metal-organic compounds
A binuclear vanadium oxyfluoride: di-μ-oxido-bis[fluoridooxido(1,10-phenanthroline)vanadium(V)]
aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu
The title compound, [V2F2O4(C12H8N2)2], is a centrosymmetric binuclear vanadium(V) species with the metal ions in a distorted octahedral environment. The symmetry-equivalent VV atoms exhibit coordination geometries defined by cis-terminal fluoride and oxide groups, unsymmetrically bridging oxide groups and the N-atom donors of the phenanthroline ligands. The crystal packing is stabilized by weak intermolecular C—H⋯O and C—H⋯F hydrogen bonds.
Related literature
For the properties and applications of oxyfluoridomolybdates and -vanadates, see: Adil et al. (2010); Burkholder & Zubieta (2004); DeBurgomaster & Zubieta (2010); Jones et al. (2010); Michailovski et al. (2006, 2009). For examples of solid phase vanadium oxyfluorides in the presence of coligands, see: Ouellette et al. (2005, 2006, 2007); Ouellette & Zubieta (2007). For hydrothermal preparation of metal oxyfluorides, see: Gopalakrishnan (1995); Whittingham (1996); Zubieta (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536810037232/lh5133sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037232/lh5133Isup2.hkl
A mixture of V2O5 (0.062 g, 0.34 mmol), 1,10-phenanthroline (0.367 g, 2.04 mmol), H2O (5 ml, 277.5 mmol) and HF (0.200 ml, 5.80 mmol) in the mole ratio 1.00:6.03:1620:17.06 was stirred briefly before heating to 170 oC for 48 h (initial and final pH values of 2.5 and 2.0, respectively). Yellow rods suitable for X-ray diffraction were isolated in 65% yield. Anal. Calcd. for C24H20F2N4O4V2: C, 51.0; H, 2.84; N, 9.92; F, 6.73. Found: C, 50.7;H,3.01;N, 9.67; F, 6.55.
All hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[V2F2O4(C12H8N2)2] | Z = 1 |
Mr = 564.29 | F(000) = 284.0 |
Triclinic, P1 | Dx = 1.773 Mg m−3 Dm = 1.77 (2) Mg m−3 Dm measured by flotation |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8320 (9) Å | Cell parameters from 3266 reflections |
b = 8.4937 (10) Å | θ = 2.4–28.3° |
c = 9.2007 (11) Å | µ = 0.95 mm−1 |
α = 113.741 (3)° | T = 90 K |
β = 102.834 (2)° | Plate, yellow |
γ = 97.848 (2)° | 0.36 × 0.31 × 0.12 mm |
V = 528.46 (11) Å3 |
Bruker APEX CCD diffractometer | 2550 independent reflections |
Radiation source: fine-focus sealed tube | 2502 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 512 pixels mm-1 | θmax = 28.1°, θmin = 2.5° |
ϕ and ω scans | h = −10→9 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −11→11 |
Tmin = 0.626, Tmax = 0.747 | l = −12→12 |
5297 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0297P)2 + 0.608P] where P = (Fo2 + 2Fc2)/3 |
2550 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[V2F2O4(C12H8N2)2] | γ = 97.848 (2)° |
Mr = 564.29 | V = 528.46 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.8320 (9) Å | Mo Kα radiation |
b = 8.4937 (10) Å | µ = 0.95 mm−1 |
c = 9.2007 (11) Å | T = 90 K |
α = 113.741 (3)° | 0.36 × 0.31 × 0.12 mm |
β = 102.834 (2)° |
Bruker APEX CCD diffractometer | 2550 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2502 reflections with I > 2σ(I) |
Tmin = 0.626, Tmax = 0.747 | Rint = 0.018 |
5297 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.41 e Å−3 |
2550 reflections | Δρmin = −0.35 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.32341 (4) | 0.84898 (4) | 0.86984 (4) | 0.01413 (10) | |
F1 | 0.43262 (16) | 0.67119 (15) | 0.83110 (14) | 0.0199 (2) | |
O1 | 0.39833 (17) | 0.97396 (17) | 1.08350 (15) | 0.0130 (3) | |
O2 | 0.11464 (19) | 0.74797 (18) | 0.82733 (18) | 0.0182 (3) | |
N1 | 0.3194 (2) | 0.8039 (2) | 0.61559 (19) | 0.0128 (3) | |
N2 | 0.2439 (2) | 1.0719 (2) | 0.83968 (19) | 0.0131 (3) | |
C1 | 0.3604 (2) | 0.6671 (2) | 0.5064 (2) | 0.0152 (4) | |
H1 | 0.3896 | 0.5771 | 0.5364 | 0.018* | |
C2 | 0.3623 (3) | 0.6503 (3) | 0.3487 (2) | 0.0168 (4) | |
H2 | 0.3938 | 0.5514 | 0.2746 | 0.020* | |
C3 | 0.3182 (2) | 0.7782 (3) | 0.3023 (2) | 0.0161 (4) | |
H3 | 0.3184 | 0.7682 | 0.1957 | 0.019* | |
C4 | 0.2724 (2) | 0.9249 (2) | 0.4151 (2) | 0.0143 (3) | |
C5 | 0.2775 (2) | 0.9315 (2) | 0.5709 (2) | 0.0121 (3) | |
C6 | 0.2197 (2) | 1.0641 (3) | 0.3789 (2) | 0.0169 (4) | |
H6 | 0.2146 | 1.0606 | 0.2735 | 0.020* | |
C7 | 0.1770 (2) | 1.2007 (3) | 0.4937 (2) | 0.0167 (4) | |
H7 | 0.1410 | 1.2904 | 0.4666 | 0.020* | |
C8 | 0.1852 (2) | 1.2119 (2) | 0.6554 (2) | 0.0144 (3) | |
C9 | 0.2355 (2) | 1.0768 (2) | 0.6925 (2) | 0.0126 (3) | |
C10 | 0.1417 (2) | 1.3488 (2) | 0.7797 (2) | 0.0168 (4) | |
H10 | 0.1096 | 1.4451 | 0.7621 | 0.020* | |
C11 | 0.1464 (3) | 1.3406 (3) | 0.9264 (2) | 0.0180 (4) | |
H11 | 0.1145 | 1.4302 | 1.0103 | 0.022* | |
C12 | 0.1982 (3) | 1.2007 (2) | 0.9531 (2) | 0.0159 (4) | |
H12 | 0.2008 | 1.1976 | 1.0556 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.01424 (17) | 0.01694 (17) | 0.01513 (17) | 0.00489 (12) | 0.00478 (12) | 0.01048 (13) |
F1 | 0.0238 (6) | 0.0184 (5) | 0.0203 (6) | 0.0093 (5) | 0.0074 (5) | 0.0096 (5) |
O1 | 0.0156 (6) | 0.0145 (6) | 0.0113 (6) | 0.0054 (5) | 0.0052 (5) | 0.0070 (5) |
O2 | 0.0174 (7) | 0.0177 (6) | 0.0218 (7) | 0.0049 (5) | 0.0070 (5) | 0.0103 (6) |
N1 | 0.0115 (7) | 0.0145 (7) | 0.0125 (7) | 0.0039 (6) | 0.0032 (6) | 0.0060 (6) |
N2 | 0.0123 (7) | 0.0144 (7) | 0.0120 (7) | 0.0044 (6) | 0.0033 (6) | 0.0054 (6) |
C1 | 0.0142 (8) | 0.0153 (8) | 0.0155 (9) | 0.0053 (7) | 0.0042 (7) | 0.0059 (7) |
C2 | 0.0153 (9) | 0.0181 (9) | 0.0121 (8) | 0.0032 (7) | 0.0049 (7) | 0.0021 (7) |
C3 | 0.0136 (8) | 0.0210 (9) | 0.0115 (8) | 0.0022 (7) | 0.0043 (7) | 0.0059 (7) |
C4 | 0.0100 (8) | 0.0177 (8) | 0.0139 (8) | 0.0009 (6) | 0.0023 (6) | 0.0075 (7) |
C5 | 0.0097 (8) | 0.0137 (8) | 0.0129 (8) | 0.0028 (6) | 0.0028 (6) | 0.0064 (7) |
C6 | 0.0129 (8) | 0.0230 (9) | 0.0171 (9) | 0.0011 (7) | 0.0024 (7) | 0.0134 (8) |
C7 | 0.0136 (8) | 0.0182 (9) | 0.0213 (9) | 0.0024 (7) | 0.0030 (7) | 0.0134 (8) |
C8 | 0.0098 (8) | 0.0151 (8) | 0.0176 (9) | 0.0018 (6) | 0.0017 (7) | 0.0083 (7) |
C9 | 0.0099 (8) | 0.0137 (8) | 0.0136 (8) | 0.0025 (6) | 0.0026 (6) | 0.0061 (7) |
C10 | 0.0123 (8) | 0.0131 (8) | 0.0231 (10) | 0.0035 (7) | 0.0015 (7) | 0.0081 (7) |
C11 | 0.0162 (9) | 0.0154 (9) | 0.0174 (9) | 0.0067 (7) | 0.0023 (7) | 0.0031 (7) |
C12 | 0.0159 (9) | 0.0168 (8) | 0.0132 (8) | 0.0061 (7) | 0.0038 (7) | 0.0046 (7) |
V1—O2 | 1.6203 (14) | C3—H3 | 0.9500 |
V1—O1 | 1.7241 (13) | C4—C5 | 1.404 (2) |
V1—F1 | 1.7871 (12) | C4—C6 | 1.438 (3) |
V1—N2 | 2.1724 (16) | C5—C9 | 1.430 (2) |
V1—N1 | 2.2052 (16) | C6—C7 | 1.360 (3) |
V1—O1i | 2.3162 (13) | C6—H6 | 0.9500 |
N1—C1 | 1.330 (2) | C7—C8 | 1.438 (3) |
N1—C5 | 1.358 (2) | C7—H7 | 0.9500 |
N2—C12 | 1.329 (2) | C8—C9 | 1.402 (2) |
N2—C9 | 1.359 (2) | C8—C10 | 1.409 (3) |
C1—C2 | 1.403 (3) | C10—C11 | 1.373 (3) |
C1—H1 | 0.9500 | C10—H10 | 0.9500 |
C2—C3 | 1.376 (3) | C11—C12 | 1.400 (3) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C3—C4 | 1.415 (3) | C12—H12 | 0.9500 |
O2—V1—O1 | 104.98 (7) | C2—C3—H3 | 120.4 |
O2—V1—F1 | 102.29 (6) | C4—C3—H3 | 120.4 |
O1—V1—F1 | 104.75 (6) | C5—C4—C3 | 116.98 (17) |
O2—V1—N2 | 91.64 (6) | C5—C4—C6 | 118.79 (17) |
O1—V1—N2 | 90.52 (6) | C3—C4—C6 | 124.22 (17) |
F1—V1—N2 | 155.64 (6) | N1—C5—C4 | 123.54 (17) |
O2—V1—N1 | 98.29 (6) | N1—C5—C9 | 116.19 (16) |
O1—V1—N1 | 152.31 (6) | C4—C5—C9 | 120.27 (16) |
F1—V1—N1 | 84.36 (6) | C7—C6—C4 | 120.81 (17) |
N2—V1—N1 | 73.81 (6) | C7—C6—H6 | 119.6 |
O2—V1—O1i | 170.39 (6) | C4—C6—H6 | 119.6 |
O1—V1—O1i | 76.95 (6) | C6—C7—C8 | 121.25 (17) |
F1—V1—O1i | 86.10 (5) | C6—C7—H7 | 119.4 |
N2—V1—O1i | 78.88 (5) | C8—C7—H7 | 119.4 |
N1—V1—O1i | 77.68 (5) | C9—C8—C10 | 117.11 (17) |
V1—O1—V1i | 103.05 (6) | C9—C8—C7 | 118.67 (17) |
C1—N1—C5 | 118.04 (16) | C10—C8—C7 | 124.21 (17) |
C1—N1—V1 | 125.58 (12) | N2—C9—C8 | 123.62 (17) |
C5—N1—V1 | 116.33 (12) | N2—C9—C5 | 116.17 (16) |
C12—N2—C9 | 117.95 (16) | C8—C9—C5 | 120.20 (17) |
C12—N2—V1 | 124.57 (13) | C11—C10—C8 | 118.87 (17) |
C9—N2—V1 | 117.45 (12) | C11—C10—H10 | 120.6 |
N1—C1—C2 | 122.64 (17) | C8—C10—H10 | 120.6 |
N1—C1—H1 | 118.7 | C10—C11—C12 | 120.26 (18) |
C2—C1—H1 | 118.7 | C10—C11—H11 | 119.9 |
C3—C2—C1 | 119.50 (17) | C12—C11—H11 | 119.9 |
C3—C2—H2 | 120.2 | N2—C12—C11 | 122.16 (18) |
C1—C2—H2 | 120.2 | N2—C12—H12 | 118.9 |
C2—C3—C4 | 119.27 (17) | C11—C12—H12 | 118.9 |
O2—V1—O1—V1i | −170.30 (6) | C1—N1—C5—C4 | 1.1 (3) |
F1—V1—O1—V1i | 82.35 (6) | V1—N1—C5—C4 | 178.74 (13) |
N2—V1—O1—V1i | −78.46 (6) | C1—N1—C5—C9 | −179.58 (16) |
N1—V1—O1—V1i | −24.09 (15) | V1—N1—C5—C9 | −1.9 (2) |
O1i—V1—O1—V1i | 0.0 | C3—C4—C5—N1 | −1.6 (3) |
O2—V1—N1—C1 | −91.43 (15) | C6—C4—C5—N1 | 177.65 (16) |
O1—V1—N1—C1 | 121.45 (17) | C3—C4—C5—C9 | 179.14 (16) |
F1—V1—N1—C1 | 10.21 (15) | C6—C4—C5—C9 | −1.7 (3) |
N2—V1—N1—C1 | 179.27 (16) | C5—C4—C6—C7 | 0.6 (3) |
O1i—V1—N1—C1 | 97.44 (15) | C3—C4—C6—C7 | 179.75 (17) |
O2—V1—N1—C5 | 91.11 (13) | C4—C6—C7—C8 | 0.8 (3) |
O1—V1—N1—C5 | −56.00 (19) | C6—C7—C8—C9 | −1.1 (3) |
F1—V1—N1—C5 | −167.25 (13) | C6—C7—C8—C10 | −179.54 (18) |
N2—V1—N1—C5 | 1.81 (12) | C12—N2—C9—C8 | 1.4 (3) |
O1i—V1—N1—C5 | −80.02 (12) | V1—N2—C9—C8 | 179.58 (13) |
O2—V1—N2—C12 | 78.41 (16) | C12—N2—C9—C5 | −177.17 (16) |
O1—V1—N2—C12 | −26.60 (15) | V1—N2—C9—C5 | 1.0 (2) |
F1—V1—N2—C12 | −156.19 (15) | C10—C8—C9—N2 | 0.1 (3) |
N1—V1—N2—C12 | 176.56 (16) | C7—C8—C9—N2 | −178.51 (16) |
O1i—V1—N2—C12 | −103.19 (15) | C10—C8—C9—C5 | 178.59 (16) |
O2—V1—N2—C9 | −99.64 (13) | C7—C8—C9—C5 | 0.0 (3) |
O1—V1—N2—C9 | 155.36 (13) | N1—C5—C9—N2 | 0.6 (2) |
F1—V1—N2—C9 | 25.8 (2) | C4—C5—C9—N2 | 179.98 (16) |
N1—V1—N2—C9 | −1.48 (12) | N1—C5—C9—C8 | −178.00 (16) |
O1i—V1—N2—C9 | 78.77 (13) | C4—C5—C9—C8 | 1.4 (3) |
C5—N1—C1—C2 | 0.1 (3) | C9—C8—C10—C11 | −1.6 (3) |
V1—N1—C1—C2 | −177.28 (13) | C7—C8—C10—C11 | 176.93 (17) |
N1—C1—C2—C3 | −0.8 (3) | C8—C10—C11—C12 | 1.6 (3) |
C1—C2—C3—C4 | 0.3 (3) | C9—N2—C12—C11 | −1.4 (3) |
C2—C3—C4—C5 | 0.8 (3) | V1—N2—C12—C11 | −179.42 (14) |
C2—C3—C4—C6 | −178.35 (17) | C10—C11—C12—N2 | −0.1 (3) |
Symmetry code: (i) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···F1ii | 0.95 | 2.49 | 3.393 (2) | 160 |
C3—H3···O1iii | 0.95 | 2.44 | 3.191 (2) | 136 |
C6—H6···O1iii | 0.95 | 2.46 | 3.200 (2) | 135 |
C10—H10···O2iv | 0.95 | 2.39 | 3.282 (2) | 157 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y, z−1; (iv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [V2F2O4(C12H8N2)2] |
Mr | 564.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 90 |
a, b, c (Å) | 7.8320 (9), 8.4937 (10), 9.2007 (11) |
α, β, γ (°) | 113.741 (3), 102.834 (2), 97.848 (2) |
V (Å3) | 528.46 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.36 × 0.31 × 0.12 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.626, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5297, 2550, 2502 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.084, 1.14 |
No. of reflections | 2550 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.35 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···F1i | 0.95 | 2.49 | 3.393 (2) | 160.0 |
C3—H3···O1ii | 0.95 | 2.44 | 3.191 (2) | 135.9 |
C6—H6···O1ii | 0.95 | 2.46 | 3.200 (2) | 134.9 |
C10—H10···O2iii | 0.95 | 2.39 | 3.282 (2) | 156.9 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z−1; (iii) x, y+1, z. |
Acknowledgements
This work was supported by a grant from the National Science Foundation, CHE-0907787.
References
Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983–5993. Web of Science CrossRef Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284. Web of Science CSD CrossRef CAS Google Scholar
DeBurgomaster, P. & Zubieta, J. (2010). Acta Cryst. E66, m909. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gopalakrishnan, J. (1995). Chem. Mater. 7, 1265–1275. CrossRef CAS Web of Science Google Scholar
Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491–494. Web of Science CSD CrossRef CAS Google Scholar
Michailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des. 9, 755–765. Web of Science CSD CrossRef CAS Google Scholar
Michailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem. 45, 5641–5652. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ouellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2005). Dalton Trans. pp. 291–309. Web of Science CSD CrossRef Google Scholar
Ouellette, W., Golub, V., O'Connor, C. J. & Zubieta, J. (2007). J. Solid State Chem. 180, 2500–2509. Web of Science CSD CrossRef CAS Google Scholar
Ouellette, W., Yu, M. H., O'Connor, C. J. & Zubieta, J. (2006). Inorg. Chem. 45, 7628–7641. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ouellette, W. & Zubieta, J. (2007). Solid State Sci. 9, 658–663. Web of Science CSD CrossRef CAS Google Scholar
Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Whittingham, M. S. (1996). Curr. Opin. Solid State Mater. Sci. 1, 227–232. CrossRef CAS Web of Science Google Scholar
Zubieta, J. (2003). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 697–709. Amsterdam: Elsevier. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal oxyfluorides exhibit a range of compositions and considerable structural versatility that give rise to useful physical properties and potential applications (Adil, et al., 2010; Burkholder & Zubieta, 2004; DeBurgomaster & Zubieta, 2010; Jones et al., 2010; Michailovski, et al., 2006,2009; Ouellette et al., 2005,2006,2007); Ouellette & Zubieta, 2007). Hydrothermal chemistry offers one approach to the preparation of novel metal oxyfluorides where the complexity of the synthetic domain allows incorporation of fluoride into metal oxide frameworks, providing unusual and often unprecedented structures (Gopalakrishnan, 1995; Whittingham, 1996; Zubieta, 2003) Furthermore, the metal-oxyfluoride core can be stabilized or modified by the introduction of appropriate coligands, such as organonitrogen donors of the pyridyl family. In the course of our investigations of the hydrothermal chemistry of metal oxides in the presence of fluoride anion, the title compound [V2F2O4(phen)2] was isolated. The compound crystallizes in the triclinic space group P1 with one binuclear molecule per unit cell, whose halves are related by a center of symmetry at the mid-point of the V···V vector. The V atoms exhibit distorted octahedral geometry with {VFO3N2} coordination (Fig. 1). The µ-bis-oxo bridging mode is characterized by a {V2O2} rhombus with alternating short-long V—O bond distances of 1.724 (1) Å and 2.316 (1) Å, respectively. The terminal oxo-groups lie in the plane of the {V2O2} rhombus and exhibit a pronounced trans-influence as shown by the elongated bridging oxo-group-vanadium distance, V1—O1. The coordination geometry at the vanadium sites also exhibits a fluoride ligand with V—F of 1.787 (1) Å with the V—F vector approximately normal to the {V2O2} rhombus. The V—F vectors of the binuclear unit adopt an anti-orientation with respect to the plane if the {V2O2} rhombus. The geometry is completed by the nitrogen donors of the phenanthroline ligand, which occupy positions trans to the short V—O bond of the rhombus and trans to the terminal fluoride ligand. The crystal packing is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonds which produces two-dimensional connectivity in the bc plane (Figure 2).