo, M., Shigeru, O. & Yoshihiko, S. (1990). Bull. Chem. Soc. Jpn, 63, 364-369.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C12H8N2)]

  • Mr = 301.82

  • Orthorhombic, P n m a

  • a = 7.9744 (15) Å

  • b = 11.948 (2) Å

  • c = 12.956 (2) Å

  • V = 1234.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 298 K

  • 0.23 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.667, Tmax = 0.762

  • 6226 measured reflections

  • 1421 independent reflections

  • 1146 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.080

  • S = 1.03

  • 1421 reflections

  • 89 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-phenanthroline and thiocyanate anions play an important role in modern coordination chemistry and many complexes have been published with them as ligands (e.g. Shi et al., 2006; Tadashi et al. (1990). We originally tried to prepare a new divalent Cu(II) complex with these two ligands, but the title monovalent Cu(I) complex was fortuitously obtained. Herein we report its crystal structure.

Fig. 1 shows part of the title complex. The CuI ion is coordinated by three N atoms and one S atom, and is in a distorted tetrahedral coordination environment. The thiocyanate ligand acts as bridging forming a 1-D chain with a Cu···Cu distance of 5.9960 (9) Å.

Related literature top

For related structures, see: Shi et al. (2006); Tadashi et al. (1990).

Experimental top

A 5 ml H2O solution of Cu(ClO4)26H2O (0.2000 g, 0.54 mmol) was added to a 10 ml methanol solution of 1,10-phenanthroline (0.1070 g, 0.54 mmol), and the mixture was stirred for a few minutes, then a 5 ml H2O solution of NaNCS (0.0875 g, 1.08 mmol) was added dropwise and the mixture was stirred for a few minutes and then placed in a Teflon-lined autoclave and heated at 433K for 144 h at autogenous pressure. After the contents of the autoclave were cooled to room temperature, the red single crystals were obtained.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, Uiso = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the 1-D chain of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (i): x, -y + 3/2, z; (ii): x - 1/2, y, -z + 3/2; (iii): x + 1/2, y, -z + 3/2]
catena-Poly[[(1,10-phenanthroline-κ2N,N')copper(I)]- µ-thiocyanato-κ2N:S] top
Crystal data top
[Cu(NCS)(C12H8N2)]F(000) = 608
Mr = 301.82Dx = 1.624 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2278 reflections
a = 7.9744 (15) Åθ = 2.3–27.9°
b = 11.948 (2) ŵ = 1.92 mm1
c = 12.956 (2) ÅT = 298 K
V = 1234.4 (4) Å3Block, red
Z = 40.23 × 0.15 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1421 independent reflections
Radiation source: fine-focus sealed tube1146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.667, Tmax = 0.762k = 1515
6226 measured reflectionsl = 516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0508P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1421 reflectionsΔρmax = 0.29 e Å3
89 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (10)
Crystal data top
[Cu(NCS)(C12H8N2)]V = 1234.4 (4) Å3
Mr = 301.82Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.9744 (15) ŵ = 1.92 mm1
b = 11.948 (2) ÅT = 298 K
c = 12.956 (2) Å0.23 × 0.15 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1421 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1146 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.762Rint = 0.028
6226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
1421 reflectionsΔρmin = 0.28 e Å3
89 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13936 (17)0.68993 (15)1.13076 (12)0.0406 (4)
C20.1011 (2)0.63175 (18)1.22243 (13)0.0543 (5)
C30.0628 (3)0.69444 (18)1.31338 (13)0.0712 (6)
H30.03720.65651.37400.085*
C40.1051 (2)0.51479 (18)1.21873 (16)0.0669 (6)
H40.07920.47311.27720.080*
C50.1468 (2)0.46262 (19)1.12958 (17)0.0648 (6)
H50.14910.38491.12620.078*
C60.1862 (2)0.52657 (16)1.04275 (16)0.0528 (5)
H60.21750.48950.98260.063*
C70.5834 (3)0.75000.79202 (17)0.0436 (5)
Cu10.23713 (4)0.75000.92283 (2)0.04865 (16)
N10.6286 (2)0.75000.70801 (14)0.0487 (5)
N20.18111 (17)0.63783 (12)1.04164 (11)0.0412 (3)
S10.52660 (9)0.75000.91372 (4)0.0702 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (8)0.0577 (10)0.0300 (8)0.0010 (7)0.0005 (6)0.0033 (7)
C20.0467 (10)0.0768 (13)0.0392 (9)0.0047 (9)0.0023 (8)0.0131 (9)
C30.0708 (12)0.1093 (18)0.0335 (9)0.0073 (11)0.0146 (9)0.0111 (9)
C40.0664 (14)0.0748 (15)0.0593 (13)0.0081 (10)0.0013 (10)0.0283 (11)
C50.0638 (13)0.0510 (11)0.0796 (16)0.0007 (10)0.0080 (12)0.0169 (11)
C60.0548 (11)0.0519 (11)0.0517 (11)0.0028 (9)0.0052 (9)0.0009 (9)
C70.0417 (12)0.0567 (15)0.0323 (12)0.0000.0043 (10)0.000
Cu10.0589 (3)0.0631 (3)0.0240 (2)0.0000.00043 (12)0.000
N10.0563 (13)0.0619 (13)0.0278 (9)0.0000.0038 (9)0.000
N20.0423 (7)0.0469 (8)0.0345 (7)0.0000 (6)0.0012 (6)0.0021 (6)
S10.0499 (4)0.1360 (8)0.0245 (3)0.0000.0024 (3)0.000
Geometric parameters (Å, º) top
C1—N21.353 (2)C5—H50.9300
C1—C21.410 (2)C6—N21.330 (2)
C1—C1i1.435 (4)C6—H60.9300
C2—C41.399 (3)C7—N11.147 (3)
C2—C31.429 (2)C7—S11.640 (2)
C3—C3i1.328 (4)Cu1—N1ii1.9033 (19)
C3—H30.9300Cu1—N2i2.0893 (14)
C4—C51.354 (3)Cu1—N22.0893 (14)
C4—H40.9300Cu1—S12.3113 (9)
C5—C61.396 (3)N1—Cu1iii1.9033 (19)
N2—C1—C2123.04 (17)N2—C6—C5123.3 (2)
N2—C1—C1i117.39 (9)N2—C6—H6118.4
C2—C1—C1i119.55 (11)C5—C6—H6118.4
C4—C2—C1117.32 (19)N1—C7—S1177.7 (2)
C4—C2—C3123.83 (19)N1ii—Cu1—N2i123.98 (6)
C1—C2—C3118.84 (18)N1ii—Cu1—N2123.98 (6)
C3i—C3—C2121.60 (11)N2i—Cu1—N279.80 (8)
C3i—C3—H3119.2N1ii—Cu1—S1114.12 (6)
C2—C3—H3119.2N2i—Cu1—S1104.55 (4)
C5—C4—C2119.65 (19)N2—Cu1—S1104.55 (4)
C5—C4—H4120.2C7—N1—Cu1iii171.3 (2)
C2—C4—H4120.2C6—N2—C1117.26 (16)
C4—C5—C6119.4 (2)C6—N2—Cu1129.99 (13)
C4—C5—H5120.3C1—N2—Cu1112.71 (11)
C6—C5—H5120.3C7—S1—Cu1108.96 (9)
N2—C1—C2—C40.9 (2)C1i—C1—N2—C6177.93 (12)
C1i—C1—C2—C4179.14 (12)C2—C1—N2—Cu1178.16 (12)
N2—C1—C2—C3178.35 (16)C1i—C1—N2—Cu10.08 (11)
C1i—C1—C2—C30.1 (2)N1ii—Cu1—N2—C658.10 (18)
C4—C2—C3—C3i179.09 (13)N2i—Cu1—N2—C6177.60 (14)
C1—C2—C3—C3i0.2 (2)S1—Cu1—N2—C675.07 (16)
C1—C2—C4—C50.9 (3)N1ii—Cu1—N2—C1124.40 (10)
C3—C2—C4—C5178.38 (19)N2i—Cu1—N2—C10.09 (13)
C2—C4—C5—C60.4 (3)S1—Cu1—N2—C1102.44 (10)
C4—C5—C6—N21.7 (3)N1—C7—S1—Cu1180.00 (2)
S1—C7—N1—Cu1iii0.00 (2)N1ii—Cu1—S1—C70.0
C5—C6—N2—C11.7 (3)N2i—Cu1—S1—C7138.50 (4)
C5—C6—N2—Cu1179.08 (13)N2—Cu1—S1—C7138.50 (4)
C2—C1—N2—C60.3 (2)
Symmetry codes: (i) x, y+3/2, z; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C12H8N2)]
Mr301.82
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.9744 (15), 11.948 (2), 12.956 (2)
V3)1234.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.23 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.667, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
6226, 1421, 1146
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.080, 1.03
No. of reflections1421
No. of parameters89
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. ZR2009BL002).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380.  CSD CrossRef PubMed Google Scholar
First citationTadashi, T., Naofumi, W., Michio, N., Yoneichiro, M., Mitsuo, M., Shigeru, O. & Yoshihiko, S. (1990). Bull. Chem. Soc. Jpn, 63, 364–369.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds