organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phenyl­sulfin­yl)-2,5-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 August 2010; accepted 7 September 2010; online 11 September 2010)

In the crystal structure of the title compound, C16H13ClO2S, the 4-chloro­phenyl ring is oriented approximately perpendicular to the benzofuran ring plane [dihedral angle = 82.45 (5)°]. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the structures of related 3-(4-fluoro­phenyl­sulfin­yl)-2,5-dimethyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClO2S

  • Mr = 304.77

  • Monoclinic, P 21 /c

  • a = 12.7673 (19) Å

  • b = 11.0206 (18) Å

  • c = 11.1232 (17) Å

  • β = 113.674 (6)°

  • V = 1433.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.746

  • 12779 measured reflections

  • 3542 independent reflections

  • 3118 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.124

  • S = 1.03

  • 3542 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1, C2, C7, O1, C8 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.96 2.51 3.366 (2) 148
C15—H15⋯O2ii 0.93 2.60 3.353 (2) 139
C13—H13⋯Cg1iii 0.93 2.85 3.566 (2) 135
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our study on the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-2,5-dimethyl-1-benzofuran analogues (Choi et al., 2010a, b/), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.004 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring is nearly perpendicular to the benzofuran plane with a dihedral angle of 82.45 (5)°. In the crystal structure weak intermolecular C—H···O hydrogen bonding and C—H···π interaction are found (Fig. 2 and Table 1).

Related literature top

For the structures of related 3-(4-fluorophenylsulfinyl)-2,5-dimethyl-1-benzofuran derivatives, see: Choi et al. (2010a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,5-dimethyl-1-benzofuran (317 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 77%, m.p. 440–441 K; R/f = 0.71 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of the solvent from a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C)for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 2, y + 1/2, - z + 3/2; (ii) - x + 2, y -1/2, - z +3/2.]
3-(4-Chlorophenylsulfinyl)-2,5-dimethyl-1-benzofuran top
Crystal data top
C16H13ClO2SF(000) = 632
Mr = 304.77Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8210 reflections
a = 12.7673 (19) Åθ = 2.5–28.3°
b = 11.0206 (18) ŵ = 0.41 mm1
c = 11.1232 (17) ÅT = 173 K
β = 113.674 (6)°Block, colourless
V = 1433.4 (4) Å30.50 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3542 independent reflections
Radiation source: rotating anode3118 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.7°
ϕ and ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.654, Tmax = 0.746l = 1413
12779 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.5141P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3542 reflectionsΔρmax = 0.31 e Å3
184 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C16H13ClO2SV = 1433.4 (4) Å3
Mr = 304.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7673 (19) ŵ = 0.41 mm1
b = 11.0206 (18) ÅT = 173 K
c = 11.1232 (17) Å0.50 × 0.30 × 0.20 mm
β = 113.674 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3118 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.746Rint = 0.029
12779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3542 reflectionsΔρmin = 0.31 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.76980 (4)0.23428 (4)0.27031 (4)0.04162 (15)
S0.92673 (3)0.68708 (4)0.64073 (4)0.02874 (14)
O10.66438 (10)0.90669 (11)0.50482 (12)0.0371 (3)
O20.95961 (10)0.64186 (13)0.77732 (11)0.0398 (3)
C10.79481 (13)0.76039 (14)0.59101 (14)0.0261 (3)
C20.69064 (12)0.71954 (15)0.60000 (14)0.0264 (3)
C30.65623 (13)0.61696 (16)0.64794 (15)0.0303 (3)
H30.70710.55360.68500.036*
C40.54444 (14)0.61099 (19)0.63938 (17)0.0386 (4)
C50.47007 (15)0.7081 (2)0.5827 (2)0.0485 (5)
H50.39560.70330.57720.058*
C60.50216 (16)0.8100 (2)0.5347 (2)0.0477 (5)
H60.45140.87340.49700.057*
C70.61371 (14)0.81344 (16)0.54552 (16)0.0333 (4)
C80.77512 (14)0.87155 (15)0.53477 (15)0.0315 (3)
C90.50414 (17)0.5015 (2)0.6895 (2)0.0520 (5)
H9A0.56320.44100.71700.078*
H9B0.43680.46920.62090.078*
H9C0.48670.52450.76270.078*
C100.84732 (19)0.95889 (18)0.50136 (19)0.0452 (4)
H10A0.87431.02050.56790.068*
H10B0.80310.99580.41810.068*
H10C0.91140.91700.49640.068*
C110.87780 (11)0.55732 (14)0.53501 (14)0.0253 (3)
C120.82630 (14)0.57394 (16)0.40013 (15)0.0319 (3)
H120.81420.65170.36460.038*
C130.79335 (14)0.47361 (16)0.31949 (15)0.0324 (3)
H130.75810.48310.22890.039*
C140.81304 (12)0.35892 (15)0.37406 (15)0.0272 (3)
C160.89862 (12)0.44303 (15)0.58916 (15)0.0293 (3)
H160.93470.43360.67970.035*
C150.86562 (14)0.34154 (16)0.50817 (16)0.0314 (3)
H150.87870.26370.54350.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0453 (3)0.0364 (3)0.0423 (3)0.00681 (17)0.0167 (2)0.01106 (18)
S0.0214 (2)0.0302 (2)0.0333 (2)0.00229 (13)0.00965 (15)0.00328 (15)
O10.0419 (6)0.0266 (6)0.0358 (6)0.0078 (5)0.0084 (5)0.0007 (5)
O20.0369 (6)0.0435 (7)0.0287 (6)0.0039 (5)0.0025 (5)0.0033 (5)
C10.0274 (7)0.0247 (7)0.0260 (7)0.0000 (5)0.0106 (5)0.0024 (6)
C20.0236 (6)0.0305 (8)0.0239 (6)0.0025 (5)0.0084 (5)0.0040 (6)
C30.0254 (7)0.0368 (9)0.0285 (7)0.0012 (6)0.0106 (6)0.0007 (6)
C40.0296 (8)0.0552 (12)0.0337 (8)0.0072 (7)0.0155 (6)0.0082 (8)
C50.0261 (8)0.0683 (14)0.0529 (11)0.0017 (8)0.0177 (8)0.0129 (10)
C60.0315 (8)0.0547 (12)0.0513 (11)0.0167 (8)0.0106 (8)0.0075 (9)
C70.0323 (8)0.0319 (9)0.0326 (8)0.0053 (6)0.0097 (6)0.0066 (6)
C80.0389 (8)0.0262 (8)0.0264 (7)0.0010 (6)0.0099 (6)0.0048 (6)
C90.0408 (10)0.0737 (15)0.0464 (10)0.0196 (10)0.0226 (8)0.0039 (10)
C100.0619 (12)0.0323 (10)0.0402 (9)0.0122 (8)0.0193 (8)0.0001 (8)
C110.0206 (6)0.0290 (7)0.0289 (7)0.0005 (5)0.0128 (5)0.0009 (6)
C120.0385 (8)0.0286 (8)0.0291 (7)0.0031 (6)0.0141 (6)0.0056 (6)
C130.0361 (8)0.0362 (9)0.0252 (7)0.0021 (6)0.0125 (6)0.0028 (6)
C140.0238 (6)0.0300 (8)0.0300 (7)0.0009 (5)0.0132 (6)0.0027 (6)
C160.0285 (7)0.0326 (8)0.0257 (7)0.0035 (6)0.0097 (6)0.0048 (6)
C150.0325 (7)0.0276 (8)0.0331 (8)0.0020 (6)0.0122 (6)0.0035 (6)
Geometric parameters (Å, º) top
Cl—C141.7355 (16)C8—C101.480 (2)
S—O21.4902 (13)C9—H9A0.9600
S—C11.7457 (15)C9—H9B0.9600
S—C111.7966 (16)C9—H9C0.9600
O1—C81.372 (2)C10—H10A0.9600
O1—C71.384 (2)C10—H10B0.9600
C1—C81.352 (2)C10—H10C0.9600
C1—C21.445 (2)C11—C161.375 (2)
C2—C71.387 (2)C11—C121.387 (2)
C2—C31.394 (2)C12—C131.379 (2)
C3—C41.393 (2)C12—H120.9300
C3—H30.9300C13—C141.381 (2)
C4—C51.401 (3)C13—H130.9300
C4—C91.504 (3)C14—C151.381 (2)
C5—C61.375 (3)C16—C151.391 (2)
C5—H50.9300C16—H160.9300
C6—C71.381 (3)C15—H150.9300
C6—H60.9300
O2—S—C1108.59 (7)C4—C9—H9B109.5
O2—S—C11106.42 (8)H9A—C9—H9B109.5
C1—S—C1197.08 (7)C4—C9—H9C109.5
C8—O1—C7106.41 (13)H9A—C9—H9C109.5
C8—C1—C2107.99 (14)H9B—C9—H9C109.5
C8—C1—S122.84 (12)C8—C10—H10A109.5
C2—C1—S129.17 (12)C8—C10—H10B109.5
C7—C2—C3119.70 (14)H10A—C10—H10B109.5
C7—C2—C1104.31 (14)C8—C10—H10C109.5
C3—C2—C1135.99 (14)H10A—C10—H10C109.5
C4—C3—C2118.93 (16)H10B—C10—H10C109.5
C4—C3—H3120.5C16—C11—C12121.26 (15)
C2—C3—H3120.5C16—C11—S119.15 (11)
C3—C4—C5119.02 (18)C12—C11—S119.47 (12)
C3—C4—C9120.41 (18)C13—C12—C11119.08 (15)
C5—C4—C9120.57 (17)C13—C12—H12120.5
C6—C5—C4123.03 (17)C11—C12—H12120.5
C6—C5—H5118.5C12—C13—C14119.60 (14)
C4—C5—H5118.5C12—C13—H13120.2
C5—C6—C7116.50 (17)C14—C13—H13120.2
C5—C6—H6121.8C13—C14—C15121.69 (15)
C7—C6—H6121.8C13—C14—Cl118.62 (12)
C6—C7—O1126.38 (17)C15—C14—Cl119.68 (13)
C6—C7—C2122.83 (18)C11—C16—C15119.85 (14)
O1—C7—C2110.79 (14)C11—C16—H16120.1
C1—C8—O1110.50 (14)C15—C16—H16120.1
C1—C8—C10133.36 (16)C14—C15—C16118.51 (15)
O1—C8—C10116.14 (16)C14—C15—H15120.7
C4—C9—H9A109.5C16—C15—H15120.7
O2—S—C1—C8131.30 (14)C1—C2—C7—O10.08 (17)
C11—S—C1—C8118.68 (14)C2—C1—C8—O10.52 (17)
O2—S—C1—C248.63 (16)S—C1—C8—O1179.54 (10)
C11—S—C1—C261.39 (15)C2—C1—C8—C10179.19 (17)
C8—C1—C2—C70.26 (17)S—C1—C8—C100.7 (3)
S—C1—C2—C7179.80 (12)C7—O1—C8—C10.56 (17)
C8—C1—C2—C3179.12 (17)C7—O1—C8—C10179.21 (14)
S—C1—C2—C30.8 (3)O2—S—C11—C1613.00 (13)
C7—C2—C3—C40.3 (2)C1—S—C11—C16124.81 (12)
C1—C2—C3—C4179.60 (16)O2—S—C11—C12171.00 (12)
C2—C3—C4—C50.1 (2)C1—S—C11—C1259.20 (13)
C2—C3—C4—C9179.73 (16)C16—C11—C12—C131.4 (2)
C3—C4—C5—C60.1 (3)S—C11—C12—C13177.30 (12)
C9—C4—C5—C6179.70 (19)C11—C12—C13—C140.6 (2)
C4—C5—C6—C70.3 (3)C12—C13—C14—C150.3 (2)
C5—C6—C7—O1179.62 (17)C12—C13—C14—Cl179.56 (12)
C5—C6—C7—C20.8 (3)C12—C11—C16—C151.3 (2)
C8—O1—C7—C6179.97 (17)S—C11—C16—C15177.26 (12)
C8—O1—C7—C20.38 (17)C13—C14—C15—C160.3 (2)
C3—C2—C7—C60.7 (2)Cl—C14—C15—C16179.50 (11)
C1—C2—C7—C6179.74 (16)C11—C16—C15—C140.5 (2)
C3—C2—C7—O1179.58 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1, C2, C7, O1, C8 furan ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.962.513.366 (2)148
C15—H15···O2ii0.932.603.353 (2)139
C13—H13···Cg1iii0.932.853.566 (2)135
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13ClO2S
Mr304.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.7673 (19), 11.0206 (18), 11.1232 (17)
β (°) 113.674 (6)
V3)1433.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.654, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12779, 3542, 3118
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.124, 1.03
No. of reflections3542
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1, C2, C7, O1, C8 furan ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.962.513.366 (2)147.9
C15—H15···O2ii0.932.603.353 (2)138.9
C13—H13···Cg1iii0.932.853.566 (2)134.6
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by Blue-Bio Industry RIC at Dongeui University as a RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds