metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-amino­pyrazine-2-carboxyl­ato-κ2N1,O)di­aqua­manganese(II)

aCollege of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang 712000, Shaanxi, People's Republic of China
*Correspondence e-mail: zmy71@126.com

(Received 10 August 2010; accepted 29 August 2010; online 8 September 2010)

The MnII atom in the title compound, [Mn(C5H4N3O2)2(H2O)2], exhibits an octa­hedral geometry comprising the two O atoms and two N atoms from two 3-amino­pyrazine-2-carboxyl­ate ligands, which act as chelating ligands, and two water mol­ecules. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link adjacent mol­ecules into a three-dimensional network. The mol­ecule lies on a twofold rotation axis.

Related literature

For the nickel(II) analog, see: Ptasiewicz-Bak & Leciejewicz (1999[Ptasiewicz-Bak, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717-725.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H4N3O2)2(H2O)2]

  • Mr = 367.20

  • Monoclinic, C 2/c

  • a = 7.9257 (11) Å

  • b = 12.6994 (18) Å

  • c = 13.663 (2) Å

  • β = 91.903 (2)°

  • V = 1374.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.889, Tmax = 0.924

  • 3373 measured reflections

  • 1221 independent reflections

  • 1114 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.096

  • S = 1.09

  • 1221 reflections

  • 112 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯O1i 0.86 2.33 3.044 (3) 141
N3—H3D⋯O2 0.86 2.07 2.703 (4) 130
O3—H3B⋯N2ii 0.89 (1) 1.95 (1) 2.833 (3) 170 (3)
O3—H3A⋯O2iii 0.89 (1) 1.75 (1) 2.637 (3) 171 (3)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For the nickel(II) analog, see: Ptasiewicz-Bak & Leciejewicz (1999).

Experimental top

The title complex was obtained as the main phase from the hydrothermal reaction of manganese sulfate tetrahydrate (0.0189 g) and 3-aminopyrazine-2-carboxylic acid (0.0913 g) in a 1:2 molar ratio. The reactants along with water were placed in a Teflon-lined stainless steel Parr bomb; the bomb was held at 413 K for three days. After cooling to room temperature, pink crystals were obtained.

Refinement top

All H atoms attached to C atoms and O atom from organic ligand were generated in idealized positions and constrained to ride on their parental C atoms, with C—H=0.93 Å, N—H=0.86 Å and and Uiso(H) = 1.5U(C). The water H-atoms were located in a difference Fouier map, and were refined with a distance restraint of O–H 0.88+0.01 Å; their temperature factors were also tied to those of the O-atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure with the atom-labling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Three dimensional network of the title complex connected through hydrogen bonding.
Bis(3-aminopyrazine-2-carboxylato-κ2N1,O)diaquamanganese(II) top
Crystal data top
[Mn(C5H4N3O2)2(H2O)2]F(000) = 748
Mr = 367.20Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.9257 (11) ÅCell parameters from 117 reflections
b = 12.6994 (18) Åθ = 2.5–18.9°
c = 13.663 (2) ŵ = 1.01 mm1
β = 91.903 (2)°T = 296 K
V = 1374.4 (3) Å3Block, pink
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX
diffractometer
1221 independent reflections
Radiation source: fine-focus sealed tube1114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.889, Tmax = 0.924k = 1515
3373 measured reflectionsl = 1612
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0509P)2 + 1.9431P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1221 reflectionsΔρmax = 0.36 e Å3
112 parametersΔρmin = 0.22 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (10)
Crystal data top
[Mn(C5H4N3O2)2(H2O)2]V = 1374.4 (3) Å3
Mr = 367.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.9257 (11) ŵ = 1.01 mm1
b = 12.6994 (18) ÅT = 296 K
c = 13.663 (2) Å0.12 × 0.10 × 0.08 mm
β = 91.903 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1221 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1114 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.924Rint = 0.021
3373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.36 e Å3
1221 reflectionsΔρmin = 0.22 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.30461 (4)0.25000.0254 (2)
O10.6806 (3)0.42418 (16)0.23675 (14)0.0466 (5)
O20.8132 (3)0.52317 (18)0.12895 (17)0.0645 (7)
O30.6893 (3)0.19335 (16)0.26050 (16)0.0475 (5)
N10.5308 (3)0.31144 (16)0.09621 (16)0.0332 (5)
N20.5990 (3)0.3363 (2)0.09977 (17)0.0425 (6)
N30.7654 (4)0.4795 (2)0.0636 (2)0.0573 (8)
H3C0.78290.48580.12510.069*
H3D0.81130.52310.02250.069*
C10.4598 (3)0.2483 (2)0.0281 (2)0.0396 (7)
H10.38550.19570.04630.048*
C20.4971 (4)0.2615 (2)0.0691 (2)0.0430 (7)
H20.44850.21580.11510.052*
C30.6674 (4)0.4023 (2)0.0320 (2)0.0386 (6)
C40.6355 (3)0.3870 (2)0.0689 (2)0.0342 (6)
C50.7160 (4)0.4498 (2)0.1509 (2)0.0406 (7)
H3B0.764 (3)0.181 (2)0.2150 (18)0.049*
H3A0.678 (4)0.1343 (15)0.295 (2)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0323 (3)0.0239 (3)0.0203 (3)0.0000.0081 (2)0.000
O10.0624 (13)0.0430 (11)0.0349 (11)0.0126 (10)0.0109 (9)0.0046 (9)
O20.0916 (18)0.0529 (14)0.0506 (14)0.0358 (13)0.0258 (13)0.0123 (11)
O30.0556 (13)0.0492 (13)0.0389 (12)0.0155 (10)0.0185 (10)0.0073 (9)
N10.0350 (12)0.0326 (12)0.0324 (12)0.0001 (9)0.0070 (9)0.0017 (9)
N20.0480 (14)0.0488 (14)0.0314 (12)0.0033 (11)0.0100 (10)0.0017 (11)
N30.083 (2)0.0478 (15)0.0422 (15)0.0173 (14)0.0232 (14)0.0036 (12)
C10.0380 (15)0.0445 (16)0.0364 (15)0.0049 (12)0.0022 (11)0.0001 (13)
C20.0429 (16)0.0516 (17)0.0347 (15)0.0040 (14)0.0034 (12)0.0018 (13)
C30.0444 (16)0.0358 (14)0.0363 (15)0.0057 (12)0.0127 (12)0.0038 (12)
C40.0380 (14)0.0307 (13)0.0346 (14)0.0032 (11)0.0113 (11)0.0014 (11)
C50.0501 (17)0.0339 (14)0.0386 (16)0.0052 (13)0.0162 (13)0.0027 (12)
Geometric parameters (Å, º) top
Mn1—O3i2.062 (2)N1—C11.337 (3)
Mn1—O32.062 (2)N2—C21.324 (4)
Mn1—O12.099 (2)N2—C31.350 (4)
Mn1—O1i2.099 (2)N3—C31.332 (4)
Mn1—N12.125 (2)N3—H3C0.8600
Mn1—N1i2.125 (2)N3—H3D0.8600
O1—C51.257 (3)C1—C21.381 (4)
O2—C51.252 (3)C1—H10.9300
O3—H3B0.887 (10)C2—H20.9300
O3—H3A0.891 (10)C3—C41.422 (4)
N1—C41.330 (3)C4—C51.501 (4)
O3i—Mn1—O393.50 (13)C1—N1—Mn1127.13 (18)
O3i—Mn1—O1170.52 (8)C2—N2—C3117.6 (2)
O3—Mn1—O190.29 (9)C3—N3—H3C120.0
O3i—Mn1—O1i90.29 (9)C3—N3—H3D120.0
O3—Mn1—O1i170.52 (8)H3C—N3—H3D120.0
O1—Mn1—O1i87.32 (12)N1—C1—C2119.9 (3)
O3i—Mn1—N193.80 (8)N1—C1—H1120.1
O3—Mn1—N189.40 (8)C2—C1—H1120.1
O1—Mn1—N177.54 (8)N2—C2—C1123.0 (3)
O1i—Mn1—N199.02 (8)N2—C2—H2118.5
O3i—Mn1—N1i89.40 (8)C1—C2—H2118.5
O3—Mn1—N1i93.80 (8)N3—C3—N2117.4 (3)
O1—Mn1—N1i99.02 (8)N3—C3—C4122.6 (3)
O1i—Mn1—N1i77.54 (8)N2—C3—C4120.0 (3)
N1—Mn1—N1i175.33 (11)N1—C4—C3120.2 (2)
C5—O1—Mn1116.20 (18)N1—C4—C5115.3 (2)
Mn1—O3—H3B125 (2)C3—C4—C5124.5 (2)
Mn1—O3—H3A122 (2)O2—C5—O1125.1 (3)
H3B—O3—H3A107 (3)O2—C5—C4117.8 (2)
C4—N1—C1119.3 (2)O1—C5—C4117.2 (2)
C4—N1—Mn1113.60 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···O1ii0.862.333.044 (3)141
N3—H3D···O20.862.072.703 (4)130
O3—H3B···N2iii0.89 (1)1.95 (1)2.833 (3)170 (3)
O3—H3A···O2iv0.89 (1)1.75 (1)2.637 (3)171 (3)
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+3/2, y+1/2, z; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C5H4N3O2)2(H2O)2]
Mr367.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)7.9257 (11), 12.6994 (18), 13.663 (2)
β (°) 91.903 (2)
V3)1374.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.889, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
3373, 1221, 1114
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.096, 1.09
No. of reflections1221
No. of parameters112
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···O1i0.862.333.044 (3)140.8
N3—H3D···O20.862.072.703 (4)130.0
O3—H3B···N2ii0.887 (10)1.954 (12)2.833 (3)170 (3)
O3—H3A···O2iii0.891 (10)1.754 (12)2.637 (3)171 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of Shaanxi Province (2009JQ2015, 2010JM2009), the Special Foundation of the Education Department of Shaanxi Province (09 J K798) and the Special Research Fund of Xianyang Normal University for Talent Introduction (08XSYK305, 09XSYK208).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717–725.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds