organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,4-Di­methyl­benzyl­­idene)-4-ethyl­thio­semicarbazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bWeifang Middle School, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 20 September 2010; accepted 25 September 2010; online 30 September 2010)

The title compound, C12H17N3S, was prepared by the reaction of 4-ethyl­thio­semicarbazide and 3,4-dimethyl­benzaldehyde. The dihedral angle between the thiourea unit and the benzene ring is 7.09 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds occur.

Related literature

For applications of Schiff base compounds, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Habermehl et al. (2006[Habermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem. 45, 1445-1462.]). For the structure of 4-ethyl-1-(4-methyl­benzyl­idene)thio­semicarbazide, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N3S

  • Mr = 235.35

  • Monoclinic, P 21 /c

  • a = 8.6659 (17) Å

  • b = 15.207 (3) Å

  • c = 9.993 (2) Å

  • β = 93.47 (3)°

  • V = 1314.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 12215 measured reflections

  • 3006 independent reflections

  • 2429 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.206

  • S = 1.05

  • 3006 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.86 2.65 3.4929 (18) 168
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-bases have attracted attention because they can be utilized as effective ligands in coordination chemistry (Casas et al., 2000). They are important intermediates which have been reported to form chiral coordination compounds with many interesting properties (Habermehl et al., 2006). As part of our research on new Schiff-base compounds we synthesized the title compound (I), and have determined its crystal structure. The molecular structure is shown in Fig. 1. The dihedral angle between the benzene ring and the thiourea unit is 7.09 (8)°. The bond lengths and angles agree with those observed in 4-Ethyl-1-(4-methylbenzylidene)thiosemicarbazide (Li & Jian, 2010). In the crystal structure, centrosymmetric dimers are formed by pairs of intermolecular N—H···S hydrogen bonds.

Related literature top

For applications of Schiff base compounds, see: Casas et al. (2000); Habermehl et al. (2006). For the structure of 4-ethyl-1-(4-methylbenzylidene)thiosemicarbazide, see: Li & Jian (2010).

Experimental top

A mixture of the 4-ethylthiosemicarbazide (0.1 mol) and 3,4-dimethylbenzaldehyde (0.1 mol) was stirred in refluxing ethanol (30 mL) for 2 h to afford the title compound (0.085 mol, yield 85%). Single crystals suitable for X-ray measurements were obtained by recrystallization of a solution of the title compound in ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N-H = 0.86Å, and with Uiso = 1.2Ueq(C,N) or 1.2Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
1-(3,4-Dimethylbenzylidene)-4-ethylthiosemicarbazide top
Crystal data top
C12H17N3SF(000) = 504
Mr = 235.35Dx = 1.189 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2429 reflections
a = 8.6659 (17) Åθ = 3.3–27.5°
b = 15.207 (3) ŵ = 0.23 mm1
c = 9.993 (2) ÅT = 293 K
β = 93.47 (3)°Block, colorless
V = 1314.5 (5) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2429 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 1111
12215 measured reflectionsk = 1919
3006 independent reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1293P)2 + 0.2681P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H17N3SV = 1314.5 (5) Å3
Mr = 235.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6659 (17) ŵ = 0.23 mm1
b = 15.207 (3) ÅT = 293 K
c = 9.993 (2) Å0.22 × 0.20 × 0.18 mm
β = 93.47 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2429 reflections with I > 2σ(I)
12215 measured reflectionsRint = 0.056
3006 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
3006 reflectionsΔρmin = 0.34 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84996 (8)0.11266 (4)0.92188 (6)0.0702 (3)
N11.02915 (18)0.11306 (10)1.28935 (16)0.0480 (4)
N20.9879 (2)0.08927 (11)1.15935 (16)0.0532 (4)
H2A1.02350.04151.12690.064*
C91.1228 (2)0.06157 (13)1.35388 (19)0.0513 (4)
H9A1.15740.01151.31140.062*
N30.8377 (2)0.21192 (12)1.14109 (18)0.0581 (4)
H3A0.86300.21931.22490.070*
C41.1328 (3)0.15253 (16)1.5627 (2)0.0597 (5)
H4A1.06910.19471.52060.072*
C81.2782 (2)0.01920 (13)1.5576 (2)0.0544 (5)
H8A1.31200.02931.51080.065*
C31.1773 (2)0.07867 (13)1.49181 (19)0.0487 (4)
C100.8916 (2)0.14075 (13)1.08270 (19)0.0485 (4)
C71.3299 (2)0.03031 (14)1.6911 (2)0.0571 (5)
C61.2793 (3)0.10241 (17)1.7607 (2)0.0644 (6)
C51.1829 (3)0.16286 (18)1.6946 (2)0.0708 (6)
H5A1.15110.21201.74090.085*
C21.4415 (3)0.0353 (2)1.7562 (3)0.0837 (8)
H2B1.46510.01881.84800.126*
H2C1.53480.03601.70920.126*
H2D1.39560.09271.75300.126*
C120.5844 (3)0.2822 (2)1.1272 (4)0.0950 (9)
H12A0.52390.32651.08000.143*
H12B0.59350.29631.22100.143*
H12C0.53480.22611.11490.143*
C110.7391 (3)0.27866 (18)1.0749 (3)0.0787 (7)
H11A0.72890.26630.97960.094*
H11B0.78810.33571.08680.094*
C11.3292 (4)0.1167 (3)1.9069 (3)0.0973 (11)
H1B1.28320.16981.93800.146*
H1C1.43970.12161.91660.146*
H1D1.29620.06791.95890.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0834 (5)0.0734 (4)0.0509 (4)0.0196 (3)0.0188 (3)0.0005 (2)
N10.0472 (8)0.0524 (8)0.0437 (8)0.0018 (6)0.0027 (6)0.0016 (6)
N20.0575 (9)0.0541 (8)0.0464 (8)0.0123 (7)0.0088 (7)0.0005 (7)
C90.0536 (10)0.0496 (9)0.0496 (10)0.0050 (7)0.0049 (8)0.0006 (8)
N30.0575 (9)0.0611 (10)0.0554 (9)0.0163 (8)0.0018 (7)0.0074 (7)
C40.0582 (11)0.0668 (13)0.0535 (11)0.0141 (9)0.0015 (8)0.0024 (9)
C80.0552 (10)0.0493 (9)0.0572 (11)0.0028 (8)0.0075 (8)0.0059 (8)
C30.0461 (9)0.0515 (9)0.0481 (9)0.0020 (7)0.0019 (7)0.0045 (8)
C100.0414 (9)0.0526 (9)0.0510 (10)0.0036 (7)0.0019 (7)0.0086 (8)
C70.0505 (10)0.0641 (11)0.0554 (11)0.0114 (8)0.0088 (8)0.0156 (9)
C60.0523 (11)0.0943 (16)0.0459 (11)0.0092 (10)0.0025 (8)0.0010 (10)
C50.0677 (14)0.0861 (16)0.0580 (12)0.0112 (11)0.0003 (10)0.0162 (11)
C20.0802 (16)0.0911 (18)0.0768 (16)0.0046 (13)0.0208 (13)0.0262 (14)
C120.0636 (15)0.0908 (19)0.128 (3)0.0270 (14)0.0117 (15)0.0062 (18)
C110.0817 (16)0.0739 (15)0.0810 (16)0.0347 (13)0.0081 (12)0.0185 (12)
C10.089 (2)0.150 (3)0.0508 (14)0.0023 (18)0.0132 (13)0.0072 (15)
Geometric parameters (Å, º) top
S1—C101.681 (2)C7—C21.509 (3)
N1—C91.275 (2)C6—C51.383 (3)
N1—N21.375 (2)C6—C11.514 (3)
N2—C101.349 (2)C5—H5A0.9300
N2—H2A0.8600C2—H2B0.9600
C9—C31.453 (3)C2—H2C0.9600
C9—H9A0.9300C2—H2D0.9600
N3—C101.328 (3)C12—C111.468 (4)
N3—C111.459 (3)C12—H12A0.9600
N3—H3A0.8600C12—H12B0.9600
C4—C51.371 (3)C12—H12C0.9600
C4—C31.395 (3)C11—H11A0.9700
C4—H4A0.9300C11—H11B0.9700
C8—C71.392 (3)C1—H1B0.9600
C8—C31.395 (3)C1—H1C0.9600
C8—H8A0.9300C1—H1D0.9600
C7—C61.384 (3)
C9—N1—N2115.95 (16)C4—C5—C6122.0 (2)
C10—N2—N1120.03 (16)C4—C5—H5A119.0
C10—N2—H2A120.0C6—C5—H5A119.0
N1—N2—H2A120.0C7—C2—H2B109.5
N1—C9—C3122.03 (18)C7—C2—H2C109.5
N1—C9—H9A119.0H2B—C2—H2C109.5
C3—C9—H9A119.0C7—C2—H2D109.5
C10—N3—C11125.4 (2)H2B—C2—H2D109.5
C10—N3—H3A117.3H2C—C2—H2D109.5
C11—N3—H3A117.3C11—C12—H12A109.5
C5—C4—C3119.9 (2)C11—C12—H12B109.5
C5—C4—H4A120.0H12A—C12—H12B109.5
C3—C4—H4A120.0C11—C12—H12C109.5
C7—C8—C3121.9 (2)H12A—C12—H12C109.5
C7—C8—H8A119.0H12B—C12—H12C109.5
C3—C8—H8A119.0N3—C11—C12112.7 (2)
C8—C3—C4117.90 (18)N3—C11—H11A109.0
C8—C3—C9119.30 (18)C12—C11—H11A109.0
C4—C3—C9122.80 (18)N3—C11—H11B109.0
N3—C10—N2116.46 (17)C12—C11—H11B109.0
N3—C10—S1124.51 (14)H11A—C11—H11B107.8
N2—C10—S1119.02 (15)C6—C1—H1B109.5
C6—C7—C8119.00 (19)C6—C1—H1C109.5
C6—C7—C2121.4 (2)H1B—C1—H1C109.5
C8—C7—C2119.6 (2)C6—C1—H1D109.5
C5—C6—C7119.1 (2)H1B—C1—H1D109.5
C5—C6—C1119.6 (2)H1C—C1—H1D109.5
C7—C6—C1121.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.653.4929 (18)168
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC12H17N3S
Mr235.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6659 (17), 15.207 (3), 9.993 (2)
β (°) 93.47 (3)
V3)1314.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12215, 3006, 2429
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.206, 1.05
No. of reflections3006
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.653.4929 (18)168.4
Symmetry code: (i) x+2, y, z+2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationHabermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem. 45, 1445–1462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds