organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Eth­­oxy­carbonyl­methyl 3-(4-chloro­benzyl­­idene)di­thio­carbazate

aScientific Society of Nanotechnology, Islamic Azad University, Yazd Branch, Yazd, Iran, bDepartment of Chemistry, Islamic Azad University, Qom Branch, Qom, Iran, cDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 28 August 2010; accepted 2 September 2010; online 11 September 2010)

Mol­ecules of the title compound, C12H13ClN2O2S2, are linked into centrosymmetric dimers by pairs of inter­molecular N—H⋯S hydrogen bonds. In the crystal structure, there are ππ stacking inter­actions between symmetry-related benzene rings with a centroid–centroid distance of 3.7305 (13) Å, a perpendicular distance between the planes of 3.2851 (9) Å and a slippage of 1.768 Å. The structure is further stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activity of related compounds, see: Gülerman et al. (2001[Gülerman, N. N., Doğan, H. N., Rollas, S., Johansson, C. & Çelik, C. (2001). Farmaco, 56, 953-958.]); Duran et al. (2002[Duran, A., Doğan, H. N. & Rollas, S. (2002). Farmaco, 57, 559-564.]). For related structures, see: Tabatabaee et al. (2006[Tabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B. 61, 1421-1425.], 2007[Tabatabaee, M., Ghassemzadeh, M., Zarabi, Heravi, M. M., AnaryAbbasinejad, M. & Neumüller, B. (2007). Phosphorus Sulfur Silion Relat. Elem. 182, 677-686.], 2008[Tabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173-x174.], 2009[Tabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem. 635, 120-124.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13ClN2O2S2

  • Mr = 316.81

  • Triclinic, [P \overline 1]

  • a = 7.3425 (3) Å

  • b = 10.3894 (4) Å

  • c = 10.6457 (5) Å

  • α = 116.535 (2)°

  • β = 95.049 (2)°

  • γ = 94.955 (2)°

  • V = 716.50 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 173 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer with APEXII CCD

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.936, Tmax = 0.967

  • 12341 measured reflections

  • 3996 independent reflections

  • 3361 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 1.09

  • 3996 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.88 2.52 3.3669 (17) 161
C3—H3⋯O1ii 0.95 2.48 3.410 (2) 166
C9—H9B⋯O1iii 0.99 2.55 3.153 (3) 119
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiones of nitrogen-containing heterocycles have attracted the attention of researchers in recent years because of their synthetic possibilities and useful properties. Several compounds containing sulfur and nitrogen atoms are anti-inflammatory, sedative, antibacterial, antiviral, or antitumor and synthesis of the corresponding iminic compounds could be of interest from the viewpoint of chemical reactivity and biological activity (Gülerman et al., 2001; Duran et al., 2002). In a sequence of studies, we have investigated the synthesis and crystal structures of several Schiff bases derived from 4-amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione (AMTT) and 4-amino-6-methyl-3-thio-3,4-dihydro-1,2,4-triazin-5(2H)-one (AMTTO) (Tabatabaee et al., 2006; 2007; 2008; 2009). Here, we report our results for the synthesis and crystal structure of a new iminic compounds derived from N-aminorhodanine, (I).

In the title molecule (Fig. 1) bond distances and angles are unexceptional and agree with the corresponding bond distances and angles reported in the related compounds (Tabatabaee et al., 2006; 2007; 2008; 2009). In the solid state, intermolecular N—H···S hydrogen bonds in the title compound link the molecules lying about inversion centers leading to centrosymmetric dimers (Tab. 1 & Fig. 2). Moreover, the benzene rings C1–C6 and C1i–C6i (i= 2 - x, 1 - y, 1 - z) show π-π stacking interactions (Fig. 3) with centroid-centroid distance 3.7305 (13) Å, the angle between the planes 0 °; the perpendicular distance between the planes 3.2851 (9) Å and the slippage 1.768 Å. The structure is further stabilized by intermolecular hydrogen bonding of C—H···O type (Tab. 1); unit cell packing showing hydrogen bonding interactions has been presented in Figure 4.

Related literature top

For the biological activity of related compounds, see: Gülerman et al. (2001); Duran et al. (2002). For related structures, see: Tabatabaee et al. (2006, 2007, 2008, 2009).

Experimental top

A solution of N-aminorhodanine (5 mmol) in EtOH (20 ml) was treated with 2-chlorobenzaldehyde (5 mmol) and the resulting mixture was acidified with 37% hydrochloric acid (0.2 ml). The reaction mixture was refluxed for 8 h. After completion of the reaction, the solid residue was filtered, washed with cold ethanol (10 ml) and recrystallized from EtOH.

Refinement top

The H-atoms were visible in difference Fourier maps but were included in the refinement in geometrically idealized positions with distances N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively. The H-atoms were assigned Uiso = 1.2 × Ueq of the parent atoms. The final difference map was free of chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Dimeric arrangement of the title compound formed by intermolecular N—H···S hydrogen bonds and shown as dashed lines. S1a is related by the symmetry code (1-x, 2-y, 1-z).
[Figure 3] Fig. 3. Representation of π-π stacking interactions in the crystal structure of the title compound
[Figure 4] Fig. 4. Unit cell packing of the title compound showing hydrogen bonding interactions as dashed lines.
Ethoxycarbonylmethyl 3-(4-chlorobenzylidene)dithiocarbazate top
Crystal data top
C12H13ClN2O2S2Z = 2
Mr = 316.81F(000) = 328
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3425 (3) ÅCell parameters from 3737 reflections
b = 10.3894 (4) Åθ = 1.0–29.6°
c = 10.6457 (5) ŵ = 0.56 mm1
α = 116.535 (2)°T = 173 K
β = 95.049 (2)°Block, colorless
γ = 94.955 (2)°0.12 × 0.08 × 0.06 mm
V = 716.50 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD
3996 independent reflections
Radiation source: fine-focus sealed tube3361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 29.7°, θmin = 2.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.936, Tmax = 0.967k = 1414
12341 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.6628P]
where P = (Fo2 + 2Fc2)/3
3996 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H13ClN2O2S2γ = 94.955 (2)°
Mr = 316.81V = 716.50 (5) Å3
Triclinic, P1Z = 2
a = 7.3425 (3) ÅMo Kα radiation
b = 10.3894 (4) ŵ = 0.56 mm1
c = 10.6457 (5) ÅT = 173 K
α = 116.535 (2)°0.12 × 0.08 × 0.06 mm
β = 95.049 (2)°
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD
3996 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3361 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.967Rint = 0.031
12341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.09Δρmax = 0.47 e Å3
3996 reflectionsΔρmin = 0.26 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89852 (9)0.10405 (6)0.44205 (7)0.04491 (16)
S10.37647 (8)0.94428 (5)0.28183 (6)0.03285 (14)
S20.37807 (7)0.61903 (5)0.12742 (5)0.02750 (12)
O10.0267 (2)0.65882 (18)0.13349 (16)0.0355 (3)
O20.0309 (2)0.76565 (17)0.00860 (17)0.0348 (3)
N10.5839 (2)0.65588 (17)0.36811 (18)0.0251 (3)
N20.5413 (2)0.78764 (17)0.38235 (17)0.0259 (3)
H2N0.58130.86810.46100.031*
C10.7182 (2)0.5188 (2)0.4706 (2)0.0224 (3)
C20.8110 (3)0.5168 (2)0.5894 (2)0.0260 (4)
H20.83830.60390.67630.031*
C30.8640 (3)0.3890 (2)0.5824 (2)0.0280 (4)
H30.92710.38800.66370.034*
C40.8236 (3)0.2634 (2)0.4555 (2)0.0292 (4)
C50.7266 (3)0.2612 (2)0.3364 (2)0.0306 (4)
H50.69730.17330.25050.037*
C60.6734 (3)0.3889 (2)0.3448 (2)0.0263 (4)
H60.60570.38840.26420.032*
C70.6691 (3)0.6550 (2)0.4777 (2)0.0244 (4)
H70.70050.74280.56360.029*
C80.4379 (3)0.7910 (2)0.2744 (2)0.0238 (4)
C90.2345 (3)0.6622 (2)0.0105 (2)0.0291 (4)
H9A0.29840.74770.00610.035*
H9B0.21720.57950.08610.035*
C100.0471 (3)0.6945 (2)0.0554 (2)0.0281 (4)
C110.2133 (3)0.8016 (3)0.0258 (3)0.0419 (5)
H11A0.20920.85710.12980.050*
H11B0.30240.71180.00900.050*
C120.2709 (4)0.8910 (3)0.0444 (3)0.0506 (6)
H12A0.39510.91470.02510.061*
H12B0.27160.83590.14700.061*
H12C0.18390.98090.00710.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0472 (3)0.0344 (3)0.0633 (4)0.0143 (2)0.0028 (3)0.0306 (3)
S10.0483 (3)0.0196 (2)0.0283 (3)0.0074 (2)0.0043 (2)0.01017 (19)
S20.0359 (3)0.0192 (2)0.0239 (2)0.00528 (18)0.00303 (19)0.00682 (18)
O10.0363 (8)0.0418 (9)0.0338 (8)0.0012 (7)0.0033 (6)0.0230 (7)
O20.0362 (8)0.0390 (8)0.0361 (8)0.0066 (7)0.0033 (6)0.0233 (7)
N10.0275 (8)0.0193 (7)0.0301 (8)0.0055 (6)0.0036 (6)0.0124 (7)
N20.0331 (9)0.0173 (7)0.0253 (8)0.0037 (6)0.0000 (6)0.0087 (6)
C10.0212 (8)0.0232 (8)0.0266 (9)0.0048 (7)0.0044 (7)0.0143 (7)
C20.0254 (9)0.0293 (9)0.0253 (9)0.0058 (7)0.0051 (7)0.0136 (8)
C30.0243 (9)0.0367 (10)0.0311 (10)0.0070 (8)0.0045 (7)0.0219 (9)
C40.0263 (9)0.0290 (10)0.0405 (11)0.0073 (8)0.0071 (8)0.0223 (9)
C50.0365 (11)0.0243 (9)0.0306 (10)0.0066 (8)0.0039 (8)0.0121 (8)
C60.0293 (9)0.0270 (9)0.0251 (9)0.0046 (7)0.0013 (7)0.0144 (8)
C70.0238 (8)0.0215 (8)0.0268 (9)0.0047 (7)0.0048 (7)0.0098 (7)
C80.0274 (9)0.0207 (8)0.0239 (9)0.0030 (7)0.0045 (7)0.0108 (7)
C90.0361 (10)0.0271 (9)0.0215 (9)0.0003 (8)0.0013 (8)0.0098 (8)
C100.0336 (10)0.0238 (9)0.0237 (9)0.0009 (8)0.0020 (8)0.0099 (8)
C110.0372 (12)0.0431 (13)0.0504 (14)0.0093 (10)0.0063 (10)0.0252 (12)
C120.0539 (16)0.0440 (14)0.0556 (16)0.0164 (12)0.0016 (13)0.0237 (13)
Geometric parameters (Å, º) top
Cl1—C41.739 (2)C3—C41.380 (3)
S1—C81.6618 (19)C3—H30.9500
S2—C81.7548 (19)C4—C51.389 (3)
S2—C91.792 (2)C5—C61.382 (3)
O1—C101.201 (2)C5—H50.9500
O2—C101.339 (2)C6—H60.9500
O2—C111.455 (3)C7—H70.9500
N1—C71.279 (2)C9—C101.513 (3)
N1—N21.375 (2)C9—H9A0.9900
N2—C81.337 (2)C9—H9B0.9900
N2—H2N0.8800C11—C121.493 (3)
C1—C21.392 (2)C11—H11A0.9900
C1—C61.398 (3)C11—H11B0.9900
C1—C71.462 (2)C12—H12A0.9800
C2—C31.388 (3)C12—H12B0.9800
C2—H20.9500C12—H12C0.9800
C8—S2—C9100.82 (9)C1—C7—H7120.1
C10—O2—C11115.16 (17)N2—C8—S1122.37 (14)
C7—N1—N2116.85 (16)N2—C8—S2112.84 (13)
C8—N2—N1118.65 (16)S1—C8—S2124.78 (11)
C8—N2—H2N120.7C10—C9—S2113.36 (14)
N1—N2—H2N120.7C10—C9—H9A108.9
C2—C1—C6119.06 (17)S2—C9—H9A108.9
C2—C1—C7120.29 (17)C10—C9—H9B108.9
C6—C1—C7120.66 (16)S2—C9—H9B108.9
C3—C2—C1120.73 (18)H9A—C9—H9B107.7
C3—C2—H2119.6O1—C10—O2123.7 (2)
C1—C2—H2119.6O1—C10—C9126.00 (19)
C4—C3—C2118.96 (18)O2—C10—C9110.25 (17)
C4—C3—H3120.5O2—C11—C12107.7 (2)
C2—C3—H3120.5O2—C11—H11A110.2
C3—C4—C5121.55 (18)C12—C11—H11A110.2
C3—C4—Cl1119.71 (15)O2—C11—H11B110.2
C5—C4—Cl1118.73 (16)C12—C11—H11B110.2
C6—C5—C4119.01 (19)H11A—C11—H11B108.5
C6—C5—H5120.5C11—C12—H12A109.5
C4—C5—H5120.5C11—C12—H12B109.5
C5—C6—C1120.63 (17)H12A—C12—H12B109.5
C5—C6—H6119.7C11—C12—H12C109.5
C1—C6—H6119.7H12A—C12—H12C109.5
N1—C7—C1119.89 (17)H12B—C12—H12C109.5
N1—C7—H7120.1
C7—N1—N2—C8174.09 (18)C2—C1—C7—N1179.95 (18)
C6—C1—C2—C32.1 (3)C6—C1—C7—N10.2 (3)
C7—C1—C2—C3177.71 (18)N1—N2—C8—S1179.15 (14)
C1—C2—C3—C40.1 (3)N1—N2—C8—S21.3 (2)
C2—C3—C4—C51.9 (3)C9—S2—C8—N2177.22 (15)
C2—C3—C4—Cl1176.88 (15)C9—S2—C8—S13.25 (16)
C3—C4—C5—C61.5 (3)C8—S2—C9—C1073.08 (15)
Cl1—C4—C5—C6177.31 (16)C11—O2—C10—O11.6 (3)
C4—C5—C6—C10.8 (3)C11—O2—C10—C9179.48 (17)
C2—C1—C6—C52.6 (3)S2—C9—C10—O120.3 (3)
C7—C1—C6—C5177.28 (18)S2—C9—C10—O2161.95 (14)
N2—N1—C7—C1179.74 (16)C10—O2—C11—C12175.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.882.523.3669 (17)161
C3—H3···O1ii0.952.483.410 (2)166
C9—H9B···O1iii0.992.553.153 (3)119
C9—H9A···S10.992.693.066 (2)103
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H13ClN2O2S2
Mr316.81
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.3425 (3), 10.3894 (4), 10.6457 (5)
α, β, γ (°)116.535 (2), 95.049 (2), 94.955 (2)
V3)716.50 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer with APEXII CCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.936, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
12341, 3996, 3361
Rint0.031
(sin θ/λ)max1)0.697
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.09
No. of reflections3996
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.26

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.882.523.3669 (17)161
C3—H3···O1ii0.952.483.410 (2)166
C9—H9B···O1iii0.992.553.153 (3)119
C9—H9A···S10.992.693.066 (2)103
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors are grateful to Scientific Society of Nanotechnology, Islamic Azad University, Yazd Branch, for support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuran, A., Doğan, H. N. & Rollas, S. (2002). Farmaco, 57, 559–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGülerman, N. N., Doğan, H. N., Rollas, S., Johansson, C. & Çelik, C. (2001). Farmaco, 56, 953–958.  Web of Science PubMed Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem. 635, 120–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173–x174.  CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Zarabi, Heravi, M. M., AnaryAbbasinejad, M. & Neumüller, B. (2007). Phosphorus Sulfur Silion Relat. Elem. 182, 677–686.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B. 61, 1421–1425.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds