metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A binuclear vanadium oxyfluoride: di-μ-oxido-bis­­[fluoridooxido(1,10-phenanthro­line)vanadium(V)]

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 13 September 2010; accepted 16 September 2010; online 25 September 2010)

The title compound, [V2F2O4(C12H8N2)2], is a centrosymmetric binuclear vanadium(V) species with the metal ions in a distorted octa­hedral environment. The symmetry-equivalent VV atoms exhibit coordination geometries defined by cis-terminal fluoride and oxide groups, unsymmetrically bridging oxide groups and the N-atom donors of the phenanthroline ligands. The crystal packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds.

Related literature

For the properties and applications of oxyfluorido­molybdates and -­vanadates, see: Adil et al. (2010[Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983-5993.]); Burkholder & Zubieta (2004[Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279-284.]); DeBurgomaster & Zubieta (2010[DeBurgomaster, P. & Zubieta, J. (2010). Acta Cryst. E66, m909.]); Jones et al. (2010[Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491-494.]); Michailovski et al. (2006[Michailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem. 45, 5641-5652.], 2009[Michailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des. 9, 755-765.]). For examples of solid phase vanadium oxyfluorides in the presence of coligands, see: Ouellette et al. (2005[Ouellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2005). Dalton Trans. pp. 291-309.], 2006[Ouellette, W., Yu, M. H., O'Connor, C. J. & Zubieta, J. (2006). Inorg. Chem. 45, 7628-7641.], 2007[Ouellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2007). J. Solid State Chem. 180, 2500-2509.]); Ouellette & Zubieta (2007[Ouellette, W. & Zubieta, J. (2007). Solid State Sci. 9, 658-663.]). For hydro­thermal preparation of metal oxyfluorides, see: Gopalakrishnan (1995[Gopalakrishnan, J. (1995). Chem. Mater. 7, 1265-1275.]); Whittingham (1996[Whittingham, M. S. (1996). Curr. Opin. Solid State Mater. Sci. 1, 227-232.]); Zubieta (2003[Zubieta, J. (2003). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 697-709. Amsterdam: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • [V2F2O4(C12H8N2)2]

  • Mr = 564.29

  • Triclinic, [P \overline 1]

  • a = 7.8320 (9) Å

  • b = 8.4937 (10) Å

  • c = 9.2007 (11) Å

  • α = 113.741 (3)°

  • β = 102.834 (2)°

  • γ = 97.848 (2)°

  • V = 528.46 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 90 K

  • 0.36 × 0.31 × 0.12 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.626, Tmax = 0.747

  • 5297 measured reflections

  • 2550 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.14

  • 2550 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1i 0.95 2.49 3.393 (2) 160
C3—H3⋯O1ii 0.95 2.44 3.191 (2) 136
C6—H6⋯O1ii 0.95 2.46 3.200 (2) 135
C10—H10⋯O2iii 0.95 2.39 3.282 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1; (iii) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2006[Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal oxyfluorides exhibit a range of compositions and considerable structural versatility that give rise to useful physical properties and potential applications (Adil, et al., 2010; Burkholder & Zubieta, 2004; DeBurgomaster & Zubieta, 2010; Jones et al., 2010; Michailovski, et al., 2006,2009; Ouellette et al., 2005,2006,2007); Ouellette & Zubieta, 2007). Hydrothermal chemistry offers one approach to the preparation of novel metal oxyfluorides where the complexity of the synthetic domain allows incorporation of fluoride into metal oxide frameworks, providing unusual and often unprecedented structures (Gopalakrishnan, 1995; Whittingham, 1996; Zubieta, 2003) Furthermore, the metal-oxyfluoride core can be stabilized or modified by the introduction of appropriate coligands, such as organonitrogen donors of the pyridyl family. In the course of our investigations of the hydrothermal chemistry of metal oxides in the presence of fluoride anion, the title compound [V2F2O4(phen)2] was isolated. The compound crystallizes in the triclinic space group P1 with one binuclear molecule per unit cell, whose halves are related by a center of symmetry at the mid-point of the V···V vector. The V atoms exhibit distorted octahedral geometry with {VFO3N2} coordination (Fig. 1). The µ-bis-oxo bridging mode is characterized by a {V2O2} rhombus with alternating short-long V—O bond distances of 1.724 (1) Å and 2.316 (1) Å, respectively. The terminal oxo-groups lie in the plane of the {V2O2} rhombus and exhibit a pronounced trans-influence as shown by the elongated bridging oxo-group-vanadium distance, V1—O1. The coordination geometry at the vanadium sites also exhibits a fluoride ligand with V—F of 1.787 (1) Å with the V—F vector approximately normal to the {V2O2} rhombus. The V—F vectors of the binuclear unit adopt an anti-orientation with respect to the plane if the {V2O2} rhombus. The geometry is completed by the nitrogen donors of the phenanthroline ligand, which occupy positions trans to the short V—O bond of the rhombus and trans to the terminal fluoride ligand. The crystal packing is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonds which produces two-dimensional connectivity in the bc plane (Figure 2).

Related literature top

For the properties and applications of oxyfluoromolybdates and oxyfluorovanadates, see: Adil et al. (2010); Burkholder & Zubieta (2004); DeBurgomaster & Zubieta (2010); Jones et al. (2010); Michailovski et al. (2006,2009). For examples of solid phase vanadium oxyfluorides in the presence of coligands, see: Ouellette et al. (2005, 2006, 2007); Ouellette & Zubieta (2007). For hydrothermal preparation of metal oxyfluorides, see: Gopalakrishnan (1995); Whittingham (1996); Zubieta (2003).

Experimental top

A mixture of V2O5 (0.062 g, 0.34 mmol), 1,10-phenanthroline (0.367 g, 2.04 mmol), H2O (5 ml, 277.5 mmol) and HF (0.200 ml, 5.80 mmol) in the mole ratio 1.00:6.03:1620:17.06 was stirred briefly before heating to 170 oC for 48 h (initial and final pH values of 2.5 and 2.0, respectively). Yellow rods suitable for X-ray diffraction were isolated in 65% yield. Anal. Calcd. for C24H20F2N4O4V2: C, 51.0; H, 2.84; N, 9.92; F, 6.73. Found: C, 50.7;H,3.01;N, 9.67; F, 6.55.

Refinement top

All hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular dimer of the title compound, with the atom-labeling scheme and the displacement ellipsoids drawn at the 50% probability level. Color scheme: vanadium, orange; oxygen, red; fluorine, green; nitrogen, light blue; carbon, black; hydrogen, pink.
[Figure 2] Fig. 2. A packing diagram illustrating the C-H···O and C-H···F contacts (illustrated as multiband cylinders). Color code as for Fig. 1.
di-µ-oxido-bis[fluoridooxido(1,10-phenanthroline)vanadium(V)] top
Crystal data top
[V2F2O4(C12H8N2)2]Z = 1
Mr = 564.29F(000) = 284.0
Triclinic, P1Dx = 1.773 Mg m3
Dm = 1.77 (2) Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8320 (9) ÅCell parameters from 3266 reflections
b = 8.4937 (10) Åθ = 2.4–28.3°
c = 9.2007 (11) ŵ = 0.95 mm1
α = 113.741 (3)°T = 90 K
β = 102.834 (2)°Plate, yellow
γ = 97.848 (2)°0.36 × 0.31 × 0.12 mm
V = 528.46 (11) Å3
Data collection top
Bruker APEX CCD
diffractometer
2550 independent reflections
Radiation source: fine-focus sealed tube2502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.5°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1111
Tmin = 0.626, Tmax = 0.747l = 1212
5297 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.608P]
where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[V2F2O4(C12H8N2)2]γ = 97.848 (2)°
Mr = 564.29V = 528.46 (11) Å3
Triclinic, P1Z = 1
a = 7.8320 (9) ÅMo Kα radiation
b = 8.4937 (10) ŵ = 0.95 mm1
c = 9.2007 (11) ÅT = 90 K
α = 113.741 (3)°0.36 × 0.31 × 0.12 mm
β = 102.834 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2502 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.747Rint = 0.018
5297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.14Δρmax = 0.41 e Å3
2550 reflectionsΔρmin = 0.35 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.32341 (4)0.84898 (4)0.86984 (4)0.01413 (10)
F10.43262 (16)0.67119 (15)0.83110 (14)0.0199 (2)
O10.39833 (17)0.97396 (17)1.08350 (15)0.0130 (3)
O20.11464 (19)0.74797 (18)0.82733 (18)0.0182 (3)
N10.3194 (2)0.8039 (2)0.61559 (19)0.0128 (3)
N20.2439 (2)1.0719 (2)0.83968 (19)0.0131 (3)
C10.3604 (2)0.6671 (2)0.5064 (2)0.0152 (4)
H10.38960.57710.53640.018*
C20.3623 (3)0.6503 (3)0.3487 (2)0.0168 (4)
H20.39380.55140.27460.020*
C30.3182 (2)0.7782 (3)0.3023 (2)0.0161 (4)
H30.31840.76820.19570.019*
C40.2724 (2)0.9249 (2)0.4151 (2)0.0143 (3)
C50.2775 (2)0.9315 (2)0.5709 (2)0.0121 (3)
C60.2197 (2)1.0641 (3)0.3789 (2)0.0169 (4)
H60.21461.06060.27350.020*
C70.1770 (2)1.2007 (3)0.4937 (2)0.0167 (4)
H70.14101.29040.46660.020*
C80.1852 (2)1.2119 (2)0.6554 (2)0.0144 (3)
C90.2355 (2)1.0768 (2)0.6925 (2)0.0126 (3)
C100.1417 (2)1.3488 (2)0.7797 (2)0.0168 (4)
H100.10961.44510.76210.020*
C110.1464 (3)1.3406 (3)0.9264 (2)0.0180 (4)
H110.11451.43021.01030.022*
C120.1982 (3)1.2007 (2)0.9531 (2)0.0159 (4)
H120.20081.19761.05560.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01424 (17)0.01694 (17)0.01513 (17)0.00489 (12)0.00478 (12)0.01048 (13)
F10.0238 (6)0.0184 (5)0.0203 (6)0.0093 (5)0.0074 (5)0.0096 (5)
O10.0156 (6)0.0145 (6)0.0113 (6)0.0054 (5)0.0052 (5)0.0070 (5)
O20.0174 (7)0.0177 (6)0.0218 (7)0.0049 (5)0.0070 (5)0.0103 (6)
N10.0115 (7)0.0145 (7)0.0125 (7)0.0039 (6)0.0032 (6)0.0060 (6)
N20.0123 (7)0.0144 (7)0.0120 (7)0.0044 (6)0.0033 (6)0.0054 (6)
C10.0142 (8)0.0153 (8)0.0155 (9)0.0053 (7)0.0042 (7)0.0059 (7)
C20.0153 (9)0.0181 (9)0.0121 (8)0.0032 (7)0.0049 (7)0.0021 (7)
C30.0136 (8)0.0210 (9)0.0115 (8)0.0022 (7)0.0043 (7)0.0059 (7)
C40.0100 (8)0.0177 (8)0.0139 (8)0.0009 (6)0.0023 (6)0.0075 (7)
C50.0097 (8)0.0137 (8)0.0129 (8)0.0028 (6)0.0028 (6)0.0064 (7)
C60.0129 (8)0.0230 (9)0.0171 (9)0.0011 (7)0.0024 (7)0.0134 (8)
C70.0136 (8)0.0182 (9)0.0213 (9)0.0024 (7)0.0030 (7)0.0134 (8)
C80.0098 (8)0.0151 (8)0.0176 (9)0.0018 (6)0.0017 (7)0.0083 (7)
C90.0099 (8)0.0137 (8)0.0136 (8)0.0025 (6)0.0026 (6)0.0061 (7)
C100.0123 (8)0.0131 (8)0.0231 (10)0.0035 (7)0.0015 (7)0.0081 (7)
C110.0162 (9)0.0154 (9)0.0174 (9)0.0067 (7)0.0023 (7)0.0031 (7)
C120.0159 (9)0.0168 (8)0.0132 (8)0.0061 (7)0.0038 (7)0.0046 (7)
Geometric parameters (Å, º) top
V1—O21.6203 (14)C3—H30.9500
V1—O11.7241 (13)C4—C51.404 (2)
V1—F11.7871 (12)C4—C61.438 (3)
V1—N22.1724 (16)C5—C91.430 (2)
V1—N12.2052 (16)C6—C71.360 (3)
V1—O1i2.3162 (13)C6—H60.9500
N1—C11.330 (2)C7—C81.438 (3)
N1—C51.358 (2)C7—H70.9500
N2—C121.329 (2)C8—C91.402 (2)
N2—C91.359 (2)C8—C101.409 (3)
C1—C21.403 (3)C10—C111.373 (3)
C1—H10.9500C10—H100.9500
C2—C31.376 (3)C11—C121.400 (3)
C2—H20.9500C11—H110.9500
C3—C41.415 (3)C12—H120.9500
O2—V1—O1104.98 (7)C2—C3—H3120.4
O2—V1—F1102.29 (6)C4—C3—H3120.4
O1—V1—F1104.75 (6)C5—C4—C3116.98 (17)
O2—V1—N291.64 (6)C5—C4—C6118.79 (17)
O1—V1—N290.52 (6)C3—C4—C6124.22 (17)
F1—V1—N2155.64 (6)N1—C5—C4123.54 (17)
O2—V1—N198.29 (6)N1—C5—C9116.19 (16)
O1—V1—N1152.31 (6)C4—C5—C9120.27 (16)
F1—V1—N184.36 (6)C7—C6—C4120.81 (17)
N2—V1—N173.81 (6)C7—C6—H6119.6
O2—V1—O1i170.39 (6)C4—C6—H6119.6
O1—V1—O1i76.95 (6)C6—C7—C8121.25 (17)
F1—V1—O1i86.10 (5)C6—C7—H7119.4
N2—V1—O1i78.88 (5)C8—C7—H7119.4
N1—V1—O1i77.68 (5)C9—C8—C10117.11 (17)
V1—O1—V1i103.05 (6)C9—C8—C7118.67 (17)
C1—N1—C5118.04 (16)C10—C8—C7124.21 (17)
C1—N1—V1125.58 (12)N2—C9—C8123.62 (17)
C5—N1—V1116.33 (12)N2—C9—C5116.17 (16)
C12—N2—C9117.95 (16)C8—C9—C5120.20 (17)
C12—N2—V1124.57 (13)C11—C10—C8118.87 (17)
C9—N2—V1117.45 (12)C11—C10—H10120.6
N1—C1—C2122.64 (17)C8—C10—H10120.6
N1—C1—H1118.7C10—C11—C12120.26 (18)
C2—C1—H1118.7C10—C11—H11119.9
C3—C2—C1119.50 (17)C12—C11—H11119.9
C3—C2—H2120.2N2—C12—C11122.16 (18)
C1—C2—H2120.2N2—C12—H12118.9
C2—C3—C4119.27 (17)C11—C12—H12118.9
O2—V1—O1—V1i170.30 (6)C1—N1—C5—C41.1 (3)
F1—V1—O1—V1i82.35 (6)V1—N1—C5—C4178.74 (13)
N2—V1—O1—V1i78.46 (6)C1—N1—C5—C9179.58 (16)
N1—V1—O1—V1i24.09 (15)V1—N1—C5—C91.9 (2)
O1i—V1—O1—V1i0.0C3—C4—C5—N11.6 (3)
O2—V1—N1—C191.43 (15)C6—C4—C5—N1177.65 (16)
O1—V1—N1—C1121.45 (17)C3—C4—C5—C9179.14 (16)
F1—V1—N1—C110.21 (15)C6—C4—C5—C91.7 (3)
N2—V1—N1—C1179.27 (16)C5—C4—C6—C70.6 (3)
O1i—V1—N1—C197.44 (15)C3—C4—C6—C7179.75 (17)
O2—V1—N1—C591.11 (13)C4—C6—C7—C80.8 (3)
O1—V1—N1—C556.00 (19)C6—C7—C8—C91.1 (3)
F1—V1—N1—C5167.25 (13)C6—C7—C8—C10179.54 (18)
N2—V1—N1—C51.81 (12)C12—N2—C9—C81.4 (3)
O1i—V1—N1—C580.02 (12)V1—N2—C9—C8179.58 (13)
O2—V1—N2—C1278.41 (16)C12—N2—C9—C5177.17 (16)
O1—V1—N2—C1226.60 (15)V1—N2—C9—C51.0 (2)
F1—V1—N2—C12156.19 (15)C10—C8—C9—N20.1 (3)
N1—V1—N2—C12176.56 (16)C7—C8—C9—N2178.51 (16)
O1i—V1—N2—C12103.19 (15)C10—C8—C9—C5178.59 (16)
O2—V1—N2—C999.64 (13)C7—C8—C9—C50.0 (3)
O1—V1—N2—C9155.36 (13)N1—C5—C9—N20.6 (2)
F1—V1—N2—C925.8 (2)C4—C5—C9—N2179.98 (16)
N1—V1—N2—C91.48 (12)N1—C5—C9—C8178.00 (16)
O1i—V1—N2—C978.77 (13)C4—C5—C9—C81.4 (3)
C5—N1—C1—C20.1 (3)C9—C8—C10—C111.6 (3)
V1—N1—C1—C2177.28 (13)C7—C8—C10—C11176.93 (17)
N1—C1—C2—C30.8 (3)C8—C10—C11—C121.6 (3)
C1—C2—C3—C40.3 (3)C9—N2—C12—C111.4 (3)
C2—C3—C4—C50.8 (3)V1—N2—C12—C11179.42 (14)
C2—C3—C4—C6178.35 (17)C10—C11—C12—N20.1 (3)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1ii0.952.493.393 (2)160
C3—H3···O1iii0.952.443.191 (2)136
C6—H6···O1iii0.952.463.200 (2)135
C10—H10···O2iv0.952.393.282 (2)157
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y, z1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[V2F2O4(C12H8N2)2]
Mr564.29
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)7.8320 (9), 8.4937 (10), 9.2007 (11)
α, β, γ (°)113.741 (3), 102.834 (2), 97.848 (2)
V3)528.46 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.36 × 0.31 × 0.12
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.626, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
5297, 2550, 2502
Rint0.018
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.14
No. of reflections2550
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.35

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.952.493.393 (2)160.0
C3—H3···O1ii0.952.443.191 (2)135.9
C6—H6···O1ii0.952.463.200 (2)134.9
C10—H10···O2iii0.952.393.282 (2)156.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation, CHE-0907787.

References

First citationAdil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983–5993.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeBurgomaster, P. & Zubieta, J. (2010). Acta Cryst. E66, m909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGopalakrishnan, J. (1995). Chem. Mater. 7, 1265–1275.  CrossRef CAS Web of Science Google Scholar
First citationJones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des. 9, 755–765.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem. 45, 5641–5652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2005). Dalton Trans. pp. 291–309.  Web of Science CSD CrossRef Google Scholar
First citationOuellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2007). J. Solid State Chem. 180, 2500–2509.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuellette, W., Yu, M. H., O'Connor, C. J. & Zubieta, J. (2006). Inorg. Chem. 45, 7628–7641.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuellette, W. & Zubieta, J. (2007). Solid State Sci. 9, 658–663.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhittingham, M. S. (1996). Curr. Opin. Solid State Mater. Sci. 1, 227–232.  CrossRef CAS Web of Science Google Scholar
First citationZubieta, J. (2003). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 697–709. Amsterdam: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds