organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Guanidinium L-glutamate

aDepartment of Applied Chemistry, China Agricultural University, Yuanmingyuan, West Road 2, Haidian District, Beijing 100194, People's Republic of China
*Correspondence e-mail: wenfengzhou@cau.edu.cn

(Received 31 August 2010; accepted 10 September 2010; online 30 September 2010)

In the title compound, CH6N3+·C5H8NO4, there are two independent cations and two independent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For an early report of salts formed from amino acids and guanidines, see: Armstrong (1956[Armstrong, M. D. (1956). J. Org. Chem. 21, 503-505.]).

[Scheme 1]

Experimental

Crystal data
  • CH6N3+·C5H8NO4

  • Mr = 206.21

  • Monoclinic, P 21

  • a = 8.7793 (7) Å

  • b = 10.8729 (10) Å

  • c = 10.0801 (9) Å

  • β = 104.552 (1)°

  • V = 931.34 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.42 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.976

  • 5501 measured reflections

  • 2220 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.06

  • 2220 reflections

  • 255 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.91 1.89 2.795 (2) 179
N1—H1B⋯O4i 0.91 1.84 2.738 (2) 170
N1—H1C⋯O2i 0.91 2.13 3.017 (2) 165
N2—H2A⋯O2ii 0.91 2.09 2.998 (2) 173
N2—H2B⋯O7iii 0.91 2.16 2.740 (2) 120
N2—H2C⋯O5iii 0.91 1.92 2.817 (3) 170
N3—H3A⋯O2i 0.88 2.08 2.900 (3) 154
N3—H3B⋯O3 0.88 2.08 2.841 (3) 145
N4—H4A⋯O3iv 0.88 1.95 2.826 (2) 173
N4—H4B⋯O1i 0.88 2.22 3.095 (2) 170
N5—H5A⋯O4iv 0.88 1.96 2.831 (2) 172
N5—H5B⋯O6 0.88 2.35 3.092 (3) 142
N6—H6A⋯O6 0.88 2.04 2.897 (2) 165
N6—H6B⋯O8v 0.88 1.97 2.824 (2) 164
N7—H7A⋯O5 0.88 2.00 2.851 (2) 163
N7—H7B⋯O8vi 0.88 2.02 2.775 (3) 143
N8—H8A⋯O7v 0.88 2.08 2.954 (3) 170
N8—H8B⋯O1vi 0.88 2.23 2.953 (3) 140
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x, y, z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x+1, y, z+1; (vi) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

To better understand the formation of complex salts between a guanidine compounds and amino acids we carried out the crystal structure determination of the title compound. The asymmetric unit of the title compound is shown in Fig. 1. There are two independent cations and two indpendent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by intramolecular N—H···O hydrogen bonds into a three-dimensional network (see Fig. 2).

Related literature top

For an early report of salts formed from amino acids and guanidines, see: Armstrong (1956).

Experimental top

L-Glutamic acid (1.47 g.) and guanidine carbonate (0.90 g) were suspended in 10 ml of water. When the evolution of CO2 had ceased the solution was diluted with 20 ml of acetone, and evaporated to a clear syrup. The syrup was dissolved in 30 ml of absolute methanol to yield a clear solution, and was allowed to stand overnight at room temperature. This solution was then placed in a fume hood for another day, whereupon the crystals of the title compound were collected and dried.

Refinement top

In the absence of significant anomalous dispersion effects Friedel pairs were merged. The absolute configuation is known from the starting material. H atoms were placed in calculated positions (C—H = 0.99 or 1.00 Å, N—H = 0.88 or 0.91 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C,N) or 1.5eq(N) for –NH3 groups.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.
bis(carbamimidoylazanium) (2R)-2-aminopentanedioate top
Crystal data top
CH6N3+·C5H8NO4F(000) = 440
Mr = 206.21Dx = 1.471 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2748 reflections
a = 8.7793 (7) Åθ = 2.4–27.5°
b = 10.8729 (10) ŵ = 0.12 mm1
c = 10.0801 (9) ÅT = 150 K
β = 104.552 (1)°Prism, colourless
V = 931.34 (14) Å30.42 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2220 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.950, Tmax = 0.976k = 149
5501 measured reflectionsl = 813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2149P]
where P = (Fo2 + 2Fc2)/3
2220 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
CH6N3+·C5H8NO4V = 931.34 (14) Å3
Mr = 206.21Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.7793 (7) ŵ = 0.12 mm1
b = 10.8729 (10) ÅT = 150 K
c = 10.0801 (9) Å0.42 × 0.26 × 0.20 mm
β = 104.552 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2087 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.976Rint = 0.021
5501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
2220 reflectionsΔρmin = 0.23 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3633 (2)0.4498 (2)0.1328 (2)0.0157 (4)
C20.4808 (2)0.5516 (2)0.06507 (19)0.0152 (4)
H20.52340.58920.13890.018*
C30.6207 (2)0.5030 (2)0.0442 (2)0.0175 (4)
H3C0.69240.57230.08030.021*
H3D0.67930.44340.00160.021*
C40.5727 (2)0.4405 (2)0.1632 (2)0.0185 (4)
H4C0.49370.37610.12640.022*
H4D0.52270.50200.21110.022*
C50.7121 (2)0.3823 (2)0.2661 (2)0.0161 (4)
C60.6284 (3)0.5883 (2)0.6253 (2)0.0170 (4)
C70.5001 (2)0.5088 (2)0.5315 (2)0.0142 (4)
H70.51530.51590.43680.017*
C80.3304 (2)0.5466 (2)0.52340 (19)0.0164 (4)
H8C0.32590.63670.53570.020*
H8D0.29540.50670.59900.020*
C90.2181 (2)0.5106 (2)0.3863 (2)0.0171 (4)
H9A0.23790.42400.36550.020*
H9B0.10830.51650.39460.020*
C100.2368 (2)0.5920 (2)0.2679 (2)0.0156 (4)
C110.9131 (2)0.7443 (2)0.4492 (2)0.0176 (4)
C120.9193 (3)0.7368 (2)0.9641 (2)0.0179 (4)
N10.3944 (2)0.65067 (18)0.01100 (17)0.0155 (4)
H1A0.33510.61640.04150.023*
H1B0.33070.69180.08230.023*
H1C0.46480.70400.04070.023*
N20.5301 (2)0.37747 (18)0.57395 (19)0.0183 (4)
H2A0.49600.36330.65070.027*
H2B0.63510.36170.59180.027*
H2C0.47740.32750.50520.027*
N30.7857 (2)0.6972 (2)0.3634 (2)0.0240 (4)
H3A0.74110.73610.28700.029*
H3B0.74610.62720.38320.029*
N40.9733 (2)0.84922 (19)0.42024 (19)0.0204 (4)
H4A1.05780.87970.47700.024*
H4B0.92880.88870.34410.024*
N50.9797 (2)0.68433 (19)0.5639 (2)0.0215 (4)
H5A1.06430.71450.62090.026*
H5B0.93940.61440.58290.026*
N60.9603 (2)0.62410 (19)0.9389 (2)0.0242 (4)
H6A0.90360.58320.86820.029*
H6B1.04420.58990.99260.029*
N70.7924 (2)0.78798 (19)0.88260 (19)0.0222 (4)
H7A0.73610.74670.81210.027*
H7B0.76480.86310.89910.027*
N81.0012 (2)0.8000 (2)1.0716 (2)0.0248 (5)
H8A1.08440.76681.12740.030*
H8B0.97210.87511.08680.030*
O10.22034 (18)0.47085 (14)0.15334 (15)0.0197 (3)
O20.42560 (19)0.35290 (15)0.16612 (15)0.0206 (3)
O30.76473 (19)0.43703 (16)0.37806 (16)0.0221 (4)
O40.76678 (19)0.28334 (16)0.23297 (16)0.0236 (4)
O50.6030 (2)0.70163 (15)0.62702 (17)0.0234 (4)
O60.75073 (18)0.53379 (16)0.68837 (16)0.0225 (4)
O70.2657 (2)0.70271 (16)0.28796 (17)0.0277 (4)
O80.21550 (17)0.54149 (15)0.15054 (14)0.0184 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0218 (10)0.0148 (10)0.0098 (9)0.0013 (8)0.0027 (8)0.0026 (8)
C20.0177 (9)0.0146 (10)0.0126 (8)0.0017 (8)0.0025 (7)0.0002 (8)
C30.0153 (9)0.0193 (10)0.0165 (10)0.0003 (9)0.0013 (8)0.0003 (8)
C40.0159 (10)0.0222 (12)0.0161 (10)0.0029 (9)0.0017 (8)0.0005 (9)
C50.0153 (9)0.0163 (10)0.0158 (10)0.0001 (8)0.0024 (8)0.0010 (8)
C60.0180 (10)0.0187 (11)0.0135 (9)0.0030 (9)0.0024 (8)0.0002 (8)
C70.0177 (9)0.0134 (10)0.0110 (9)0.0014 (8)0.0023 (7)0.0009 (8)
C80.0167 (9)0.0203 (10)0.0115 (9)0.0013 (8)0.0024 (7)0.0006 (8)
C90.0166 (9)0.0184 (10)0.0151 (9)0.0024 (8)0.0021 (7)0.0000 (8)
C100.0126 (9)0.0167 (10)0.0155 (10)0.0014 (8)0.0005 (7)0.0014 (8)
C110.0169 (10)0.0180 (11)0.0182 (10)0.0029 (8)0.0048 (8)0.0029 (8)
C120.0186 (10)0.0176 (11)0.0169 (10)0.0009 (8)0.0035 (8)0.0015 (8)
N10.0186 (8)0.0142 (8)0.0122 (8)0.0007 (7)0.0008 (6)0.0010 (7)
N20.0202 (9)0.0136 (9)0.0184 (9)0.0008 (7)0.0003 (7)0.0010 (7)
N30.0246 (10)0.0203 (10)0.0214 (9)0.0026 (8)0.0052 (8)0.0023 (8)
N40.0205 (9)0.0211 (10)0.0172 (9)0.0025 (8)0.0001 (7)0.0001 (8)
N50.0189 (9)0.0211 (10)0.0206 (9)0.0030 (8)0.0024 (7)0.0020 (8)
N60.0237 (10)0.0209 (11)0.0233 (10)0.0065 (8)0.0028 (8)0.0031 (8)
N70.0240 (10)0.0171 (9)0.0209 (9)0.0043 (8)0.0032 (8)0.0035 (8)
N80.0284 (10)0.0203 (11)0.0195 (9)0.0056 (8)0.0057 (8)0.0024 (8)
O10.0183 (7)0.0212 (9)0.0175 (7)0.0006 (6)0.0010 (6)0.0013 (6)
O20.0253 (8)0.0183 (8)0.0167 (8)0.0026 (7)0.0024 (6)0.0035 (6)
O30.0235 (8)0.0218 (9)0.0171 (8)0.0053 (7)0.0020 (6)0.0046 (7)
O40.0253 (8)0.0208 (8)0.0199 (8)0.0068 (7)0.0032 (6)0.0048 (7)
O50.0280 (9)0.0137 (8)0.0232 (8)0.0024 (7)0.0033 (7)0.0003 (6)
O60.0191 (8)0.0201 (9)0.0234 (8)0.0000 (7)0.0035 (6)0.0009 (7)
O70.0405 (10)0.0178 (8)0.0195 (8)0.0069 (8)0.0025 (7)0.0026 (7)
O80.0220 (7)0.0185 (8)0.0143 (7)0.0015 (6)0.0039 (6)0.0016 (6)
Geometric parameters (Å, º) top
C1—O11.241 (3)C10—O71.237 (3)
C1—O21.271 (3)C10—O81.275 (3)
C1—C21.549 (3)C11—N41.321 (3)
C2—N11.497 (3)C11—N51.328 (3)
C2—C31.524 (3)C11—N31.332 (3)
C2—H21.0000C12—N61.319 (3)
C3—C41.527 (3)C12—N71.329 (3)
C3—H3C0.9900C12—N81.331 (3)
C3—H3D0.9900N1—H1A0.9100
C4—C51.529 (3)N1—H1B0.9100
C4—H4C0.9900N1—H1C0.9100
C4—H4D0.9900N2—H2A0.9100
C5—O41.257 (3)N2—H2B0.9100
C5—O31.257 (3)N2—H2C0.9100
C6—O61.251 (3)N3—H3A0.8800
C6—O51.253 (3)N3—H3B0.8800
C6—C71.541 (3)N4—H4A0.8800
C7—N21.495 (3)N4—H4B0.8800
C7—C81.528 (3)N5—H5A0.8800
C7—H71.0000N5—H5B0.8800
C8—C91.533 (3)N6—H6A0.8800
C8—H8C0.9900N6—H6B0.8800
C8—H8D0.9900N7—H7A0.8800
C9—C101.527 (3)N7—H7B0.8800
C9—H9A0.9900N8—H8A0.8800
C9—H9B0.9900N8—H8B0.8800
O1—C1—O2126.4 (2)C10—C9—H9B109.1
O1—C1—C2118.4 (2)C8—C9—H9B109.1
O2—C1—C2115.21 (18)H9A—C9—H9B107.8
N1—C2—C3112.11 (16)O7—C10—O8123.2 (2)
N1—C2—C1109.42 (16)O7—C10—C9119.6 (2)
C3—C2—C1113.44 (18)O8—C10—C9117.14 (19)
N1—C2—H2107.2N4—C11—N5120.2 (2)
C3—C2—H2107.2N4—C11—N3120.4 (2)
C1—C2—H2107.2N5—C11—N3119.4 (2)
C2—C3—C4112.99 (17)N6—C12—N7119.7 (2)
C2—C3—H3C109.0N6—C12—N8121.3 (2)
C4—C3—H3C109.0N7—C12—N8119.0 (2)
C2—C3—H3D109.0C2—N1—H1A109.5
C4—C3—H3D109.0C2—N1—H1B109.5
H3C—C3—H3D107.8H1A—N1—H1B109.5
C3—C4—C5112.67 (17)C2—N1—H1C109.5
C3—C4—H4C109.1H1A—N1—H1C109.5
C5—C4—H4C109.1H1B—N1—H1C109.5
C3—C4—H4D109.1C7—N2—H2A109.5
C5—C4—H4D109.1C7—N2—H2B109.5
H4C—C4—H4D107.8H2A—N2—H2B109.5
O4—C5—O3124.40 (19)C7—N2—H2C109.5
O4—C5—C4117.95 (18)H2A—N2—H2C109.5
O3—C5—C4117.6 (2)H2B—N2—H2C109.5
O6—C6—O5126.2 (2)C11—N3—H3A120.0
O6—C6—C7116.6 (2)C11—N3—H3B120.0
O5—C6—C7117.06 (19)H3A—N3—H3B120.0
N2—C7—C8111.79 (18)C11—N4—H4A120.0
N2—C7—C6108.12 (16)C11—N4—H4B120.0
C8—C7—C6115.78 (18)H4A—N4—H4B120.0
N2—C7—H7106.9C11—N5—H5A120.0
C8—C7—H7106.9C11—N5—H5B120.0
C6—C7—H7106.9H5A—N5—H5B120.0
C7—C8—C9112.17 (17)C12—N6—H6A120.0
C7—C8—H8C109.2C12—N6—H6B120.0
C9—C8—H8C109.2H6A—N6—H6B120.0
C7—C8—H8D109.2C12—N7—H7A120.0
C9—C8—H8D109.2C12—N7—H7B120.0
H8C—C8—H8D107.9H7A—N7—H7B120.0
C10—C9—C8112.69 (17)C12—N8—H8A120.0
C10—C9—H9A109.1C12—N8—H8B120.0
C8—C9—H9A109.1H8A—N8—H8B120.0
O1—C1—C2—N111.3 (3)O6—C6—C7—N218.9 (3)
O2—C1—C2—N1170.89 (17)O5—C6—C7—N2163.9 (2)
O1—C1—C2—C3137.29 (19)O6—C6—C7—C8145.18 (19)
O2—C1—C2—C344.9 (2)O5—C6—C7—C837.6 (3)
N1—C2—C3—C463.7 (2)N2—C7—C8—C983.4 (2)
C1—C2—C3—C460.8 (2)C6—C7—C8—C9152.21 (18)
C2—C3—C4—C5174.99 (19)C7—C8—C9—C1073.5 (2)
C3—C4—C5—O475.2 (3)C8—C9—C10—O736.4 (3)
C3—C4—C5—O3104.4 (2)C8—C9—C10—O8146.12 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.911.892.795 (2)179
N1—H1B···O4i0.911.842.738 (2)170
N1—H1C···O2i0.912.133.017 (2)165
N2—H2A···O2ii0.912.092.998 (2)173
N2—H2B···O7iii0.912.162.740 (2)120
N2—H2C···O5iii0.911.922.817 (3)170
N3—H3A···O2i0.882.082.900 (3)154
N3—H3B···O30.882.082.841 (3)145
N4—H4A···O3iv0.881.952.826 (2)173
N4—H4B···O1i0.882.223.095 (2)170
N5—H5A···O4iv0.881.962.831 (2)172
N5—H5B···O60.882.353.092 (3)142
N6—H6A···O60.882.042.897 (2)165
N6—H6B···O8v0.881.972.824 (2)164
N7—H7A···O50.882.002.851 (2)163
N7—H7B···O8vi0.882.022.775 (3)143
N8—H8A···O7v0.882.082.954 (3)170
N8—H8B···O1vi0.882.232.953 (3)140
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y, z+1; (iii) x+1, y1/2, z+1; (iv) x+2, y+1/2, z+1; (v) x+1, y, z+1; (vi) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaCH6N3+·C5H8NO4
Mr206.21
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)8.7793 (7), 10.8729 (10), 10.0801 (9)
β (°) 104.552 (1)
V3)931.34 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.42 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5501, 2220, 2087
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.06
No. of reflections2220
No. of parameters255
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.911.892.795 (2)178.5
N1—H1B···O4i0.911.842.738 (2)170.3
N1—H1C···O2i0.912.133.017 (2)164.8
N2—H2A···O2ii0.912.092.998 (2)173.0
N2—H2B···O7iii0.912.162.740 (2)120.4
N2—H2C···O5iii0.911.922.817 (3)169.6
N3—H3A···O2i0.882.082.900 (3)153.8
N3—H3B···O30.882.082.841 (3)144.8
N4—H4A···O3iv0.881.952.826 (2)172.5
N4—H4B···O1i0.882.223.095 (2)170.2
N5—H5A···O4iv0.881.962.831 (2)171.6
N5—H5B···O60.882.353.092 (3)142.1
N6—H6A···O60.882.042.897 (2)164.8
N6—H6B···O8v0.881.972.824 (2)164.4
N7—H7A···O50.882.002.851 (2)163.3
N7—H7B···O8vi0.882.022.775 (3)143.0
N8—H8A···O7v0.882.082.954 (3)169.5
N8—H8B···O1vi0.882.232.953 (3)139.6
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y, z+1; (iii) x+1, y1/2, z+1; (iv) x+2, y+1/2, z+1; (v) x+1, y, z+1; (vi) x+1, y+1/2, z+1.
 

Footnotes

Additional corresponding author, e-mail: zqzhou@cau.edu.cn.

Acknowledgements

This work was supported by NSFC (project No. 20772210) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry. The authors acknowledge Dr Deng Xuebin for collecting the data at the Testing Center, College of Chemistry, Beijing Normal University.

References

First citationArmstrong, M. D. (1956). J. Org. Chem. 21, 503–505.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds