organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­pyridinium picrate

aCollege of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
*Correspondence e-mail: yanwatercn@wust.edu.cn

(Received 5 September 2010; accepted 16 September 2010; online 30 September 2010)

During the formation of the title compound, C5H7N2+·C6H2N3O7, a phenolic proton is transferred to the pyridine N atom. In the crystal structure, the ions are linked by inter­molecular N—H⋯O and N—H⋯(O,O) hydrogen bonds into layers running parallel to (100). These layers are connected by weak ππ stacking inter­actions between symmetry-related pyridine and picric benzene rings with a centroid–centroid distance of 3.758 (2) Å, forming a three-dimensional network.

Related literature

For applications of picric acid derivatives, see: Pascard et al. (1982[Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). Chem. Commun. pp. 557-558.]); Pearson et al. (2007[Pearson, W. H., Kropf, J. E., Choy, A. L., Lee, I. Y. & Kampf, J. W. (2007). J. Org. Chem. 72, 4135-4148.]); Shakir et al. (2009[Shakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871-3875.]). For a related structure, see: Harrison et al. (2007[Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C6H2N3O7

  • Mr = 323.23

  • Monoclinic, P 21 /n

  • a = 8.2174 (8) Å

  • b = 13.5842 (13) Å

  • c = 11.8218 (12) Å

  • β = 102.117 (2)°

  • V = 1290.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 297 K

  • 0.45 × 0.05 × 0.02 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 0.997

  • 14192 measured reflections

  • 2804 independent reflections

  • 1391 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.162

  • S = 1.03

  • 2804 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O7 0.91 (3) 1.79 (3) 2.607 (3) 148 (3)
N5—H5⋯O6 0.91 (3) 2.46 (3) 3.179 (4) 136 (3)
N4—H4B⋯O6i 0.86 (4) 2.48 (4) 3.119 (4) 132 (3)
N4—H4A⋯O3ii 0.85 (4) 2.44 (4) 3.172 (4) 145 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Picric acid has been used in the characterization of organic bases because of the ease of crystallization and hence purification when picrate derivatives are produced (Pascard et al., 1982; Pearson et al., 2007; Harrison et al., 2007; Shakir et al., 2009). Here, we report the crystal structure of the title salt.

In the title compound, a hydrogen atom has been transferred from the picric acid molecule to the nitrogen atom of the pyridine ring and hence a 1:1 organic is formed salt (Fig.1). In the picric acid molecule, the geometric parameters of C6—O7 = 1.236 (3)Å and C1—C6—C5 = 112.0 (2)° confirm the transfer of the proton.

In the crystal structure, the molecular components are linked into a two dimensional zigzag-like layers (Fig.2) running parallel to (110) by intermolecular N—H···O hydrogen bonds (Table 1). These adjacent (100) layers are linked by weak ππ interaction between symmetry related pyridine and picric benzene rings (centroid-to-centroid distance = 3.758 (2) Å, symmetry code: 2 - x, 1 - y, 1 - z) into a three-dimensional network.

Related literature top

For applications of picric acid derivatives, see: Pascard et al. (1982); Pearson et al. (2007); Shakir et al. (2009). For a related structure, see: Harrison et al. (2007);

Experimental top

Picric acid (0.69 g, 3 mmol) and 3-aminopyridine (0.28 g, 3 mmol) were mixed in 10 ml ethanol. The mixture was kept at room temperature for two weeks. Yellow needeles suitable for single-crystal X-ray diffraction were obtained at the bottom of the vessel.

Refinement top

The carbon-bound hydrogen atoms were placed in ideal positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The nitrogen-bound H atoms were located in a difference map and refined with Uiso(H) = 0.092Å2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. For the sake of clarity, the H atoms not involved in the hydrogen-bonds pattern have been omitted.
3-Aminopyridinium picrate top
Crystal data top
C5H7N2+·C6H2N3O7F(000) = 664
Mr = 323.23Dx = 1.664 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1100 reflections
a = 8.2174 (8) Åθ = 2.3–20.4°
b = 13.5842 (13) ŵ = 0.14 mm1
c = 11.8218 (12) ÅT = 297 K
β = 102.117 (2)°Needle, yellow
V = 1290.2 (2) Å30.45 × 0.05 × 0.02 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2804 independent reflections
Radiation source: fine-focus sealed tube1391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.939, Tmax = 0.997k = 1717
14192 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.0975P]
where P = (Fo2 + 2Fc2)/3
2804 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C5H7N2+·C6H2N3O7V = 1290.2 (2) Å3
Mr = 323.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2174 (8) ŵ = 0.14 mm1
b = 13.5842 (13) ÅT = 297 K
c = 11.8218 (12) Å0.45 × 0.05 × 0.02 mm
β = 102.117 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1391 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.997Rint = 0.072
14192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
2804 reflectionsΔρmin = 0.24 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8262 (3)0.49045 (18)0.2590 (2)0.0390 (7)
C20.8816 (3)0.45022 (19)0.1686 (2)0.0401 (7)
H20.86140.48190.09730.048*
C30.9673 (3)0.36279 (18)0.1827 (2)0.0378 (7)
C41.0039 (3)0.31637 (19)0.2881 (2)0.0388 (7)
H41.06360.25770.29670.047*
C50.9518 (3)0.35703 (19)0.3805 (2)0.0388 (7)
C60.8524 (4)0.4466 (2)0.3728 (2)0.0428 (7)
C70.5593 (4)0.6203 (2)0.7181 (2)0.0449 (7)
C80.5870 (4)0.5718 (2)0.8241 (2)0.0474 (8)
H80.54820.59940.88550.057*
C90.6702 (4)0.4844 (2)0.8392 (3)0.0532 (8)
H90.68660.45270.91040.064*
C100.7300 (4)0.4426 (2)0.7507 (3)0.0531 (8)
H100.78720.38310.76050.064*
C110.6221 (4)0.5750 (2)0.6304 (2)0.0470 (8)
H110.60700.60430.55780.056*
N10.7366 (3)0.58418 (19)0.2352 (3)0.0562 (7)
N21.0162 (3)0.31865 (19)0.0837 (2)0.0498 (7)
N30.9978 (4)0.3051 (2)0.4890 (2)0.0569 (7)
N40.4760 (4)0.7061 (2)0.7014 (3)0.0684 (9)
N50.7032 (3)0.4902 (2)0.6502 (2)0.0511 (7)
O10.6984 (4)0.61237 (17)0.1355 (3)0.0962 (10)
O20.6942 (4)0.6267 (2)0.3121 (2)0.1179 (12)
O30.9816 (3)0.36138 (17)0.00931 (18)0.0755 (8)
O41.0901 (3)0.24022 (17)0.09581 (19)0.0736 (7)
O51.1054 (3)0.24169 (18)0.49917 (19)0.0764 (8)
O60.9316 (3)0.3268 (2)0.5696 (2)0.0916 (9)
O70.7949 (3)0.48236 (16)0.45224 (19)0.0770 (8)
H4A0.455 (5)0.730 (3)0.634 (3)0.092*
H4B0.436 (5)0.731 (3)0.757 (3)0.092*
H50.749 (4)0.465 (2)0.592 (3)0.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (16)0.0317 (15)0.0490 (17)0.0008 (12)0.0087 (14)0.0052 (13)
C20.0394 (17)0.0427 (16)0.0376 (16)0.0036 (14)0.0069 (13)0.0015 (13)
C30.0414 (17)0.0381 (16)0.0369 (16)0.0046 (13)0.0147 (13)0.0068 (12)
C40.0371 (16)0.0341 (15)0.0453 (16)0.0027 (13)0.0085 (13)0.0026 (13)
C50.0419 (17)0.0425 (16)0.0319 (15)0.0109 (13)0.0075 (13)0.0019 (12)
C60.0417 (18)0.0483 (17)0.0422 (17)0.0090 (14)0.0171 (14)0.0127 (14)
C70.0475 (18)0.0477 (18)0.0402 (17)0.0098 (15)0.0106 (14)0.0062 (14)
C80.0508 (19)0.0570 (19)0.0380 (17)0.0061 (16)0.0178 (14)0.0072 (14)
C90.056 (2)0.065 (2)0.0385 (17)0.0058 (17)0.0098 (16)0.0019 (15)
C100.049 (2)0.057 (2)0.0526 (19)0.0070 (15)0.0094 (16)0.0019 (16)
C110.0470 (19)0.061 (2)0.0333 (16)0.0152 (16)0.0095 (14)0.0029 (14)
N10.0469 (16)0.0525 (17)0.0693 (19)0.0071 (13)0.0129 (15)0.0143 (15)
N20.0528 (17)0.0548 (17)0.0453 (16)0.0010 (13)0.0183 (13)0.0087 (13)
N30.0603 (19)0.0655 (18)0.0432 (16)0.0104 (16)0.0070 (14)0.0083 (14)
N40.095 (2)0.0606 (19)0.0508 (18)0.0098 (17)0.0180 (17)0.0020 (15)
N50.0461 (17)0.0593 (17)0.0514 (18)0.0099 (13)0.0184 (13)0.0191 (14)
O10.127 (2)0.0793 (18)0.094 (2)0.0456 (17)0.0484 (19)0.0347 (15)
O20.144 (3)0.109 (2)0.087 (2)0.074 (2)0.0071 (19)0.0394 (17)
O30.100 (2)0.0951 (18)0.0367 (12)0.0179 (15)0.0255 (12)0.0006 (12)
O40.0958 (19)0.0592 (14)0.0733 (16)0.0264 (14)0.0347 (14)0.0095 (12)
O50.098 (2)0.0659 (16)0.0572 (15)0.0144 (15)0.0020 (14)0.0129 (12)
O60.094 (2)0.136 (2)0.0549 (15)0.0175 (17)0.0390 (15)0.0328 (15)
O70.106 (2)0.0784 (16)0.0612 (15)0.0045 (14)0.0509 (15)0.0147 (12)
Geometric parameters (Å, º) top
C1—C21.361 (3)C8—H80.9300
C1—C61.446 (4)C9—C101.369 (4)
C1—N11.468 (3)C9—H90.9300
C2—C31.373 (3)C10—N51.329 (4)
C2—H20.9300C10—H100.9300
C3—C41.372 (4)C11—N51.328 (4)
C3—N21.445 (3)C11—H110.9300
C4—C51.371 (3)N1—O21.190 (3)
C4—H40.9300N1—O11.216 (3)
C5—N31.443 (3)N2—O41.220 (3)
C5—C61.457 (4)N2—O31.223 (3)
C6—O71.236 (3)N3—O51.222 (3)
C7—N41.345 (4)N3—O61.229 (3)
C7—C81.392 (4)N4—H4A0.85 (4)
C7—C111.394 (4)N4—H4B0.86 (4)
C8—C91.364 (4)N5—H50.91 (3)
C2—C1—C6123.8 (2)C8—C9—C10120.8 (3)
C2—C1—N1115.8 (3)C8—C9—H9119.6
C6—C1—N1120.4 (3)C10—C9—H9119.6
C1—C2—C3120.0 (3)N5—C10—C9117.5 (3)
C1—C2—H2120.0N5—C10—H10121.2
C3—C2—H2120.0C9—C10—H10121.2
C4—C3—C2121.1 (2)N5—C11—C7120.2 (3)
C4—C3—N2120.0 (2)N5—C11—H11119.9
C2—C3—N2118.9 (2)C7—C11—H11119.9
C5—C4—C3119.5 (3)O2—N1—O1122.0 (3)
C5—C4—H4120.2O2—N1—C1119.3 (3)
C3—C4—H4120.2O1—N1—C1118.4 (3)
C4—C5—N3116.4 (3)O4—N2—O3122.4 (2)
C4—C5—C6123.4 (2)O4—N2—C3118.9 (3)
N3—C5—C6120.2 (3)O3—N2—C3118.6 (3)
O7—C6—C1122.6 (3)O5—N3—O6121.5 (3)
O7—C6—C5125.4 (3)O5—N3—C5118.8 (3)
C1—C6—C5112.0 (2)O6—N3—C5119.7 (3)
N4—C7—C8121.6 (3)C7—N4—H4A118 (3)
N4—C7—C11122.0 (3)C7—N4—H4B119 (3)
C8—C7—C11116.4 (3)H4A—N4—H4B122 (4)
C9—C8—C7120.8 (3)C11—N5—C10124.2 (3)
C9—C8—H8119.6C11—N5—H5117 (2)
C7—C8—H8119.6C10—N5—H5118 (2)
C6—C1—C2—C30.3 (4)C7—C8—C9—C100.6 (4)
N1—C1—C2—C3179.8 (2)C8—C9—C10—N50.2 (4)
C1—C2—C3—C42.4 (4)N4—C7—C11—N5179.8 (3)
C1—C2—C3—N2176.4 (2)C8—C7—C11—N50.0 (4)
C2—C3—C4—C51.1 (4)C2—C1—N1—O2175.1 (3)
N2—C3—C4—C5177.7 (2)C6—C1—N1—O24.4 (4)
C3—C4—C5—N3178.8 (2)C2—C1—N1—O19.8 (4)
C3—C4—C5—C62.4 (4)C6—C1—N1—O1170.7 (3)
C2—C1—C6—O7176.9 (3)C4—C3—N2—O40.1 (4)
N1—C1—C6—O73.6 (4)C2—C3—N2—O4178.9 (3)
C2—C1—C6—C52.8 (4)C4—C3—N2—O3179.8 (3)
N1—C1—C6—C5176.7 (2)C2—C3—N2—O31.0 (4)
C4—C5—C6—O7175.5 (3)C4—C5—N3—O514.6 (4)
N3—C5—C6—O73.2 (4)C6—C5—N3—O5166.5 (3)
C4—C5—C6—C14.1 (4)C4—C5—N3—O6167.1 (3)
N3—C5—C6—C1177.1 (2)C6—C5—N3—O611.8 (4)
N4—C7—C8—C9179.3 (3)C7—C11—N5—C100.4 (4)
C11—C7—C8—C90.5 (4)C9—C10—N5—C110.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O70.91 (3)1.79 (3)2.607 (3)148 (3)
N5—H5···O60.91 (3)2.46 (3)3.179 (4)136 (3)
N4—H4B···O6i0.86 (4)2.48 (4)3.119 (4)132 (3)
N4—H4A···O3ii0.85 (4)2.44 (4)3.172 (4)145 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C6H2N3O7
Mr323.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)8.2174 (8), 13.5842 (13), 11.8218 (12)
β (°) 102.117 (2)
V3)1290.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.45 × 0.05 × 0.02
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.939, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
14192, 2804, 1391
Rint0.072
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.162, 1.03
No. of reflections2804
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O70.91 (3)1.79 (3)2.607 (3)148 (3)
N5—H5···O60.91 (3)2.46 (3)3.179 (4)136 (3)
N4—H4B···O6i0.86 (4)2.48 (4)3.119 (4)132 (3)
N4—H4A···O3ii0.85 (4)2.44 (4)3.172 (4)145 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

Wuhan University of Science and Technology is thanked for supporting this study.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.  CSD CrossRef IUCr Journals Google Scholar
First citationPascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). Chem. Commun. pp. 557–558.  CrossRef Google Scholar
First citationPearson, W. H., Kropf, J. E., Choy, A. L., Lee, I. Y. & Kampf, J. W. (2007). J. Org. Chem. 72, 4135–4148.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871–3875.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds