metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1286-m1287

Bis{1,4-bis­­[(3-butyl­imidazolium-1-yl)meth­yl]benzene}­silver(I) bis­­(hexa­fluoridophosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 September 2010; accepted 13 September 2010; online 25 September 2010)

The asymmetric unit of the title complex, [Ag2(C22H30N4)2](PF6)2, consists of one AgI ion, one 1,4-bis­[(3-butyl­imidazolium-1-yl)meth­yl]benzene ligand and one discrete hexa­fluoridophosphate anion. The formula unit is generated by an inversion center. The unique AgI ion is coordinated by two C atoms of two heterocyclic carbene ligands in an essentially linear geometry. In the crystal structure, cations and anions are linked through weak C—H⋯F hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of N-heterocyclic carbenes, see: Tryg et al. (2005[Tryg, R., Chris, J. P., Marc, S. A., William, H. & Tolman, B. (2005). J. Organomet. Chem. 690, 5881-5891.]); Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Herrmann et al. (1998[Herrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162-2168.]); McGuinness et al. (1999[McGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596-1605.]); Tominaga et al. (2004[Tominaga, S., Oi, Y., Kato, T., An, D. K. & Okamoto, S. (2004). Tetrahedron Lett. 45, 5585-5588.]); Magill et al. (2001[Magill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Williams, D. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem. 617, 546-560.]); Yongbo et al. (2008[Yongbo, Z., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem. 693, 205-215.]); Garrison & Youngs (2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]); Kascatan-Nebioglu et al. (2007[Kascatan-Nebioglu, A., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J. (2007). Coord. Chem. Rev. 251, 884-895.]); Özdemir et al. (2010[Özdemir, Í., Özcan, E. Ö., Günal, U. & Gürbüz, N. (2010). Molecules, 15, 2499-2508.]); Medvetz et al. (2008[Medvetz, D. A., Hindi, K. M., Panzner, M. J., Ditto, A. J., Yun, Y. H. & Young, W. J. (2008). Met. Based Drugs, pp. 384010-384016.]); Catalano & Malwitz (2003[Catalano, V. J. & Malwitz, M. A. (2003). Inorg. Chem. 42, 5483-5485.]). For a related structure, see: Chen & Liu (2003[Chen, W. & Liu, F. (2003). J. Organomet. Chem. 673, 5-12.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C22H30N4)2](PF6)2

  • Mr = 1206.68

  • Triclinic, [P \overline 1]

  • a = 11.3636 (15) Å

  • b = 11.4119 (15) Å

  • c = 11.9918 (15) Å

  • α = 63.528 (2)°

  • β = 89.335 (2)°

  • γ = 65.811 (2)°

  • V = 1241.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.806, Tmax = 0.930

  • 25433 measured reflections

  • 7142 independent reflections

  • 6512 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.161

  • S = 1.16

  • 7142 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 3.16 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F3i 0.93 2.42 3.251 (6) 149
C5—H5A⋯F1ii 0.93 2.52 3.392 (6) 157
C7—H7B⋯F5ii 0.97 2.44 3.367 (6) 160
C11—H11A⋯F6iii 0.97 2.44 3.364 (7) 159
C11—H11B⋯F2iv 0.97 2.38 3.129 (7) 134
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-heterocyclic carbenes (NHCs) are now ubiquitous in their usage as ligands for transition metals (Tryg et al., 2005; Herrmann, 2002). Carbene ligands have some similarities to phosphine ligands, but metal- carbene complexes are often more stable than similar metal phosphine complexes (Herrmann et al., 1998; McGuinness et al., 1999). N-heterocyclic carbene complexes of different metals such as Pd and Ru have been used as catalysts for many reactions; for example C–C coupling reactions and reactions involving olefin metathesis (Tominaga et al., 2004; Magill et al., 2001). Among these metal -NHC complexes, the family of silver -NHC complexes have been receiving continuous attention since they are often used as convenient carbene transfer reagents to make other metal-NHC complexes (Yongbo et al., 2008). The chemistry of silver-NHC complexes has been recently reviewed (Garrison & Youngs, 2005; Kascatan-Nebioglu et al., 2007). The biological activity of many of the silver-NHC complexes as antimicrobial and antitumour were also confirmed (Özdemir et al., 2010; Medvetz et al., 2008).

The asymmetric unit of the title compound, (I), consists of one AgI cation, one 1,4-bis(3-butylimidazolium-1-yl-methyl)benzene ligand and one discrete hexafluoridophosphate anion (Fig. 1). The other half of the title complex is generated by an inversion center (1/2, 1/2, 0). Each AgI cation is bis-coordinated by two 1,4-bis(3-butylimidazolium-1-yl-methyl)benzene ligands. and displays an essentially linear geometry. The Ag1–C8 = 2.089 (4) Å bond length is comparable to the values reported for other [Ag(carbene)2]+ complexes (Chen & Liu, 2003).

In the crystal structure, the cations and anions are linked together through intermolecular C2—H2A···F3; C5—H5A···F1; C7—H7B···F5; C11—H11A···F6 and C11—H11B···F2 hydrogen bonds, forming a three-dimensional network (Table 2 and Fig. 2).

Related literature top

For applications of N-heterocyclic carbenes, see: Tryg et al. (2005); Herrmann (2002); Herrmann et al. (1998); McGuinness et al. (1999); Tominaga et al. (2004); Magill et al. (2001); Yongbo et al. (2008); Garrison & Youngs (2005); Kascatan-Nebioglu et al. (2007); Özdemir et al. (2010); Medvetz et al. (2008). For a related structure, see: Chen & Liu (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related literature [on what subject?], see: Catalano & Malwitz (2003).

Experimental top

Silver oxide, Ag2O, (0.13 g, 0.56 mmol) was added to a solution of 1,4-bis(3-butylimidazolium-1-yl-metyl)benzene bis(hexafluoroposphate) (0.30 g, 0.467 mmol) in acetonitrile (40 ml). The mixture was refluxed at (343–363)K for 20 hr in glassware wrapped with aluminium foil to exclude the light. The resulting mixture was filtered through celite to remove excess Ag2O. After evaporation of the solvent, the white residue was washed with diethyl ether (2X5 ml) to afford the complex as a white powder. The yield was (0.25g, 45%), m.p = 550–552K. Crystal suitable for X-ray was obtained by slow evaporation of the salt solution in acetonitrile at 281K.

Refinement top

All H atoms were positioned geometrically with C–H = 0.93–0.97 Å and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). The highest peak in the final difference map is found at a distance of 0.87 Å from C8 and the deepest trough is 1.37 Å from H22C.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. N1A–N4A/C1A–C22A/P1A and F1A–F6A are generated by the symmetry code -x+1, -y+1, -z (H atoms are omitted for clarity).
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen bonds as dashed lines.
Bis{1,4-bis[(3-butylimidazolium-1-yl)methyl]benzene}silver(I) bis(hexafluoridophosphate) top
Crystal data top
[Ag2(C22H30N4)2](PF6)2Z = 1
Mr = 1206.68F(000) = 612
Triclinic, P1Dx = 1.614 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3636 (15) ÅCell parameters from 9946 reflections
b = 11.4119 (15) Åθ = 2.5–30.1°
c = 11.9918 (15) ŵ = 0.94 mm1
α = 63.528 (2)°T = 100 K
β = 89.335 (2)°Block, colourless
γ = 65.811 (2)°0.24 × 0.14 × 0.08 mm
V = 1241.7 (3) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7142 independent reflections
Radiation source: fine-focus sealed tube6512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.806, Tmax = 0.930k = 1616
25433 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0678P)2 + 6.8955P]
where P = (Fo2 + 2Fc2)/3
7142 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 3.16 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Ag2(C22H30N4)2](PF6)2γ = 65.811 (2)°
Mr = 1206.68V = 1241.7 (3) Å3
Triclinic, P1Z = 1
a = 11.3636 (15) ÅMo Kα radiation
b = 11.4119 (15) ŵ = 0.94 mm1
c = 11.9918 (15) ÅT = 100 K
α = 63.528 (2)°0.24 × 0.14 × 0.08 mm
β = 89.335 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7142 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6512 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.930Rint = 0.035
25433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.16Δρmax = 3.16 e Å3
7142 reflectionsΔρmin = 1.23 e Å3
309 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.46248 (3)0.12904 (3)0.32515 (3)0.01570 (10)
N10.2537 (4)0.4313 (4)0.2939 (3)0.0193 (7)
N20.1692 (4)0.2838 (4)0.3325 (3)0.0185 (7)
N30.2430 (3)1.0310 (4)0.3191 (3)0.0170 (6)
N40.3348 (4)1.1721 (4)0.3546 (3)0.0172 (6)
C10.3370 (5)0.5534 (5)0.0323 (4)0.0238 (9)
H1A0.37460.45290.06150.029*
C20.3085 (5)0.6488 (5)0.0971 (4)0.0237 (9)
H2A0.32600.61170.15380.028*
C30.2540 (4)0.7998 (5)0.1432 (4)0.0176 (7)
C40.2269 (5)0.8525 (5)0.0564 (4)0.0221 (8)
H4A0.19030.95290.08550.026*
C50.2544 (5)0.7555 (5)0.0743 (4)0.0214 (8)
H5A0.23490.79220.13110.026*
C60.3102 (4)0.6055 (4)0.1198 (4)0.0182 (7)
C70.3438 (5)0.4986 (5)0.2612 (4)0.0212 (8)
H7A0.43390.42260.28460.025*
H7B0.33750.54990.30900.025*
C80.2850 (4)0.2935 (4)0.3183 (3)0.0138 (6)
C90.1215 (5)0.5068 (5)0.2917 (4)0.0239 (9)
H9A0.07780.60330.27610.029*
C100.0679 (5)0.4132 (5)0.3166 (4)0.0241 (9)
H10A0.01920.43240.32190.029*
C110.1508 (5)0.1543 (5)0.3571 (4)0.0230 (8)
H11A0.09780.13830.42120.028*
H11B0.23620.06850.39080.028*
C120.0843 (5)0.1712 (5)0.2381 (4)0.0247 (9)
H12A0.00060.25760.20440.030*
H12B0.06820.08690.26160.030*
C130.1641 (5)0.1852 (6)0.1332 (5)0.0304 (10)
H13A0.17370.27430.10380.036*
H13B0.25160.10270.16800.036*
C140.0986 (7)0.1891 (8)0.0216 (6)0.0434 (14)
H14A0.15280.19420.04070.065*
H14B0.01390.27370.01600.065*
H14C0.08740.10190.05060.065*
C150.2246 (4)0.9007 (5)0.2858 (4)0.0199 (8)
H15A0.28170.84640.32450.024*
H15B0.13420.93150.32130.024*
C160.3620 (4)1.0335 (5)0.3299 (4)0.0186 (7)
C170.1448 (4)1.1638 (5)0.3387 (4)0.0229 (8)
H17A0.05651.18700.33630.027*
C180.2016 (4)1.2543 (5)0.3621 (4)0.0227 (8)
H18A0.16001.35160.37960.027*
C190.4337 (5)1.2264 (5)0.3649 (4)0.0220 (8)
H19A0.41531.30550.45080.026*
H19B0.52031.14790.34980.026*
C200.4346 (6)1.2817 (6)0.2701 (5)0.0320 (10)
H20A0.50151.31580.28140.038*
H20B0.35001.36570.29110.038*
C210.4601 (6)1.1718 (6)0.1314 (5)0.0320 (10)
H21A0.55181.09880.10390.038*
H21B0.40601.12190.12170.038*
C220.4300 (6)1.2429 (6)0.0469 (5)0.0317 (10)
H22A0.44391.16980.03960.048*
H22B0.33981.31690.07480.048*
H22C0.48721.28710.05190.048*
P10.76781 (11)0.28501 (11)0.51153 (10)0.0165 (2)
F10.8121 (5)0.2072 (4)0.6636 (3)0.0521 (11)
F20.6958 (3)0.1871 (4)0.5238 (4)0.0452 (9)
F30.7303 (4)0.3610 (3)0.3605 (3)0.0399 (8)
F40.8417 (3)0.3835 (3)0.4983 (3)0.0347 (7)
F50.6356 (3)0.4085 (3)0.5124 (3)0.0326 (7)
F60.9021 (3)0.1590 (3)0.5128 (3)0.0294 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01635 (15)0.01335 (14)0.01699 (14)0.00615 (11)0.00410 (10)0.00754 (11)
N10.0274 (18)0.0148 (15)0.0154 (14)0.0088 (14)0.0061 (13)0.0076 (12)
N20.0216 (17)0.0157 (15)0.0168 (15)0.0091 (13)0.0085 (13)0.0063 (12)
N30.0173 (16)0.0161 (15)0.0147 (14)0.0069 (13)0.0025 (12)0.0058 (12)
N40.0215 (17)0.0127 (14)0.0159 (14)0.0080 (13)0.0058 (12)0.0056 (12)
C10.036 (2)0.0166 (18)0.0178 (18)0.0101 (17)0.0053 (16)0.0090 (15)
C20.035 (2)0.0196 (19)0.0167 (17)0.0111 (18)0.0043 (16)0.0101 (16)
C30.0198 (18)0.0199 (18)0.0152 (16)0.0115 (15)0.0034 (14)0.0080 (14)
C40.030 (2)0.0160 (18)0.0188 (18)0.0100 (16)0.0060 (16)0.0081 (15)
C50.031 (2)0.0185 (18)0.0179 (17)0.0114 (17)0.0064 (16)0.0110 (15)
C60.024 (2)0.0165 (17)0.0159 (16)0.0113 (15)0.0051 (14)0.0074 (14)
C70.032 (2)0.0172 (18)0.0157 (17)0.0124 (17)0.0034 (15)0.0077 (15)
C80.0168 (17)0.0095 (15)0.0122 (15)0.0040 (13)0.0044 (12)0.0047 (12)
C90.029 (2)0.0188 (19)0.0211 (19)0.0084 (17)0.0115 (16)0.0096 (16)
C100.024 (2)0.0195 (19)0.024 (2)0.0060 (16)0.0102 (16)0.0106 (16)
C110.028 (2)0.0199 (19)0.0218 (19)0.0134 (17)0.0084 (16)0.0078 (16)
C120.026 (2)0.027 (2)0.024 (2)0.0164 (18)0.0064 (17)0.0110 (17)
C130.035 (3)0.041 (3)0.026 (2)0.023 (2)0.0115 (19)0.019 (2)
C140.058 (4)0.055 (4)0.034 (3)0.034 (3)0.010 (3)0.026 (3)
C150.024 (2)0.0234 (19)0.0158 (16)0.0157 (17)0.0046 (14)0.0080 (15)
C160.0218 (19)0.0181 (18)0.0155 (16)0.0095 (15)0.0031 (14)0.0072 (14)
C170.0188 (19)0.023 (2)0.0209 (18)0.0061 (16)0.0003 (15)0.0092 (16)
C180.022 (2)0.0176 (18)0.0221 (19)0.0029 (16)0.0036 (15)0.0094 (16)
C190.032 (2)0.0203 (19)0.0213 (18)0.0178 (18)0.0104 (16)0.0103 (16)
C200.039 (3)0.039 (3)0.026 (2)0.024 (2)0.009 (2)0.016 (2)
C210.043 (3)0.033 (3)0.028 (2)0.022 (2)0.010 (2)0.017 (2)
C220.037 (3)0.042 (3)0.031 (2)0.023 (2)0.012 (2)0.024 (2)
P10.0183 (5)0.0159 (4)0.0173 (4)0.0078 (4)0.0065 (4)0.0096 (4)
F10.085 (3)0.0284 (16)0.0167 (13)0.0055 (18)0.0095 (16)0.0087 (12)
F20.0351 (18)0.0304 (16)0.087 (3)0.0241 (15)0.0275 (18)0.0333 (19)
F30.068 (2)0.0251 (15)0.0168 (12)0.0126 (15)0.0001 (13)0.0101 (11)
F40.0286 (15)0.0293 (15)0.057 (2)0.0171 (13)0.0074 (14)0.0260 (15)
F50.0254 (15)0.0274 (14)0.0473 (18)0.0080 (12)0.0142 (13)0.0235 (14)
F60.0217 (13)0.0262 (14)0.0408 (16)0.0056 (11)0.0103 (12)0.0214 (13)
Geometric parameters (Å, º) top
Ag1—C16i2.073 (4)C12—C131.531 (7)
Ag1—C82.089 (4)C12—H12A0.9700
N1—C81.348 (5)C12—H12B0.9700
N1—C91.386 (6)C13—C141.514 (7)
N1—C71.470 (6)C13—H13A0.9700
N2—C81.367 (5)C13—H13B0.9700
N2—C101.379 (5)C14—H14A0.9600
N2—C111.476 (6)C14—H14B0.9600
N3—C161.368 (5)C14—H14C0.9600
N3—C171.379 (6)C15—H15A0.9700
N3—C151.463 (5)C15—H15B0.9700
N4—C161.367 (5)C16—Ag1i2.073 (4)
N4—C181.394 (6)C17—C181.360 (7)
N4—C191.470 (6)C17—H17A0.9300
C1—C21.384 (6)C18—H18A0.9300
C1—C61.395 (6)C19—C201.530 (7)
C1—H1A0.9300C19—H19A0.9700
C2—C31.394 (6)C19—H19B0.9700
C2—H2A0.9300C20—C211.509 (7)
C3—C41.392 (6)C20—H20A0.9700
C3—C151.518 (5)C20—H20B0.9700
C4—C51.400 (6)C21—C221.516 (7)
C4—H4A0.9300C21—H21A0.9700
C5—C61.384 (6)C21—H21B0.9700
C5—H5A0.9300C22—H22A0.9600
C6—C71.516 (6)C22—H22B0.9600
C7—H7A0.9700C22—H22C0.9600
C7—H7B0.9700P1—F51.588 (3)
C9—C101.359 (7)P1—F31.590 (3)
C9—H9A0.9300P1—F21.594 (3)
C10—H10A0.9300P1—F11.606 (3)
C11—C121.518 (6)P1—F61.606 (3)
C11—H11A0.9700P1—F41.613 (3)
C11—H11B0.9700
C16i—Ag1—C8179.40 (15)C12—C13—H13B109.3
C8—N1—C9111.3 (4)H13A—C13—H13B107.9
C8—N1—C7124.8 (4)C13—C14—H14A109.5
C9—N1—C7123.7 (4)C13—C14—H14B109.5
C8—N2—C10111.7 (4)H14A—C14—H14B109.5
C8—N2—C11125.2 (4)C13—C14—H14C109.5
C10—N2—C11123.1 (4)H14A—C14—H14C109.5
C16—N3—C17111.9 (4)H14B—C14—H14C109.5
C16—N3—C15123.6 (4)N3—C15—C3113.3 (3)
C17—N3—C15124.5 (4)N3—C15—H15A108.9
C16—N4—C18111.5 (4)C3—C15—H15A108.9
C16—N4—C19124.8 (4)N3—C15—H15B108.9
C18—N4—C19123.6 (4)C3—C15—H15B108.9
C2—C1—C6121.1 (4)H15A—C15—H15B107.7
C2—C1—H1A119.4N4—C16—N3103.5 (4)
C6—C1—H1A119.4N4—C16—Ag1i128.5 (3)
C1—C2—C3120.6 (4)N3—C16—Ag1i127.8 (3)
C1—C2—H2A119.7C18—C17—N3106.8 (4)
C3—C2—H2A119.7C18—C17—H17A126.6
C4—C3—C2118.5 (4)N3—C17—H17A126.6
C4—C3—C15122.5 (4)C17—C18—N4106.2 (4)
C2—C3—C15119.0 (4)C17—C18—H18A126.9
C3—C4—C5120.6 (4)N4—C18—H18A126.9
C3—C4—H4A119.7N4—C19—C20112.2 (4)
C5—C4—H4A119.7N4—C19—H19A109.2
C6—C5—C4120.7 (4)C20—C19—H19A109.2
C6—C5—H5A119.6N4—C19—H19B109.2
C4—C5—H5A119.6C20—C19—H19B109.2
C5—C6—C1118.4 (4)H19A—C19—H19B107.9
C5—C6—C7121.5 (4)C21—C20—C19115.9 (4)
C1—C6—C7120.1 (4)C21—C20—H20A108.3
N1—C7—C6110.8 (3)C19—C20—H20A108.3
N1—C7—H7A109.5C21—C20—H20B108.3
C6—C7—H7A109.5C19—C20—H20B108.3
N1—C7—H7B109.5H20A—C20—H20B107.4
C6—C7—H7B109.5C20—C21—C22112.4 (5)
H7A—C7—H7B108.1C20—C21—H21A109.1
N1—C8—N2104.1 (3)C22—C21—H21A109.1
N1—C8—Ag1130.4 (3)C20—C21—H21B109.1
N2—C8—Ag1125.4 (3)C22—C21—H21B109.1
C10—C9—N1107.0 (4)H21A—C21—H21B107.9
C10—C9—H9A126.5C21—C22—H22A109.5
N1—C9—H9A126.5C21—C22—H22B109.5
C9—C10—N2105.9 (4)H22A—C22—H22B109.5
C9—C10—H10A127.1C21—C22—H22C109.5
N2—C10—H10A127.1H22A—C22—H22C109.5
N2—C11—C12112.6 (4)H22B—C22—H22C109.5
N2—C11—H11A109.1F5—P1—F390.87 (19)
C12—C11—H11A109.1F5—P1—F291.02 (18)
N2—C11—H11B109.1F3—P1—F290.1 (2)
C12—C11—H11B109.1F5—P1—F190.93 (19)
H11A—C11—H11B107.8F3—P1—F1177.6 (2)
C11—C12—C13114.1 (4)F2—P1—F191.5 (2)
C11—C12—H12A108.7F5—P1—F6179.20 (18)
C13—C12—H12A108.7F3—P1—F689.93 (18)
C11—C12—H12B108.7F2—P1—F689.00 (17)
C13—C12—H12B108.7F1—P1—F688.27 (19)
H12A—C12—H12B107.6F5—P1—F489.49 (17)
C14—C13—C12111.8 (5)F3—P1—F489.6 (2)
C14—C13—H13A109.3F2—P1—F4179.4 (2)
C12—C13—H13A109.3F1—P1—F488.8 (2)
C14—C13—H13B109.3F6—P1—F490.49 (17)
C6—C1—C2—C31.0 (8)C11—N2—C10—C9177.9 (4)
C1—C2—C3—C41.0 (7)C8—N2—C11—C12101.3 (5)
C1—C2—C3—C15179.8 (4)C10—N2—C11—C1276.3 (5)
C2—C3—C4—C50.2 (7)N2—C11—C12—C1363.3 (5)
C15—C3—C4—C5179.3 (4)C11—C12—C13—C14175.3 (5)
C3—C4—C5—C60.7 (7)C16—N3—C15—C385.2 (5)
C4—C5—C6—C10.8 (7)C17—N3—C15—C392.3 (5)
C4—C5—C6—C7178.5 (4)C4—C3—C15—N334.6 (6)
C2—C1—C6—C50.1 (7)C2—C3—C15—N3146.2 (4)
C2—C1—C6—C7179.3 (5)C18—N4—C16—N31.5 (4)
C8—N1—C7—C6103.8 (4)C19—N4—C16—N3175.3 (3)
C9—N1—C7—C669.9 (5)C18—N4—C16—Ag1i173.8 (3)
C5—C6—C7—N1109.1 (5)C19—N4—C16—Ag1i9.4 (6)
C1—C6—C7—N171.7 (5)C17—N3—C16—N41.1 (4)
C9—N1—C8—N20.4 (4)C15—N3—C16—N4176.7 (3)
C7—N1—C8—N2174.9 (3)C17—N3—C16—Ag1i174.3 (3)
C9—N1—C8—Ag1176.5 (3)C15—N3—C16—Ag1i8.0 (6)
C7—N1—C8—Ag12.0 (6)C16—N3—C17—C180.3 (5)
C10—N2—C8—N10.2 (4)C15—N3—C17—C18177.4 (4)
C11—N2—C8—N1178.1 (4)N3—C17—C18—N40.6 (5)
C10—N2—C8—Ag1176.8 (3)C16—N4—C18—C171.4 (5)
C11—N2—C8—Ag11.0 (5)C19—N4—C18—C17175.4 (4)
C8—N1—C9—C100.5 (5)C16—N4—C19—C20122.3 (5)
C7—N1—C9—C10175.0 (4)C18—N4—C19—C2054.0 (6)
N1—C9—C10—N20.3 (5)N4—C19—C20—C2158.0 (6)
C8—N2—C10—C90.0 (5)C19—C20—C21—C22167.5 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F3i0.932.423.251 (6)149
C5—H5A···F1ii0.932.523.392 (6)157
C7—H7B···F5ii0.972.443.367 (6)160
C11—H11A···F6iii0.972.443.364 (7)159
C11—H11B···F2iv0.972.383.129 (7)134
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C22H30N4)2](PF6)2
Mr1206.68
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.3636 (15), 11.4119 (15), 11.9918 (15)
α, β, γ (°)63.528 (2), 89.335 (2), 65.811 (2)
V3)1241.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.806, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
25433, 7142, 6512
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.161, 1.16
No. of reflections7142
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.16, 1.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F3i0.932.423.251 (6)149
C5—H5A···F1ii0.932.523.392 (6)157
C7—H7B···F5ii0.972.443.367 (6)160
C11—H11A···F6iii0.972.443.364 (7)159
C11—H11B···F2iv0.972.383.129 (7)134
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH, AW and SGT thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grant (1001/PKIMIA/813023 and 1001/PKIMIA/811157). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatalano, V. J. & Malwitz, M. A. (2003). Inorg. Chem. 42, 5483–5485.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, W. & Liu, F. (2003). J. Organomet. Chem. 673, 5–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162–2168.  Web of Science CSD CrossRef CAS Google Scholar
First citationKascatan-Nebioglu, A., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J. (2007). Coord. Chem. Rev. 251, 884–895.  Web of Science CrossRef CAS Google Scholar
First citationMagill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Williams, D. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem. 617, 546–560.  Web of Science CSD CrossRef Google Scholar
First citationMcGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596–1605.  Web of Science CSD CrossRef CAS Google Scholar
First citationMedvetz, D. A., Hindi, K. M., Panzner, M. J., Ditto, A. J., Yun, Y. H. & Young, W. J. (2008). Met. Based Drugs, pp. 384010–384016.  Google Scholar
First citationÖzdemir, Í., Özcan, E. Ö., Günal, U. & Gürbüz, N. (2010). Molecules, 15, 2499–2508.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTominaga, S., Oi, Y., Kato, T., An, D. K. & Okamoto, S. (2004). Tetrahedron Lett. 45, 5585–5588.  Web of Science CrossRef CAS Google Scholar
First citationTryg, R., Chris, J. P., Marc, S. A., William, H. & Tolman, B. (2005). J. Organomet. Chem. 690, 5881–5891.  Google Scholar
First citationYongbo, Z., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem. 693, 205–215.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1286-m1287
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds