organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 7-oxo-12-propyl­amino-13-nitro­deiso­propyl­de­hydro­abietate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, bDepartment of Chemistry and Engineering Technology, Guilin Normal College, Guilin 541004, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006, People's Republic of China
*Correspondence e-mail: panym2004@yahoo.com

(Received 30 July 2010; accepted 16 August 2010; online 25 September 2010)

In the title compound, C21H28N2O5 (systematic name: methyl 1,4a-dimethyl-7-nitro-9-oxo-6-propyl­amino-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-1-carboxyl­ate) the cyclo­hexane ring (A) and the central cyclo­hexene ring (B) exist at a trans ring junction, with the two methyl groups in the axial positions of the six-membered rings. Ring A has a chair conformation and ring B a half-chair conformation. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure is stabilized by inter­molecular C—H⋯O and N—H⋯O inter­actions.

Related literature

For inhibition of viruses by resin acid derivatives, see: Fonseca et al. (2004[Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. & Clerq, E. D. (2004). Bioorg. Med. Chem. 12, 103-112.]); Gigante et al. (2003[Gigante, B., Santos, C., Silva, A. M., Curto, M. J. M., Nascimento, M. S. J., Pinto, E., Pedro, M., Cerqueira, F., Pinto, M. M., Duarte, M. P., Laires, A., Rueff, J., Goncalves, J., Pegado, M. I. & Valdeira, M. L. (2003). Bioorg. Med. Chem. 11, 1631-1638.]). For related structures, see: Hamodrakas et al. (1978[Hamodrakas, S., Akrigg, D. & Sheldrick, B. (1978). Cryst. Struct. Commun. 7, 429-434.]); Silvestre et al. (1998[Silvestre, A. J. D., Monteiro, S. M. C., Silva, A. M. S., Cavaleiro, J. A. S., Feĺix, V. M. S., Ferreira, P. & Drew, M. G. B. (1998). Monatsh. Chem. 129, 1183-1197.]).

[Scheme 1]

Experimental

Crystal data
  • C21H28N2O5

  • Mr = 388.45

  • Orthorhombic, P 21 21 21

  • a = 8.2915 (15) Å

  • b = 11.344 (2) Å

  • c = 20.288 (4) Å

  • V = 1908.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.40 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.987

  • 9263 measured reflections

  • 2492 independent reflections

  • 2249 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.122

  • S = 1.19

  • 2492 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.93 (4) 1.94 (4) 2.654 (4) 133 (3)
C8—H8B⋯O3i 0.98 2.55 3.454 (4) 154
C15—H15A⋯O1ii 0.98 2.40 3.344 (4) 161
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As the main components of rosin, abietic acid and dehydroabietic acid are tricyclic diterpene carboxylic acids. It have been demonstrated that resin acid derivatives exhibit inhibition activity against viruses by recent works (Gigante et al., 2003; Fonseca et al., 2004), which prompted us to synthesis of the title compound. In the cation of the title compounds (Fig.1), rings A (atoms C9—C14) and rings B (atoms C5—C10) demonstrate a trans ring junction with the torsion angles showing classical chair and halfchair conformations for rings A and B, respectively. There are two methyl groups in the axial positions of the six-membered rings and the overall geometric parameters of the title compound are comparable to those of 12-acetyl-dehydroabietate (Silvestre, et al., 1998) and methyl dehydroabietate (Hamodrakas, et al., 1978), apart from the substituted nitro group and propylamino at the benzene ring.

It should be noted that there are weak intermolecular C—H···O and N—H···O hydrogen bonds in the packing view, which link the molecules into a one-dimensional chain to stabilize the structure (Fig. 2).

The absolute configuration of the title compound could not determined from anomalous scattering effects because none heavier atoms than Si are present. However, NMR studies of analgous compounds suggest that the configuration is retained through the course of the reaction.Therefore, the absolute configuration of the title compound is assumed from the known absolute configuration of methyl dehydroabietate (Hamodrakas, et al., 1978).

Related literature top

For inhibition of viruses by resin acid derivatives, see: Fonseca et al. (2004); Gigante et al. (2003). For related structures, see: Hamodrakas et al. (1978); Silvestre et al. (1998).

Experimental top

Methyl 7-oxo-12-bromo-13-nitro-deisopropyldehydroabietate (2.5 mmol), potassium carbonate (1.0 mmol), cuprous chloride (2.0 mmol) were added to 15 ml DMF. After stirring for 10 min, n-propylamine (2.5 mmol) was added drop-wise. The resultant solution was refluxed for 4 h, and then plenty of ice water was added, a lot of orange-yellow solid was precipitated, filtered, washed with water, and then dried. Upon recrystallization from ethanol, pale orange crystls were obtained (Yield 78.9%, m.p. 455–456 k).

Refinement top

H atoms bound to C atoms were positioned geometrically and included in the refinement in the riding-model approximation [d(C—H) = 0.95 and 0.99 Å for aromatic and CH2 groups, respectively, and with Uiso(H) = 1.2Ueq (C) for all others. 1443 Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom labelling scheme. H atoms are represented by small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram with H bonds indicated by dashed lines.
methyl 1,4a-dimethyl-7-nitro-9-oxo-6-propylamino- 1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylate top
Crystal data top
C21H28N2O5F(000) = 832
Mr = 388.45Dx = 1.352 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 6184 reflections
a = 8.2915 (15) Åθ = 3.0–27.5°
b = 11.344 (2) ŵ = 0.10 mm1
c = 20.288 (4) ÅT = 223 K
V = 1908.3 (6) Å3Block, yellow
Z = 40.40 × 0.18 × 0.14 mm
Data collection top
Rigaku Saturn
diffractometer
2492 independent reflections
Radiation source: fine-focus sealed tube2249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1314
Tmin = 0.956, Tmax = 0.987l = 2618
9263 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.040P)2 + 0.3656P]
where P = (Fo2 + 2Fc2)/3
2492 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H28N2O5V = 1908.3 (6) Å3
Mr = 388.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2915 (15) ŵ = 0.10 mm1
b = 11.344 (2) ÅT = 223 K
c = 20.288 (4) Å0.40 × 0.18 × 0.14 mm
Data collection top
Rigaku Saturn
diffractometer
2492 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2249 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.987Rint = 0.047
9263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.16 e Å3
2492 reflectionsΔρmin = 0.20 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0800 (3)0.5805 (2)0.50671 (13)0.0413 (7)
O20.1082 (3)0.8201 (2)0.32927 (14)0.0428 (7)
O30.3574 (3)0.8723 (2)0.31899 (13)0.0374 (6)
O40.1294 (4)0.3814 (3)0.75394 (15)0.0594 (9)
O50.2387 (3)0.5514 (2)0.72342 (13)0.0393 (6)
N10.5809 (3)0.7320 (3)0.37018 (15)0.0301 (7)
H1A0.552 (4)0.784 (3)0.3368 (19)0.034 (10)*
N20.2510 (3)0.8110 (3)0.34543 (14)0.0296 (6)
C10.4799 (4)0.5968 (3)0.45202 (16)0.0273 (7)
H1B0.58470.56720.45830.033*
C20.4562 (4)0.6880 (3)0.40463 (16)0.0261 (7)
C30.2948 (4)0.7264 (3)0.39580 (16)0.0264 (7)
C40.1710 (4)0.6826 (3)0.43411 (16)0.0272 (7)
H40.06620.71260.42840.033*
C50.1976 (4)0.5958 (3)0.48066 (16)0.0259 (7)
C60.3556 (4)0.5500 (3)0.48907 (15)0.0249 (7)
C70.0594 (4)0.5512 (3)0.51883 (17)0.0306 (8)
C80.0933 (4)0.4657 (3)0.57383 (17)0.0291 (7)
H8A0.06260.38630.55950.035*
H8B0.02620.48630.61190.035*
C90.2698 (4)0.4647 (3)0.59499 (15)0.0255 (7)
H90.29300.54550.61060.031*
C100.2965 (4)0.3826 (3)0.65599 (17)0.0285 (7)
C110.4779 (4)0.3807 (3)0.67347 (18)0.0336 (8)
H11A0.50990.45850.68990.040*
H11B0.49620.32330.70880.040*
C120.5822 (5)0.3488 (4)0.61471 (19)0.0382 (9)
H12A0.55360.26970.59920.046*
H12B0.69580.34770.62810.046*
C130.5592 (4)0.4378 (3)0.55853 (18)0.0339 (8)
H13A0.62850.41540.52140.041*
H13B0.59330.51600.57370.041*
C140.3833 (4)0.4444 (3)0.53470 (16)0.0264 (7)
C150.7445 (4)0.6817 (3)0.36949 (17)0.0294 (7)
H15A0.77710.66390.41480.035*
H15B0.81970.74060.35200.035*
C160.7571 (4)0.5698 (3)0.32818 (18)0.0346 (8)
H16A0.73190.58810.28210.042*
H16B0.67810.51200.34390.042*
C170.9260 (4)0.5170 (3)0.33244 (19)0.0364 (9)
H17A1.00490.57620.32020.055*
H17B0.93400.45040.30260.055*
H17C0.94650.49090.37720.055*
C180.2105 (4)0.4364 (3)0.71584 (18)0.0326 (8)
C190.1741 (5)0.6042 (4)0.7827 (2)0.0500 (11)
H19A0.05740.59890.78210.075*
H19B0.20610.68640.78480.075*
H19C0.21560.56270.82100.075*
C200.2305 (5)0.2577 (3)0.6477 (2)0.0412 (9)
H20A0.24490.21430.68850.062*
H20B0.28820.21820.61250.062*
H20C0.11670.26130.63690.062*
C210.3452 (5)0.3342 (3)0.49327 (18)0.0376 (9)
H21A0.41100.33440.45380.056*
H21B0.23210.33470.48110.056*
H21C0.36840.26400.51890.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (12)0.0637 (19)0.0365 (15)0.0019 (13)0.0007 (11)0.0130 (14)
O20.0259 (13)0.0531 (16)0.0492 (17)0.0044 (13)0.0076 (13)0.0179 (14)
O30.0346 (13)0.0395 (14)0.0382 (15)0.0046 (12)0.0018 (12)0.0126 (12)
O40.077 (2)0.0477 (17)0.053 (2)0.0017 (17)0.0362 (18)0.0111 (15)
O50.0461 (15)0.0413 (14)0.0305 (14)0.0002 (13)0.0097 (12)0.0060 (12)
N10.0234 (14)0.0372 (17)0.0299 (16)0.0009 (13)0.0009 (12)0.0100 (13)
N20.0298 (15)0.0315 (15)0.0275 (14)0.0017 (14)0.0013 (13)0.0004 (13)
C10.0216 (14)0.0353 (19)0.0248 (17)0.0028 (14)0.0011 (13)0.0005 (15)
C20.0239 (16)0.0304 (18)0.0239 (17)0.0055 (15)0.0017 (13)0.0018 (15)
C30.0275 (16)0.0288 (17)0.0228 (16)0.0026 (15)0.0052 (13)0.0015 (14)
C40.0210 (15)0.0338 (18)0.0268 (17)0.0007 (15)0.0008 (13)0.0020 (14)
C50.0214 (14)0.0314 (17)0.0250 (17)0.0004 (14)0.0019 (12)0.0001 (14)
C60.0251 (15)0.0306 (17)0.0191 (15)0.0040 (14)0.0012 (13)0.0021 (13)
C70.0255 (16)0.039 (2)0.0271 (18)0.0021 (16)0.0007 (14)0.0005 (16)
C80.0255 (16)0.0344 (19)0.0274 (18)0.0031 (15)0.0029 (13)0.0044 (15)
C90.0261 (17)0.0260 (17)0.0245 (16)0.0017 (15)0.0013 (13)0.0003 (13)
C100.0323 (17)0.0271 (17)0.0261 (17)0.0002 (15)0.0035 (14)0.0041 (14)
C110.0343 (18)0.039 (2)0.0271 (18)0.0047 (16)0.0000 (15)0.0068 (16)
C120.0332 (19)0.046 (2)0.036 (2)0.0116 (18)0.0032 (17)0.0074 (17)
C130.0305 (17)0.042 (2)0.0290 (19)0.0076 (17)0.0032 (14)0.0060 (16)
C140.0274 (16)0.0258 (17)0.0259 (17)0.0019 (15)0.0030 (13)0.0010 (14)
C150.0202 (15)0.0356 (19)0.0326 (18)0.0007 (16)0.0007 (14)0.0027 (15)
C160.0302 (17)0.040 (2)0.0332 (19)0.0007 (17)0.0017 (15)0.0035 (16)
C170.0303 (17)0.041 (2)0.038 (2)0.0018 (17)0.0047 (16)0.0022 (17)
C180.0332 (18)0.0372 (19)0.0272 (18)0.0019 (16)0.0003 (14)0.0058 (16)
C190.061 (3)0.059 (3)0.030 (2)0.010 (2)0.007 (2)0.013 (2)
C200.051 (2)0.0318 (19)0.041 (2)0.0020 (19)0.0046 (19)0.0052 (17)
C210.051 (2)0.035 (2)0.0275 (19)0.0011 (18)0.0040 (17)0.0043 (16)
Geometric parameters (Å, º) top
O1—C71.227 (4)C10—C111.545 (5)
O2—N21.233 (3)C11—C121.517 (5)
O3—N21.245 (3)C11—H11A0.9800
O4—C181.200 (4)C11—H11B0.9800
O5—C181.334 (4)C12—C131.535 (5)
O5—C191.447 (4)C12—H12A0.9800
N1—C21.344 (4)C12—H12B0.9800
N1—C151.472 (4)C13—C141.539 (5)
N1—H1A0.93 (4)C13—H13A0.9800
N2—C31.448 (4)C13—H13B0.9800
C1—C61.382 (4)C14—C211.540 (5)
C1—C21.426 (5)C15—C161.525 (5)
C1—H1B0.9400C15—H15A0.9800
C2—C31.418 (4)C15—H15B0.9800
C3—C41.380 (5)C16—C171.525 (5)
C4—C51.383 (5)C16—H16A0.9800
C4—H40.9400C16—H16B0.9800
C5—C61.419 (4)C17—H17A0.9700
C5—C71.472 (4)C17—H17B0.9700
C6—C141.531 (5)C17—H17C0.9700
C7—C81.505 (5)C19—H19A0.9700
C8—C91.525 (4)C19—H19B0.9700
C8—H8A0.9800C19—H19C0.9700
C8—H8B0.9800C20—H20A0.9700
C9—C141.560 (4)C20—H20B0.9700
C9—C101.564 (5)C20—H20C0.9700
C9—H90.9900C21—H21A0.9700
C10—C201.529 (5)C21—H21B0.9700
C10—C181.535 (5)C21—H21C0.9700
C18—O5—C19115.8 (3)C11—C12—H12B109.5
C2—N1—C15124.8 (3)C13—C12—H12B109.5
C2—N1—H1A115 (2)H12A—C12—H12B108.1
C15—N1—H1A118 (2)C12—C13—C14112.5 (3)
O2—N2—O3121.3 (3)C12—C13—H13A109.1
O2—N2—C3119.0 (3)C14—C13—H13A109.1
O3—N2—C3119.7 (3)C12—C13—H13B109.1
C6—C1—C2122.8 (3)C14—C13—H13B109.1
C6—C1—H1B118.6H13A—C13—H13B107.8
C2—C1—H1B118.6C6—C14—C13111.8 (3)
N1—C2—C3123.1 (3)C6—C14—C21105.9 (3)
N1—C2—C1120.9 (3)C13—C14—C21109.0 (3)
C3—C2—C1116.0 (3)C6—C14—C9105.6 (3)
C4—C3—C2121.4 (3)C13—C14—C9109.4 (3)
C4—C3—N2116.7 (3)C21—C14—C9115.1 (3)
C2—C3—N2122.0 (3)N1—C15—C16113.0 (3)
C3—C4—C5121.5 (3)N1—C15—H15A109.0
C3—C4—H4119.3C16—C15—H15A109.0
C5—C4—H4119.3N1—C15—H15B109.0
C4—C5—C6119.3 (3)C16—C15—H15B109.0
C4—C5—C7118.7 (3)H15A—C15—H15B107.8
C6—C5—C7122.0 (3)C15—C16—C17111.0 (3)
C1—C6—C5118.9 (3)C15—C16—H16A109.4
C1—C6—C14121.1 (3)C17—C16—H16A109.4
C5—C6—C14119.8 (3)C15—C16—H16B109.4
O1—C7—C5122.3 (3)C17—C16—H16B109.4
O1—C7—C8119.9 (3)H16A—C16—H16B108.0
C5—C7—C8117.8 (3)C16—C17—H17A109.5
C7—C8—C9113.1 (3)C16—C17—H17B109.5
C7—C8—H8A109.0H17A—C17—H17B109.5
C9—C8—H8A109.0C16—C17—H17C109.5
C7—C8—H8B109.0H17A—C17—H17C109.5
C9—C8—H8B109.0H17B—C17—H17C109.5
H8A—C8—H8B107.8O4—C18—O5122.2 (4)
C8—C9—C14111.1 (3)O4—C18—C10124.3 (3)
C8—C9—C10111.3 (3)O5—C18—C10113.5 (3)
C14—C9—C10116.6 (3)O5—C19—H19A109.5
C8—C9—H9105.7O5—C19—H19B109.5
C14—C9—H9105.7H19A—C19—H19B109.5
C10—C9—H9105.7O5—C19—H19C109.5
C20—C10—C18106.8 (3)H19A—C19—H19C109.5
C20—C10—C11111.1 (3)H19B—C19—H19C109.5
C18—C10—C11106.1 (3)C10—C20—H20A109.5
C20—C10—C9114.5 (3)C10—C20—H20B109.5
C18—C10—C9108.9 (3)H20A—C20—H20B109.5
C11—C10—C9109.2 (3)C10—C20—H20C109.5
C12—C11—C10112.2 (3)H20A—C20—H20C109.5
C12—C11—H11A109.2H20B—C20—H20C109.5
C10—C11—H11A109.2C14—C21—H21A109.5
C12—C11—H11B109.2C14—C21—H21B109.5
C10—C11—H11B109.2H21A—C21—H21B109.5
H11A—C11—H11B107.9C14—C21—H21C109.5
C11—C12—C13110.8 (3)H21A—C21—H21C109.5
C11—C12—H12A109.5H21B—C21—H21C109.5
C13—C12—H12A109.5
C15—N1—C2—C3169.2 (3)C14—C9—C10—C18164.2 (3)
C15—N1—C2—C19.6 (5)C8—C9—C10—C11177.6 (3)
C6—C1—C2—N1179.2 (3)C14—C9—C10—C1148.8 (4)
C6—C1—C2—C32.0 (5)C20—C10—C11—C1273.9 (4)
N1—C2—C3—C4177.2 (3)C18—C10—C11—C12170.4 (3)
C1—C2—C3—C44.0 (5)C9—C10—C11—C1253.2 (4)
N1—C2—C3—N24.2 (5)C10—C11—C12—C1359.8 (4)
C1—C2—C3—N2174.6 (3)C11—C12—C13—C1459.2 (4)
O2—N2—C3—C415.9 (5)C1—C6—C14—C1326.8 (4)
O3—N2—C3—C4164.6 (3)C5—C6—C14—C13157.9 (3)
O2—N2—C3—C2162.7 (3)C1—C6—C14—C2191.8 (4)
O3—N2—C3—C216.7 (5)C5—C6—C14—C2183.5 (4)
C2—C3—C4—C53.0 (5)C1—C6—C14—C9145.7 (3)
N2—C3—C4—C5175.7 (3)C5—C6—C14—C939.0 (4)
C3—C4—C5—C60.3 (5)C12—C13—C14—C6168.4 (3)
C3—C4—C5—C7178.7 (3)C12—C13—C14—C2174.8 (4)
C2—C1—C6—C51.1 (5)C12—C13—C14—C951.8 (4)
C2—C1—C6—C14174.2 (3)C8—C9—C14—C662.4 (3)
C4—C5—C6—C12.3 (5)C10—C9—C14—C6168.7 (3)
C7—C5—C6—C1179.4 (3)C8—C9—C14—C13177.2 (3)
C4—C5—C6—C14173.1 (3)C10—C9—C14—C1348.3 (4)
C7—C5—C6—C145.2 (5)C8—C9—C14—C2154.0 (4)
C4—C5—C7—O16.8 (5)C10—C9—C14—C2174.9 (4)
C6—C5—C7—O1171.5 (3)C2—N1—C15—C1675.2 (4)
C4—C5—C7—C8174.0 (3)N1—C15—C16—C17176.5 (3)
C6—C5—C7—C87.7 (5)C19—O5—C18—O43.8 (5)
O1—C7—C8—C9164.0 (3)C19—O5—C18—C10173.9 (3)
C5—C7—C8—C916.8 (4)C20—C10—C18—O411.4 (5)
C7—C8—C9—C1453.1 (4)C11—C10—C18—O4107.1 (4)
C7—C8—C9—C10175.2 (3)C9—C10—C18—O4135.5 (4)
C8—C9—C10—C2052.4 (4)C20—C10—C18—O5170.8 (3)
C14—C9—C10—C2076.4 (4)C11—C10—C18—O570.6 (4)
C8—C9—C10—C1867.0 (3)C9—C10—C18—O546.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.93 (4)1.94 (4)2.654 (4)133 (3)
C8—H8B···O3i0.982.553.454 (4)154
C15—H15A···O1ii0.982.403.344 (4)161
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H28N2O5
Mr388.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)223
a, b, c (Å)8.2915 (15), 11.344 (2), 20.288 (4)
V3)1908.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.956, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9263, 2492, 2249
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.122, 1.19
No. of reflections2492
No. of parameters262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.93 (4)1.94 (4)2.654 (4)133 (3)
C8—H8B···O3i0.982.553.454 (4)153.5
C15—H15A···O1ii0.982.403.344 (4)161.0
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20762001), Guangxi's Medicine Talented Persons Small Highland Foundation (0808) and the Guangxi Department of Education research project (200911MS281, 200911MS282) for support.

References

First citationFonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. & Clerq, E. D. (2004). Bioorg. Med. Chem. 12, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGigante, B., Santos, C., Silva, A. M., Curto, M. J. M., Nascimento, M. S. J., Pinto, E., Pedro, M., Cerqueira, F., Pinto, M. M., Duarte, M. P., Laires, A., Rueff, J., Goncalves, J., Pegado, M. I. & Valdeira, M. L. (2003). Bioorg. Med. Chem. 11, 1631–1638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamodrakas, S., Akrigg, D. & Sheldrick, B. (1978). Cryst. Struct. Commun. 7, 429–434.  CAS Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvestre, A. J. D., Monteiro, S. M. C., Silva, A. M. S., Cavaleiro, J. A. S., Feĺix, V. M. S., Ferreira, P. & Drew, M. G. B. (1998). Monatsh. Chem. 129, 1183–1197.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds