organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2675-o2676

Triphen­yl[(4-phenyl­benzo­yl)meth­yl]phospho­nium tri­fluoro­methane­sulfonate

aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, and bDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 20 September 2010; accepted 24 September 2010; online 30 September 2010)

In the cation of the title compound, C32H26OP+·CF3O3S, the dihedral angle between the benzene rings of the biphenyl group is 42.37 (8)°. In the crystal, the cations and anions inter­act through inter­molecular C—H⋯O hydrogen bonds, forming chains parallel to the b axis. These chains are further linked by C—H⋯π stacking inter­actions into layers parallel to the bc plane.

Related literature

For the synthesis and characterization of phospho­rus ylide metal complexes, see: Kalyanasundari et al. (1995[Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103-109.], 1999[Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. & Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33-36.]); Laavanya et al. (2001[Laavanya, P., Venkatasubramanian, U., Panchanatheswaran, K. & Bauer, J. A. K. (2001). Chem. Commun. pp. 1660-1661.]); Vicente et al. (1985[Vicente, J., Chicote, M. T., Cayuelas, J. A., Fernandez-Baeza, J., Jones, P. G., Sheldrick, G. M. & Espinet, P. (1985). J. Chem. Soc. Dalton Trans. pp. 1163-1168.]); Karami (2007[Karami, K. (2007). J. Chem. Res. (S), pp. 725-727.], 2008[Karami, K. (2008). Transition Met. Chem. 33, 819-823.]); Akkurt et al. (2008[Akkurt, M., Karami, K., Yalçın, Ş. P. & Büyükgüngör, O. (2008). Acta Cryst. E64, m612-m613.]). For related structures, see: Karami & Büyükgüngör (2009[Karami, K. & Büyükgüngör, O. (2009). Acta Cryst. E65, o296.]); Shao et al. (1982[Shao, M., Jin, X., Tang, Y. & Huang, Q. Y. (1982). Tetrahedron Lett. 23, 5343-5346.]). For the synthesis of the title compound, see: Burmeister et al. (1973[Burmeister, J. L., Silver, J. L., Weleski, E. T., Schweizer, E. E. & Kopay, C. M. (1973). Synth. Inorg. Met. Org. Chem. 3, 339-358.]).

[Scheme 1]

Experimental

Crystal data
  • C32H26OP+·CF3O3S

  • Mr = 606.58

  • Monoclinic, P 21 /c

  • a = 9.0559 (10) Å

  • b = 19.382 (2) Å

  • c = 16.5396 (19) Å

  • β = 92.577 (2)°

  • V = 2900.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 294 K

  • 0.25 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.974

  • 29195 measured reflections

  • 5245 independent reflections

  • 3748 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.06

  • 5245 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C21–C26 and C15–C20 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O4i 0.97 2.22 3.191 (4) 178
C26—H26⋯O3ii 0.93 2.45 3.373 (3) 174
C32—H32⋯O3ii 0.93 2.46 3.369 (4) 168
C1—H1ACg1iii 0.97 2.84 3.780 (3) 164
C10—H10⋯Cg2iv 0.93 3.02 3.767 (4) 138
C23—H23⋯Cg3v 0.93 2.91 3.788 (4) 159
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The synthesis of α–ketostabilized phosphorus ylides has attracted much interest over the last decades due to their stability and ability to act as bifunctional ligands (C- versus O-coordination; Kalyanasundari et al., 1995; Kalyanasundari et al., 1999; Laavanya et al., 2001; Vicente et al., 1985). In this respect, the preferred coordination modes of 4-flourobenzyloxymethylenetriphenylphosphorane ylide (FBPPY), 4-chlorobenzyl-oxymethylenetriphenylphosphorane ylide (CBPPY), and 4-methoxybenzoylmethylenetriphenylphosphorane ylide (MOBPPY) to transition metals such as mercury (II), silver (I) and palladium (II) have been recently investigated by our group (Karami, 2007, 2008; Akkurt et al., 2008). As a part of our ongoing study on the synthesis and characterization of new trifluoromethanesulfonate phosphonium ylides, the title compound has been prepared according to the sequence shown in Figure 3 (Burmeister et al., 1973), and its crystal structure is reported herein.

In the title compound (Fig. 1), bond lengths and angles within the phosphonium cation are not unusual and comparable to those observed for the related 4-methoxybenzoylmethyl derivative (Karami & Büyükgüngör, 2009). The P1–C1 bond length (1.798 (2) Å) is significantly longer than that reported in the free ylide (1.711 Å) of formula Ph3PC(H)COPh (Shao et al., 1982). The dihedral angle between the benzene rings of the biphenyl group is 42.37 (8)°. Unlike the 4-methoxybenzoylmethyl derivative, the conformation of the cation is not stabilized by intramolecular hydrogen bonds. In the crystal packing (Fig. 2), cations and anions are linked by intermolecular C—H···O hydrogen bonds into chains running parallel to the b axis (see Fig. 2 & Table 1). The chains further interact through C—H···π stacking interactions to form layers parallel to the bc plane (see Fig. 2 & Table 1).

Related literature top

For the synthesis and characterization of phosphorus ylide metal complexes, see: Kalyanasundari et al. (1995, 1999); Laavanya et al. (2001); Vicente et al. (1985); Karami (2007, 2008); Akkurt et al. (2008). For related structures, see: Karami & Büyükgüngör (2009); Shao et al. (1982). For the synthesis of the title compound, see: Burmeister et al. (1973).

Experimental top

The title compound was obtained by reaction of (4–phenylbenzoylmethyl)triphenylphosphonium bromide and AgOTf (OTf : trifluoromethanesulfonate) in dry acetone in a 1:1 molar ratio under stirring for 12 h (Fig. 3). The precipitate obtained was washed several times with dry diethyl ether and dried in a vacuum. Orange crystals of the title compound suitable for X–ray analysis formed by addition of dry diethyl ether to a chloroform solution. The crystals are air stable and resistant against moisture.

Refinement top

All H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dashed lines) in the crystal structure of the title compound.
[Figure 3] Fig. 3. The procedure adopted for the synthesis of the title compound.
Triphenyl[(4-phenylbenzoyl)methyl]phosphonium trifluoromethanesulfonate top
Crystal data top
C32H26OP+·CF3O3SF(000) = 1256
Mr = 606.58Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 744 reflections
a = 9.0559 (10) Åθ = 6.3–22.4°
b = 19.382 (2) ŵ = 0.22 mm1
c = 16.5396 (19) ÅT = 294 K
β = 92.577 (2)°Block, orange
V = 2900.1 (6) Å30.25 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5245 independent reflections
Radiation source: fine-focus sealed tube3748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.936, Tmax = 0.974k = 2323
29195 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.139H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.082P)2]
where P = (Fo2 + 2Fc2)/3
5245 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C32H26OP+·CF3O3SV = 2900.1 (6) Å3
Mr = 606.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0559 (10) ŵ = 0.22 mm1
b = 19.382 (2) ÅT = 294 K
c = 16.5396 (19) Å0.25 × 0.20 × 0.17 mm
β = 92.577 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5245 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3748 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.974Rint = 0.043
29195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
5245 reflectionsΔρmin = 0.29 e Å3
379 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.05841 (6)0.19921 (3)0.17248 (4)0.03733 (18)
S10.78232 (9)0.42703 (4)0.27665 (5)0.0666 (2)
F10.5564 (3)0.35241 (16)0.3102 (3)0.1880 (17)
F20.5301 (3)0.45799 (15)0.3327 (2)0.1577 (13)
F30.6656 (4)0.39779 (16)0.41126 (19)0.1544 (13)
O10.29798 (19)0.28836 (9)0.13868 (13)0.0625 (5)
O20.7193 (4)0.4436 (2)0.19884 (16)0.1420 (13)
O30.8484 (3)0.48364 (11)0.31695 (15)0.0894 (7)
O40.8683 (3)0.36544 (12)0.28273 (18)0.1039 (9)
C10.0380 (3)0.28830 (11)0.14394 (15)0.0435 (6)
H1A0.02070.29130.09350.052*
H1B0.01450.31260.18510.052*
C20.1864 (3)0.32291 (12)0.13352 (15)0.0449 (6)
C30.1899 (2)0.39764 (12)0.11621 (14)0.0433 (6)
C40.0651 (3)0.43896 (12)0.11089 (15)0.0459 (6)
H40.02670.42020.12110.055*
C50.0757 (3)0.50804 (12)0.09048 (15)0.0453 (6)
H50.00880.53540.08830.054*
C60.2109 (3)0.53701 (12)0.07326 (14)0.0433 (6)
C70.3360 (3)0.49527 (13)0.08168 (17)0.0535 (7)
H70.42820.51400.07240.064*
C80.3263 (3)0.42769 (13)0.10323 (17)0.0523 (7)
H80.41190.40130.10930.063*
C90.2251 (3)0.60970 (12)0.04788 (14)0.0437 (6)
C100.1499 (3)0.66280 (13)0.08446 (16)0.0549 (7)
H100.08250.65260.12350.066*
C110.1740 (3)0.73053 (14)0.06349 (18)0.0651 (8)
H110.12350.76570.08880.078*
C120.2723 (3)0.74644 (14)0.00535 (18)0.0613 (7)
H120.29130.79230.00700.074*
C130.3418 (3)0.69483 (15)0.03417 (18)0.0601 (7)
H130.40480.70550.07530.072*
C140.3188 (3)0.62676 (13)0.01322 (17)0.0539 (7)
H140.36670.59190.04040.065*
C150.1376 (3)0.14886 (12)0.09454 (14)0.0414 (5)
C160.0457 (3)0.12156 (13)0.03274 (15)0.0530 (6)
H160.05550.12990.03200.064*
C170.1047 (4)0.08214 (16)0.02744 (18)0.0690 (8)
H170.04370.06420.06900.083*
C180.2538 (4)0.06968 (16)0.02533 (19)0.0763 (9)
H180.29330.04270.06550.092*
C190.3454 (3)0.09620 (16)0.03476 (19)0.0677 (8)
H190.44630.08720.03530.081*
C200.2880 (3)0.13635 (13)0.09469 (15)0.0511 (6)
H200.35050.15500.13520.061*
C210.1644 (2)0.19295 (12)0.26621 (14)0.0398 (5)
C220.1840 (3)0.24969 (14)0.31672 (16)0.0594 (7)
H220.14940.29290.30030.071*
C230.2550 (4)0.24155 (19)0.39123 (19)0.0771 (9)
H230.26900.27960.42490.093*
C240.3053 (3)0.1785 (2)0.41654 (18)0.0728 (9)
H240.35360.17390.46700.087*
C250.2845 (3)0.12184 (17)0.36745 (17)0.0627 (7)
H250.31770.07880.38510.075*
C260.2145 (3)0.12866 (13)0.29199 (15)0.0476 (6)
H260.20110.09030.25860.057*
C270.1209 (2)0.16470 (12)0.19059 (13)0.0389 (5)
C280.2382 (3)0.20647 (13)0.20946 (15)0.0473 (6)
H280.22850.25420.20780.057*
C290.3701 (3)0.17695 (15)0.23093 (18)0.0591 (7)
H290.44940.20500.24310.071*
C300.3841 (3)0.10673 (15)0.23429 (17)0.0576 (7)
H300.47290.08720.24880.069*
C310.2677 (3)0.06509 (14)0.21634 (16)0.0555 (7)
H310.27810.01740.21880.067*
C320.1356 (3)0.09315 (12)0.19477 (15)0.0469 (6)
H320.05670.06470.18310.056*
C330.6237 (4)0.4073 (2)0.3325 (3)0.0963 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0344 (3)0.0359 (3)0.0418 (3)0.0018 (2)0.0030 (2)0.0002 (3)
S10.0717 (5)0.0581 (5)0.0714 (5)0.0069 (4)0.0203 (4)0.0080 (4)
F10.116 (2)0.126 (2)0.327 (5)0.0639 (19)0.070 (3)0.014 (3)
F20.0997 (18)0.150 (2)0.229 (3)0.0702 (17)0.0710 (19)0.072 (2)
F30.179 (3)0.161 (3)0.130 (2)0.054 (2)0.077 (2)0.072 (2)
O10.0444 (10)0.0477 (11)0.0966 (15)0.0018 (8)0.0148 (10)0.0106 (10)
O20.148 (3)0.214 (4)0.0626 (17)0.034 (2)0.0075 (17)0.0103 (19)
O30.1034 (17)0.0534 (12)0.1110 (19)0.0142 (12)0.0002 (14)0.0081 (12)
O40.1033 (18)0.0602 (14)0.153 (3)0.0123 (13)0.0578 (17)0.0148 (14)
C10.0414 (13)0.0375 (13)0.0520 (14)0.0040 (10)0.0054 (11)0.0025 (10)
C20.0416 (14)0.0432 (13)0.0507 (14)0.0023 (11)0.0098 (11)0.0003 (11)
C30.0420 (13)0.0422 (13)0.0462 (14)0.0041 (10)0.0084 (10)0.0010 (10)
C40.0384 (13)0.0478 (14)0.0517 (14)0.0064 (11)0.0058 (11)0.0020 (11)
C50.0424 (13)0.0436 (14)0.0503 (14)0.0012 (11)0.0061 (11)0.0007 (11)
C60.0464 (14)0.0426 (13)0.0414 (13)0.0025 (11)0.0066 (10)0.0041 (10)
C70.0417 (14)0.0457 (15)0.0742 (18)0.0067 (11)0.0147 (13)0.0010 (13)
C80.0387 (13)0.0423 (14)0.0769 (19)0.0013 (11)0.0137 (12)0.0007 (12)
C90.0452 (13)0.0424 (13)0.0435 (13)0.0021 (11)0.0018 (11)0.0002 (10)
C100.0666 (17)0.0495 (16)0.0497 (15)0.0016 (13)0.0129 (13)0.0033 (12)
C110.091 (2)0.0433 (15)0.0612 (18)0.0113 (15)0.0022 (16)0.0048 (13)
C120.0691 (18)0.0428 (15)0.0709 (19)0.0043 (13)0.0090 (15)0.0096 (13)
C130.0476 (15)0.0601 (18)0.0730 (19)0.0016 (13)0.0078 (13)0.0194 (15)
C140.0504 (15)0.0471 (15)0.0652 (17)0.0008 (12)0.0148 (13)0.0026 (12)
C150.0467 (14)0.0397 (13)0.0382 (13)0.0008 (10)0.0056 (10)0.0023 (10)
C160.0560 (15)0.0547 (16)0.0481 (15)0.0007 (12)0.0000 (12)0.0033 (12)
C170.088 (2)0.068 (2)0.0516 (17)0.0058 (17)0.0021 (15)0.0153 (14)
C180.102 (3)0.071 (2)0.0576 (19)0.0077 (19)0.0256 (18)0.0164 (15)
C190.0650 (18)0.0716 (19)0.068 (2)0.0138 (15)0.0215 (15)0.0001 (16)
C200.0474 (15)0.0577 (16)0.0488 (15)0.0050 (12)0.0083 (12)0.0014 (12)
C210.0345 (12)0.0438 (13)0.0413 (13)0.0028 (10)0.0044 (9)0.0023 (10)
C220.0720 (19)0.0517 (16)0.0539 (17)0.0014 (14)0.0032 (14)0.0094 (13)
C230.087 (2)0.085 (2)0.0588 (19)0.0074 (19)0.0087 (16)0.0219 (17)
C240.0621 (19)0.107 (3)0.0481 (17)0.0019 (18)0.0105 (14)0.0032 (17)
C250.0531 (16)0.078 (2)0.0571 (18)0.0112 (14)0.0008 (13)0.0138 (15)
C260.0446 (14)0.0495 (15)0.0485 (14)0.0015 (11)0.0005 (11)0.0010 (11)
C270.0351 (12)0.0427 (13)0.0387 (12)0.0022 (10)0.0001 (10)0.0016 (10)
C280.0417 (13)0.0434 (14)0.0567 (15)0.0007 (11)0.0018 (11)0.0025 (11)
C290.0372 (14)0.0685 (19)0.0719 (19)0.0000 (13)0.0076 (13)0.0009 (14)
C300.0399 (14)0.0691 (19)0.0642 (18)0.0146 (13)0.0041 (12)0.0028 (14)
C310.0545 (16)0.0468 (15)0.0649 (18)0.0150 (12)0.0011 (13)0.0038 (12)
C320.0434 (13)0.0422 (14)0.0554 (15)0.0022 (11)0.0039 (11)0.0027 (11)
C330.078 (2)0.077 (3)0.137 (4)0.019 (2)0.036 (2)0.028 (2)
Geometric parameters (Å, º) top
P1—C211.790 (2)C13—H130.9300
P1—C151.792 (2)C14—H140.9300
P1—C271.794 (2)C15—C201.383 (3)
P1—C11.798 (2)C15—C161.393 (3)
S1—O31.404 (2)C16—C171.381 (4)
S1—O21.421 (3)C16—H160.9300
S1—O41.427 (2)C17—C181.371 (4)
S1—C331.783 (4)C17—H170.9300
F1—C331.273 (5)C18—C191.366 (4)
F2—C331.298 (4)C18—H180.9300
F3—C331.354 (5)C19—C201.380 (4)
O1—C21.212 (3)C19—H190.9300
C1—C21.519 (3)C20—H200.9300
C1—H1A0.9700C21—C261.387 (3)
C1—H1B0.9700C21—C221.388 (3)
C2—C31.477 (3)C22—C231.373 (4)
C3—C41.385 (3)C22—H220.9300
C3—C81.391 (3)C23—C241.363 (5)
C4—C51.385 (3)C23—H230.9300
C4—H40.9300C24—C251.374 (4)
C5—C61.387 (3)C24—H240.9300
C5—H50.9300C25—C261.380 (4)
C6—C71.394 (3)C25—H250.9300
C6—C91.477 (3)C26—H260.9300
C7—C81.361 (3)C27—C281.382 (3)
C7—H70.9300C27—C321.395 (3)
C8—H80.9300C28—C291.385 (3)
C9—C101.388 (3)C28—H280.9300
C9—C141.389 (3)C29—C301.368 (4)
C10—C111.378 (4)C29—H290.9300
C10—H100.9300C30—C311.371 (4)
C11—C121.374 (4)C30—H300.9300
C11—H110.9300C31—C321.376 (3)
C12—C131.365 (4)C31—H310.9300
C12—H120.9300C32—H320.9300
C13—C141.382 (4)
C21—P1—C15111.69 (11)C16—C15—P1119.27 (19)
C21—P1—C27106.52 (10)C17—C16—C15120.0 (3)
C15—P1—C27108.17 (11)C17—C16—H16120.0
C21—P1—C1109.71 (11)C15—C16—H16120.0
C15—P1—C1111.96 (11)C18—C17—C16119.5 (3)
C27—P1—C1108.60 (11)C18—C17—H17120.3
O3—S1—O2113.5 (2)C16—C17—H17120.3
O3—S1—O4113.63 (16)C19—C18—C17121.2 (3)
O2—S1—O4116.7 (2)C19—C18—H18119.4
O3—S1—C33104.93 (19)C17—C18—H18119.4
O2—S1—C33102.5 (2)C18—C19—C20119.9 (3)
O4—S1—C33103.55 (16)C18—C19—H19120.0
C2—C1—P1111.90 (16)C20—C19—H19120.0
C2—C1—H1A109.2C19—C20—C15120.0 (3)
P1—C1—H1A109.2C19—C20—H20120.0
C2—C1—H1B109.2C15—C20—H20120.0
P1—C1—H1B109.2C26—C21—C22119.7 (2)
H1A—C1—H1B107.9C26—C21—P1118.85 (18)
O1—C2—C3122.0 (2)C22—C21—P1121.1 (2)
O1—C2—C1119.1 (2)C23—C22—C21119.4 (3)
C3—C2—C1118.8 (2)C23—C22—H22120.3
C4—C3—C8118.4 (2)C21—C22—H22120.3
C4—C3—C2123.7 (2)C24—C23—C22121.0 (3)
C8—C3—C2117.9 (2)C24—C23—H23119.5
C5—C4—C3120.6 (2)C22—C23—H23119.5
C5—C4—H4119.7C23—C24—C25120.0 (3)
C3—C4—H4119.7C23—C24—H24120.0
C4—C5—C6120.9 (2)C25—C24—H24120.0
C4—C5—H5119.6C24—C25—C26120.2 (3)
C6—C5—H5119.6C24—C25—H25119.9
C5—C6—C7117.7 (2)C26—C25—H25119.9
C5—C6—C9122.2 (2)C25—C26—C21119.7 (2)
C7—C6—C9120.1 (2)C25—C26—H26120.2
C8—C7—C6121.5 (2)C21—C26—H26120.2
C8—C7—H7119.2C28—C27—C32119.7 (2)
C6—C7—H7119.2C28—C27—P1121.99 (18)
C7—C8—C3120.8 (2)C32—C27—P1117.89 (17)
C7—C8—H8119.6C27—C28—C29119.7 (2)
C3—C8—H8119.6C27—C28—H28120.1
C10—C9—C14117.9 (2)C29—C28—H28120.1
C10—C9—C6122.2 (2)C30—C29—C28120.3 (2)
C14—C9—C6119.9 (2)C30—C29—H29119.9
C11—C10—C9120.7 (3)C28—C29—H29119.9
C11—C10—H10119.7C29—C30—C31120.2 (2)
C9—C10—H10119.7C29—C30—H30119.9
C12—C11—C10120.3 (3)C31—C30—H30119.9
C12—C11—H11119.8C30—C31—C32120.6 (2)
C10—C11—H11119.8C30—C31—H31119.7
C13—C12—C11119.9 (3)C32—C31—H31119.7
C13—C12—H12120.1C31—C32—C27119.5 (2)
C11—C12—H12120.1C31—C32—H32120.3
C12—C13—C14120.1 (3)C27—C32—H32120.3
C12—C13—H13119.9F1—C33—F2109.2 (4)
C14—C13—H13119.9F1—C33—F3105.9 (4)
C13—C14—C9120.9 (2)F2—C33—F3104.8 (4)
C13—C14—H14119.5F1—C33—S1114.5 (3)
C9—C14—H14119.5F2—C33—S1112.4 (3)
C20—C15—C16119.4 (2)F3—C33—S1109.3 (3)
C20—C15—P1121.34 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C21–C26 and C15–C20 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4i0.972.223.191 (4)178
C26—H26···O3ii0.932.453.373 (3)174
C32—H32···O3ii0.932.463.369 (4)168
C1—H1A···Cg1iii0.972.843.780 (3)164
C10—H10···Cg2iv0.933.023.767 (4)138
C23—H23···Cg3v0.932.913.788 (4)159
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H26OP+·CF3O3S
Mr606.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.0559 (10), 19.382 (2), 16.5396 (19)
β (°) 92.577 (2)
V3)2900.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.936, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
29195, 5245, 3748
Rint0.043
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.06
No. of reflections5245
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.29

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C21–C26 and C15–C20 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4i0.972.223.191 (4)177.9
C26—H26···O3ii0.932.453.373 (3)173.7
C32—H32···O3ii0.932.463.369 (4)167.8
C1—H1A···Cg1iii0.972.843.780 (3)163.6
C10—H10···Cg2iv0.933.023.767 (4)138.3
C23—H23···Cg3v0.932.913.788 (4)158.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationAkkurt, M., Karami, K., Yalçın, Ş. P. & Büyükgüngör, O. (2008). Acta Cryst. E64, m612–m613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurmeister, J. L., Silver, J. L., Weleski, E. T., Schweizer, E. E. & Kopay, C. M. (1973). Synth. Inorg. Met. Org. Chem. 3, 339–358.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. & Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33–36.  CSD CrossRef CAS Google Scholar
First citationKalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103–109.  CSD CrossRef CAS Web of Science Google Scholar
First citationKarami, K. (2007). J. Chem. Res. (S), pp. 725–727.  Web of Science CrossRef Google Scholar
First citationKarami, K. (2008). Transition Met. Chem. 33, 819–823.  Web of Science CrossRef CAS Google Scholar
First citationKarami, K. & Büyükgüngör, O. (2009). Acta Cryst. E65, o296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationLaavanya, P., Venkatasubramanian, U., Panchanatheswaran, K. & Bauer, J. A. K. (2001). Chem. Commun. pp. 1660–1661.  Web of Science CSD CrossRef Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationShao, M., Jin, X., Tang, Y. & Huang, Q. Y. (1982). Tetrahedron Lett. 23, 5343–5346.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, J., Chicote, M. T., Cayuelas, J. A., Fernandez-Baeza, J., Jones, P. G., Sheldrick, G. M. & Espinet, P. (1985). J. Chem. Soc. Dalton Trans. pp. 1163–1168.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2675-o2676
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds