organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

β-Polymorph of phenazepam: a powder study

aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru

(Received 31 August 2010; accepted 18 September 2010; online 25 September 2010)

The title compound [systematic name: 7-bromo-5-(2-chloro­phen­yl)-1H-1,4-benzodiazepin-2(3H)-one] (β-polymorph), C15H10BrClN2O, has been obtained via cryomodification of the known α-polymorph of phenazepam [Karapetyan et al. (1979[Karapetyan, A. A., Andrianov, V. G., Struchkov, Yu. T., Bogatskii, A. V., Andronati, S. A. & Korotenko, T. I. (1979). Bioorg. Khim. 5, 1684-1690.]). Bioorg. Khim. 5, 1684–1690]. In both polymorphs, the mol­ecules, which differ only in the dihedral angles between the aromatic rings [75.4 (2)° and 86.2 (3)° in the α- and β-polymorphs, respectively], are linked into centrosymmetric dimers via N—H⋯O hydrogen bonds. In the crystal structure of the β-polymorph, weak inter­molecular C—H⋯O hydrogen bonds further link these dimers into layers parallel to bc plane.

Related literature

For details of the synthesis via cryomodification, see: Sergeev & Komarov (2006[Sergeev, G. B. & Komarov, V. S. (2006). Mol. Cryst. Liquid Cryst. 456, 107-115.]). For the crystal structure of the α-polymorph of phenazepam, see: Karapetyan et al. (1979[Karapetyan, A. A., Andrianov, V. G., Struchkov, Yu. T., Bogatskii, A. V., Andronati, S. A. & Korotenko, T. I. (1979). Bioorg. Khim. 5, 1684-1690.]). For details of the indexing algorithm, see: Werner et al. (1985[Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.]). The methodology of the refinement (including applied restraints) has been described in detail by Ryabova et al. (2005[Ryabova, S. Yu., Rastorgueva, N. A., Sonneveld, E. J., Peschar, R., Schenk, H., Tafeenko, V. A., Aslanov, L. A. & Chernyshev, V. V. (2005). Acta Cryst. B61, 192-199.]). For the March–Dollase orientation correction, see: Dollase (1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]) and for the split-type pseudo-Voigt profile, see: Toraya (1986[Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrClN2O

  • Mr = 349.61

  • Monoclinic, P 21 /c

  • a = 14.8006 (19) Å

  • b = 11.6756 (14) Å

  • c = 8.4769 (9) Å

  • β = 93.679 (17)°

  • V = 1461.8 (3) Å3

  • Z = 4

  • Cu Kα1 radiation, λ = 1.54059 Å

  • μ = 5.49 mm−1

  • T = 295 K

  • Flat sheet, 15 × 1 mm

Data collection
  • Guinier camera G670 diffractometer

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Data collection mode: transmission

  • Scan method: continuous

  • 2θmin = 5.00°, 2θmax = 80.00°, 2θstep = 0.01°

Refinement
  • Rp = 0.013

  • Rwp = 0.017

  • Rexp = 0.012

  • RBragg = 0.059

  • χ2 = 2.250

  • 7501 data points

  • 128 parameters

  • 64 restraints

  • H-atom parameters not refined

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O10i 0.86 2.15 2.865 (16) 141
C11—H11B⋯O10ii 0.97 2.18 3.03 (2) 145
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002[Huber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH. Rimsting, Germany.]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001[Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5-9.]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Phenazepam is a benzodiazepine drug produced in Russia, which is used in the treatment of neurological disorders such as epilepsy, alcohol withdrawal syndrome and insomnia. The crystal structure of its α-polymorph has been reported by Karapetyan et al. (1979). Herewith we present the crystal structure of β-polymorph of phenazepam, which was obtained from the α-polymorph via cryomodification, i.e. through the preparation of metastable solid-phase from the vapor phase at low temperature (Sergeev & Komarov, 2006).

In β-polymorph (Fig. 1), two six-membered rings form a dihedral angle of 86.2 (3)°, while this dihedral angle is 75.4 (2)° in α-polymorph. In both polymorphs, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. In the crystal structure of β-polymorph (in spite of α-polymorph), the non-classical intermolecular C—H···O hydrogen bonds (Table 1) link further these dimers into layers parallel to bc plane.

Related literature top

For details of the synthesis via cryomodification, see: Sergeev & Komarov (2006). For the crystal structure of the α-polymorph of phenazepam, see: Karapetyan et al. (1979). For details of the indexing algorithm, see: Werner et al. (1985). The methodology of the refinement (including applied restraints) has been described in detail by Ryabova et al. (2005).

Experimental top

The title β-polymorph of phenazepam has been obtained via cryomodification of α-polymorph of phenazepam. Cryomodification was realized by vapor deposition on a cold surface in vacuo at temperatures varying from 77 to 273 K following the known procedure (Sergeev & Komarov, 2006).

Refinement top

During the exposure, the specimen was spun in its plane to improve particle statistics. The triclinic unit-cell dimensions were determined with the indexing program TREOR (Werner et al., 1985), M20=37, using the first 35 peak positions. A number of weak unindexed lines (d-spacings of most significant ones were 8.54, 8.31, 6.90, 5.25 and 5.04 Å) demonstrated that the sample contained a small amount of α-polymorph. The crystal structure of β-polymorph was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in (Ryabova et al., 2005). All non-H atoms were isotropically refined. H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles after the final two-phases Rietveld refinement are shown in Fig. 2. On the results of two-phases Rietveld refinement the ratio of β- and α-polymorphs in the sample was estimated as 1.000 (2) to 0.045 (2), respectively. For the α-polymorph, the atomic coordinates and displacement parameters were fixed to literature values (Karapetyan et al., 1979), so only scale factor and profile parameters were refined.

Computing details top

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software (Huber, 2002); program(s) used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of β-polymorph with the atomic numbering and 50% displacement spheres.
[Figure 2] Fig. 2. The Rietveld plot, showing the observed and difference profiles for the sample under study. The vertical bars above the difference profile show the reflection positions for α-polymorph (bottom) and β-polymorph (top).
7-Bromo-5-(2-chlorophenyl)-1H-1,4-benzodiazepin-2(3H)-one top
Crystal data top
C15H10BrClN2OF(000) = 696
Mr = 349.61Dx = 1.589 Mg m3
Monoclinic, P21/cCu Kα1 radiation, λ = 1.54059 Å
Hall symbol: -P 2ybcµ = 5.49 mm1
a = 14.8006 (19) ÅT = 295 K
b = 11.6756 (14) ÅParticle morphology: no specific habit
c = 8.4769 (9) Ålight grey
β = 93.679 (17)°flat sheet, 15 × 1 mm
V = 1461.8 (3) Å3Specimen preparation: Prepared at 77 K and 6.6 10-6 kPa
Z = 4
Data collection top
Guinier camera G670
diffractometer
Data collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111) monochromator2θmin = 5.00°, 2θmax = 80.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera
Refinement top
Refinement on InetProfile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle128 parameters
Rp = 0.01364 restraints
Rwp = 0.0170 constraints
Rexp = 0.012H-atom parameters not refined
RBragg = 0.059Weighting scheme based on measured s.u.'s
χ2 = 2.250(Δ/σ)max = 0.004
7501 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): nonePreferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 0.93(1).
Crystal data top
C15H10BrClN2OV = 1461.8 (3) Å3
Mr = 349.61Z = 4
Monoclinic, P21/cCu Kα1 radiation, λ = 1.54059 Å
a = 14.8006 (19) ŵ = 5.49 mm1
b = 11.6756 (14) ÅT = 295 K
c = 8.4769 (9) Åflat sheet, 15 × 1 mm
β = 93.679 (17)°
Data collection top
Guinier camera G670
diffractometer
Scan method: continuous
Specimen mounting: thin layer in the specimen holder of the camera2θmin = 5.00°, 2θmax = 80.00°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.0137501 data points
Rwp = 0.017128 parameters
Rexp = 0.01264 restraints
RBragg = 0.059H-atom parameters not refined
χ2 = 2.250
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.77280 (15)0.40430 (17)0.3314 (2)0.0470 (11)*
C20.8173 (12)0.4317 (13)0.1182 (18)0.074 (9)*
C30.8911 (12)0.3743 (12)0.044 (2)0.075 (8)*
H30.92000.31540.09430.090*
C40.9202 (11)0.4080 (13)0.109 (2)0.063 (9)*
H40.96840.36960.16160.076*
C50.8784 (12)0.4986 (15)0.1866 (18)0.076 (8)*
C60.8023 (12)0.5539 (13)0.110 (2)0.076 (9)*
C70.7727 (11)0.5187 (16)0.0430 (18)0.071 (8)*
H70.72280.55400.09450.085*
N80.9112 (9)0.5266 (11)0.3406 (13)0.064 (6)*
H80.92470.46960.40200.077*
C90.9248 (12)0.6346 (12)0.406 (2)0.072 (8)*
O100.9656 (7)0.6458 (8)0.5370 (13)0.057 (5)*
C110.8837 (11)0.7351 (13)0.311 (2)0.070 (8)*
H11A0.89660.80600.36740.084*
H11B0.91130.73960.21010.084*
N120.7856 (8)0.7217 (10)0.2827 (16)0.062 (7)*
C130.7513 (11)0.6468 (13)0.1858 (19)0.061 (8)*
C140.6501 (11)0.6452 (14)0.1602 (18)0.071 (9)*
C150.6074 (12)0.7367 (12)0.077 (2)0.074 (8)*
H150.64250.79530.03840.089*
C160.5134 (11)0.7411 (11)0.051 (2)0.075 (8)*
H160.48640.80280.00330.090*
C170.4600 (11)0.6530 (13)0.106 (2)0.073 (9)*
H170.39760.65400.08340.087*
C180.5002 (12)0.5633 (14)0.1936 (17)0.074 (9)*
H180.46460.50670.23560.089*
C190.5943 (12)0.5595 (13)0.2180 (16)0.065 (8)*
Cl200.6428 (3)0.4396 (4)0.3145 (5)0.054 (2)*
Geometric parameters (Å, º) top
Br1—C21.910 (15)C11—N121.46 (2)
C2—C71.39 (2)C11—H11A0.9704
C2—C31.40 (2)C11—H11B0.9697
C3—C41.40 (2)N12—C131.28 (2)
C3—H30.9297C13—C141.50 (2)
C4—C51.41 (2)C14—C191.41 (2)
C4—H40.9299C14—C151.41 (2)
C5—N81.402 (19)C15—C161.40 (2)
C5—C61.42 (2)C15—H150.9299
C6—C71.41 (2)C16—C171.39 (2)
C6—C131.49 (2)C16—H160.9299
C7—H70.9301C17—C181.40 (2)
N8—C91.389 (19)C17—H170.9301
N8—H80.8600C18—C191.40 (3)
C9—O101.23 (2)C18—H180.9303
C9—C111.53 (2)C19—Cl201.751 (16)
C7—C2—C3121.6 (14)C9—C11—H11A109.4
C7—C2—Br1114.3 (11)N12—C11—H11B109.4
C3—C2—Br1124.1 (12)C9—C11—H11B109.4
C4—C3—C2118.1 (15)H11A—C11—H11B108.0
C4—C3—H3120.9C13—N12—C11121.6 (14)
C2—C3—H3121.0N12—C13—C6125.6 (14)
C3—C4—C5121.7 (15)N12—C13—C14116.8 (14)
C3—C4—H4119.2C6—C13—C14117.3 (14)
C5—C4—H4119.2C19—C14—C15117.4 (15)
N8—C5—C4118.1 (15)C19—C14—C13124.2 (14)
N8—C5—C6122.4 (15)C15—C14—C13118.4 (14)
C4—C5—C6119.3 (14)C16—C15—C14121.2 (15)
C7—C6—C5118.7 (15)C16—C15—H15119.4
C7—C6—C13118.3 (15)C14—C15—H15119.4
C5—C6—C13123.0 (14)C17—C16—C15120.0 (14)
C2—C7—C6120.6 (15)C17—C16—H16120.0
C2—C7—H7119.7C15—C16—H16120.0
C6—C7—H7119.7C16—C17—C18120.0 (15)
C9—N8—C5128.2 (13)C16—C17—H17120.0
C9—N8—H8115.9C18—C17—H17120.0
C5—N8—H8115.9C19—C18—C17119.4 (15)
O10—C9—N8120.5 (13)C19—C18—H18120.3
O10—C9—C11123.4 (13)C17—C18—H18120.3
N8—C9—C11116.1 (14)C18—C19—C14121.9 (14)
N12—C11—C9111.1 (13)C18—C19—Cl20118.0 (12)
N12—C11—H11A109.4C14—C19—Cl20120.0 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O10i0.862.152.865 (16)141
C11—H11B···O10ii0.972.183.03 (2)145
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H10BrClN2O
Mr349.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.8006 (19), 11.6756 (14), 8.4769 (9)
β (°) 93.679 (17)
V3)1461.8 (3)
Z4
Radiation typeCu Kα1, λ = 1.54059 Å
µ (mm1)5.49
Specimen shape, size (mm)Flat sheet, 15 × 1
Data collection
DiffractometerGuinier camera G670
diffractometer
Specimen mountingThin layer in the specimen holder of the camera
Data collection modeTransmission
Scan methodContinuous
2θ values (°)2θmin = 5.00 2θmax = 80.00 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.013, Rwp = 0.017, Rexp = 0.012, RBragg = 0.059, χ2 = 2.250
No. of data points7501
No. of parameters128
No. of restraints64
H-atom treatmentH-atom parameters not refined

Computer programs: G670 Imaging Plate Guinier Camera Software (Huber, 2002), simulated annealing (Zhukov et al., 2001), PLATON (Spek, 2009), MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O10i0.862.152.865 (16)141
C11—H11B···O10ii0.972.183.03 (2)145
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported in part by the RFBR project 09–03-13557.

References

First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH. Rimsting, Germany.  Google Scholar
First citationKarapetyan, A. A., Andrianov, V. G., Struchkov, Yu. T., Bogatskii, A. V., Andronati, S. A. & Korotenko, T. I. (1979). Bioorg. Khim. 5, 1684–1690.  CAS Google Scholar
First citationRyabova, S. Yu., Rastorgueva, N. A., Sonneveld, E. J., Peschar, R., Schenk, H., Tafeenko, V. A., Aslanov, L. A. & Chernyshev, V. V. (2005). Acta Cryst. B61, 192–199.  CrossRef CAS IUCr Journals Google Scholar
First citationSergeev, G. B. & Komarov, V. S. (2006). Mol. Cryst. Liquid Cryst. 456, 107–115.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWerner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds