metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,6-Bis[(4-bromo­phen­yl)imino­meth­yl]pyridine-κ3N,N′,N′′}tri­chlorido­chromium(III)

aDepartment of Chemistry, Shaanxi Key Laboratory for Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: jszhao@nwu.edu.cn

(Received 26 August 2010; accepted 28 August 2010; online 8 September 2010)

In the title compound, [CrCl3(C19H13Br2N3)], the Cr3+ ion is coordinated by the tridentate 2,6-bis­[(4-bromo­phen­yl)imino­meth­yl]pyridine Schiff base ligand in a fac-octa­hedral geometry. The dihedral angles between the pyridine and benzene rings are 23.9 (6) and 70.7 (1)°.

Related literature

For background to Schiff bases as chelating ligands, see: Yin et al. (2010[Yin, J., Dasgupta, S. & Wu, J. S. (2010). Org. Lett. 12, 1712-1715.]); Yang et al. (2010[Yang, Y. R., Li, W., Huang, X. B., Zhang, L. T., Qin, W., Wu, J., Wang, J. D., Jiang, B. B. & Huang, Z. L. (2010), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101649012, 19 pp.]); Barboiu et al. (2009[Barboiu, M., Dumitru, F., Legrand, Y.-M., Petit, E. & vander Lee, A. (2009). Chem. Commun. pp. 2192-2194.]); Rohini et al. (2009[Rohini, R., Shanker, K., Reddy, P. M., Ho, Y.-P. & &Ravinder, V. (2009). Eur. J. Med. Chem. 44, 3330-3339.]); Legrand et al. (2009[Legrand, Y.-M., Dumitru, F., Lee, A. V. D. & Barboiu, M. (2009). Supramol. Chem. 21, 230-237.]). For similar zinc complexes, see: Ceniceros-Gomez et al. (2000[Ceniceros-Gomez, A. E., Barba-Behrens, N., Quiroz-Castro, M. E., Bernes, S., Nöth, H. & Castillo-Blum, S. E. (2000). Polyhedron, 19, 1821-1827.]); Sugiyama et al. (2002[Sugiyama, H., Aharonian, G., Gambarotta, S., Yap, G. P. A. & Budzelaar, P. H. M. (2002). J. Am. Chem. Soc. 124, 12268-12274.]); Sun et al. (2009[Sun, W. H., Zhang, S. & Jie, S. Y. (2009), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101357931, 22 pp.]); Gong et al. (2009[Gong, D. R., Wang, B. L., Bai, C. X., Bi, J. F., Wang, F., Dong, W. M., Zhang, X. Q. & Jiang, L. S. (2009). Polymer, 50, 6259-6264.]); Xiao et al. (2010[Xiao, L. W., Zhang, M. & Sun, W. H. (2010). Polyhedron, 29, 142-147.]).

[Scheme 1]

Experimental

Crystal data
  • [CrCl3(C19H13Br2N3)]

  • Mr = 601.49

  • Monoclinic, P 21 /c

  • a = 13.722 (3) Å

  • b = 10.111 (2) Å

  • c = 18.905 (3) Å

  • β = 124.702 (12)°

  • V = 2156.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.62 mm−1

  • T = 296 K

  • 0.20 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen,Germany.]) Tmin = 0.457, Tmax = 0.689

  • 11189 measured reflections

  • 4177 independent reflections

  • 2279 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.153

  • S = 0.97

  • 4177 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have often been used as chelating ligands in coordination chemistry (Yin et al. (2010); Yang et al. (2010); Rohini et al. (2009): Legrand et al. (2009)). We report here the crystal structure of the title new chromium complex with the chelating Schiff base ligand 2, 6-bis [1-(4-bromophenylimino)] pyridine The Cr atom in the complex is six-coordinated by one pyridine N and two imine N atoms of the Schiff base ligand, and by two bromide atoms, forming tetrahedral geometry (Fig.1). The dihedral angle between the pyridine and the benzene rings is 23.9 (6) ° and 70.7 (1) °. The bond lengths (Table 1) related to the Cr atom are comparable to those observed in similar chromium complexes (Sugiyama et al. (2002); Sun et al. (2009); Gong et al. (2009); Xiao et al. (2010)).

Related literature top

For background to Schiff bases as chelating ligands, see: Yin et al. (2010); Yang et al. (2010); Barboiu et al. (2009); Rohini et al. (2009); Legrand et al. (2009). For similar zinc complexes, see: Ceniceros-Gomez et al. (2000); Sugiyama et al. (2002); Sun et al. (2009); Gong et al. (2009); Xiao et al. (2010).

Experimental top

2,6-bis[1-(4-bromophenylimino)]pyridine(0.0226 g, 0.05 mmol), and CrCl3?6H2O (0.0139 g, 0.05 mmol) were mixed and stirred in ethanol(10 ml) for 2 min and then heated in a stainless steel reactor with Teflon liner at 353 K for 72 h. After cooling at 5 K per hour, green crystals were obtained.

Refinement top

H atoms were positioned geometrically(C—H = 0.93 Å) and refined using a riding model, with Uiso (H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 50% probability displacement ellipsoids.
{2,6-Bis[(4-bromophenyl)iminomethyl]pyridine- κ3N,N',N''}trichloridochromium(III) top
Crystal data top
[CrCl3(C19H13Br2N3)]F(000) = 1172
Mr = 601.49Dx = 1.853 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1555 reflections
a = 13.722 (3) Åθ = 2.4–19.9°
b = 10.111 (2) ŵ = 4.62 mm1
c = 18.905 (3) ÅT = 296 K
β = 124.702 (12)°Block, green
V = 2156.4 (7) Å30.20 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4177 independent reflections
Radiation source: fine-focus sealed tube2279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1613
Tmin = 0.457, Tmax = 0.689k = 1212
11189 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0769P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
4177 reflectionsΔρmax = 0.61 e Å3
254 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (4)
Crystal data top
[CrCl3(C19H13Br2N3)]V = 2156.4 (7) Å3
Mr = 601.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.722 (3) ŵ = 4.62 mm1
b = 10.111 (2) ÅT = 296 K
c = 18.905 (3) Å0.20 × 0.13 × 0.09 mm
β = 124.702 (12)°
Data collection top
Bruker APEXII CCD
diffractometer
4177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2279 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.689Rint = 0.053
11189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.97Δρmax = 0.61 e Å3
4177 reflectionsΔρmin = 0.41 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.28797 (8)0.86124 (8)0.64659 (6)0.0434 (3)
Br10.69677 (8)0.65971 (9)1.11306 (5)0.0892 (3)
Br20.00271 (10)0.39656 (7)0.26880 (5)0.1018 (4)
Cl10.31007 (19)0.63611 (14)0.66454 (12)0.0757 (6)
Cl20.44502 (15)0.87626 (17)0.63412 (11)0.0630 (5)
Cl30.12377 (15)0.86383 (17)0.65121 (11)0.0656 (5)
N10.3903 (4)0.9528 (4)0.7728 (3)0.0483 (12)
N20.2615 (4)1.0541 (4)0.6191 (3)0.0449 (11)
N30.1766 (4)0.8645 (4)0.5113 (3)0.0463 (12)
C10.4323 (7)0.7618 (7)0.8620 (4)0.0691 (19)
H10.36790.71970.81450.083*
C20.5019 (8)0.6955 (7)0.9398 (5)0.077 (2)
H20.48390.60840.94400.092*
C30.5961 (6)0.7561 (7)1.0101 (4)0.0632 (18)
C40.6215 (6)0.8848 (7)1.0040 (4)0.071 (2)
H40.68500.92691.05220.085*
C50.5537 (6)0.9535 (7)0.9267 (4)0.0658 (18)
H50.57211.04070.92320.079*
C60.4597 (5)0.8921 (6)0.8557 (4)0.0480 (14)
C70.3845 (6)1.0794 (6)0.7687 (4)0.0560 (16)
H70.42411.13020.81850.067*
C80.3151 (5)1.1420 (5)0.6847 (4)0.0501 (15)
C90.2975 (6)1.2779 (6)0.6666 (4)0.0571 (17)
H90.33291.33980.71090.069*
C100.2260 (6)1.3180 (6)0.5810 (4)0.0591 (17)
H100.21341.40780.56800.071*
C110.1731 (5)1.2261 (6)0.5144 (4)0.0531 (16)
H110.12581.25300.45730.064*
C120.1932 (5)1.0924 (5)0.5360 (3)0.0424 (13)
C130.1483 (5)0.9800 (6)0.4780 (4)0.0480 (14)
H130.10070.99170.41870.058*
C140.1391 (5)0.7505 (5)0.4560 (3)0.0436 (14)
C150.1856 (6)0.7279 (6)0.4095 (4)0.0498 (15)
H150.24360.78370.41520.060*
C160.1458 (7)0.6218 (6)0.3541 (4)0.0623 (19)
H160.17690.60530.32220.075*
C170.0601 (7)0.5402 (6)0.3461 (4)0.0626 (19)
C180.0162 (7)0.5603 (7)0.3942 (5)0.077 (2)
H180.04050.50310.38910.092*
C190.0562 (6)0.6658 (6)0.4505 (5)0.070 (2)
H190.02770.67960.48420.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0463 (6)0.0347 (5)0.0413 (5)0.0011 (4)0.0203 (5)0.0050 (4)
Br10.0738 (6)0.1233 (8)0.0643 (5)0.0183 (5)0.0356 (5)0.0310 (5)
Br20.1720 (11)0.0517 (5)0.0608 (5)0.0254 (5)0.0540 (6)0.0206 (4)
Cl10.1130 (17)0.0359 (9)0.0707 (12)0.0020 (9)0.0479 (12)0.0021 (8)
Cl20.0507 (10)0.0704 (11)0.0663 (11)0.0064 (9)0.0324 (9)0.0027 (8)
Cl30.0572 (11)0.0812 (12)0.0614 (10)0.0099 (9)0.0355 (9)0.0088 (9)
N10.055 (3)0.037 (3)0.044 (3)0.002 (2)0.023 (3)0.006 (2)
N20.047 (3)0.036 (3)0.042 (3)0.001 (2)0.020 (2)0.005 (2)
N30.047 (3)0.041 (3)0.041 (3)0.004 (2)0.018 (3)0.007 (2)
C10.070 (5)0.064 (4)0.055 (4)0.006 (4)0.024 (4)0.001 (4)
C20.098 (6)0.056 (4)0.067 (5)0.003 (4)0.041 (5)0.010 (4)
C30.058 (5)0.077 (5)0.047 (4)0.013 (4)0.026 (4)0.004 (4)
C40.061 (5)0.086 (5)0.046 (4)0.012 (4)0.019 (4)0.010 (4)
C50.059 (4)0.065 (4)0.049 (4)0.011 (4)0.017 (4)0.000 (3)
C60.045 (4)0.046 (3)0.047 (4)0.002 (3)0.022 (3)0.002 (3)
C70.058 (4)0.053 (4)0.044 (4)0.002 (3)0.021 (3)0.011 (3)
C80.048 (4)0.039 (3)0.049 (4)0.004 (3)0.020 (3)0.006 (3)
C90.060 (4)0.038 (3)0.054 (4)0.002 (3)0.022 (4)0.002 (3)
C100.066 (5)0.030 (3)0.071 (5)0.003 (3)0.033 (4)0.002 (3)
C110.049 (4)0.042 (3)0.058 (4)0.002 (3)0.024 (3)0.006 (3)
C120.043 (4)0.036 (3)0.042 (3)0.002 (3)0.020 (3)0.005 (3)
C130.042 (4)0.054 (4)0.040 (3)0.006 (3)0.019 (3)0.010 (3)
C140.047 (4)0.042 (3)0.033 (3)0.005 (3)0.017 (3)0.009 (3)
C150.063 (4)0.042 (3)0.046 (4)0.004 (3)0.033 (3)0.002 (3)
C160.097 (6)0.044 (4)0.057 (4)0.003 (4)0.050 (4)0.001 (3)
C170.094 (6)0.040 (3)0.036 (3)0.002 (4)0.026 (4)0.002 (3)
C180.079 (5)0.060 (5)0.077 (5)0.024 (4)0.036 (5)0.023 (4)
C190.068 (5)0.066 (5)0.084 (5)0.016 (4)0.048 (5)0.021 (4)
Geometric parameters (Å, º) top
Cr1—N21.997 (4)C5—H50.9300
Cr1—N32.105 (5)C7—C81.451 (8)
Cr1—N12.170 (5)C7—H70.9300
Cr1—Cl12.2959 (17)C8—C91.403 (8)
Cr1—Cl22.3025 (19)C9—C101.394 (8)
Cr1—Cl32.3042 (19)C9—H90.9300
Br1—C31.893 (6)C10—C111.391 (8)
Br2—C171.886 (6)C10—H100.9300
N1—C71.283 (7)C11—C121.393 (8)
N1—C61.428 (7)C11—H110.9300
N2—C121.349 (7)C12—C131.450 (7)
N2—C81.353 (7)C13—H130.9300
N3—C131.277 (7)C14—C151.369 (7)
N3—C141.439 (6)C14—C191.379 (8)
C1—C21.387 (9)C15—C161.377 (8)
C1—C61.394 (8)C15—H150.9300
C1—H10.9300C16—C171.372 (9)
C2—C31.363 (9)C16—H160.9300
C2—H20.9300C17—C181.361 (9)
C3—C41.369 (9)C18—C191.381 (8)
C4—C51.392 (9)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—C61.370 (8)
N2—Cr1—N376.68 (18)C1—C6—N1117.1 (6)
N2—Cr1—N177.16 (18)N1—C7—C8118.8 (5)
N3—Cr1—N1153.84 (18)N1—C7—H7120.6
N2—Cr1—Cl1174.56 (14)C8—C7—H7120.6
N3—Cr1—Cl197.97 (13)N2—C8—C9119.5 (5)
N1—Cr1—Cl1108.18 (14)N2—C8—C7113.1 (5)
N2—Cr1—Cl287.19 (14)C9—C8—C7127.4 (6)
N3—Cr1—Cl287.05 (14)C10—C9—C8118.5 (6)
N1—Cr1—Cl291.55 (14)C10—C9—H9120.7
Cl1—Cr1—Cl291.60 (7)C8—C9—H9120.7
N2—Cr1—Cl387.83 (14)C11—C10—C9121.1 (6)
N3—Cr1—Cl389.83 (14)C11—C10—H10119.5
N1—Cr1—Cl389.31 (14)C9—C10—H10119.5
Cl1—Cr1—Cl393.18 (7)C10—C11—C12118.0 (6)
Cl2—Cr1—Cl3174.62 (7)C10—C11—H11121.0
C7—N1—C6118.4 (5)C12—C11—H11121.0
C7—N1—Cr1112.3 (4)N2—C12—C11120.7 (5)
C6—N1—Cr1129.3 (4)N2—C12—C13111.7 (5)
C12—N2—C8122.2 (5)C11—C12—C13127.6 (5)
C12—N2—Cr1119.1 (4)N3—C13—C12117.7 (5)
C8—N2—Cr1118.6 (4)N3—C13—H13121.2
C13—N3—C14119.5 (5)C12—C13—H13121.2
C13—N3—Cr1114.8 (4)C15—C14—C19120.9 (5)
C14—N3—Cr1125.6 (4)C15—C14—N3119.7 (5)
C2—C1—C6119.4 (7)C19—C14—N3119.4 (5)
C2—C1—H1120.3C14—C15—C16119.4 (6)
C6—C1—H1120.3C14—C15—H15120.3
C3—C2—C1121.0 (7)C16—C15—H15120.3
C3—C2—H2119.5C17—C16—C15119.7 (6)
C1—C2—H2119.5C17—C16—H16120.1
C2—C3—C4119.4 (6)C15—C16—H16120.1
C2—C3—Br1120.2 (6)C18—C17—C16121.0 (6)
C4—C3—Br1120.3 (6)C18—C17—Br2118.9 (5)
C3—C4—C5120.9 (6)C16—C17—Br2120.1 (5)
C3—C4—H4119.6C17—C18—C19119.8 (7)
C5—C4—H4119.6C17—C18—H18120.1
C6—C5—C4119.7 (6)C19—C18—H18120.1
C6—C5—H5120.1C14—C19—C18119.2 (6)
C4—C5—H5120.1C14—C19—H19120.4
C5—C6—C1119.6 (6)C18—C19—H19120.4
C5—C6—N1123.2 (5)
N2—Cr1—N1—C70.1 (4)C7—N1—C6—C526.0 (9)
N3—Cr1—N1—C70.2 (7)Cr1—N1—C6—C5154.0 (5)
Cl1—Cr1—N1—C7178.9 (4)C7—N1—C6—C1157.2 (6)
Cl2—Cr1—N1—C786.7 (4)Cr1—N1—C6—C122.8 (8)
Cl3—Cr1—N1—C788.0 (4)C6—N1—C7—C8179.5 (5)
N2—Cr1—N1—C6179.9 (5)Cr1—N1—C7—C80.6 (7)
N3—Cr1—N1—C6179.8 (4)C12—N2—C8—C91.4 (9)
Cl1—Cr1—N1—C61.1 (5)Cr1—N2—C8—C9180.0 (4)
Cl2—Cr1—N1—C693.3 (5)C12—N2—C8—C7179.9 (5)
Cl3—Cr1—N1—C692.0 (5)Cr1—N2—C8—C71.3 (7)
N3—Cr1—N2—C120.5 (4)N1—C7—C8—N21.2 (8)
N1—Cr1—N2—C12179.4 (4)N1—C7—C8—C9179.8 (6)
Cl1—Cr1—N2—C129.9 (19)N2—C8—C9—C100.7 (9)
Cl2—Cr1—N2—C1287.2 (4)C7—C8—C9—C10179.2 (6)
Cl3—Cr1—N2—C1290.8 (4)C8—C9—C10—C110.2 (10)
N3—Cr1—N2—C8179.1 (5)C9—C10—C11—C120.4 (9)
N1—Cr1—N2—C80.8 (4)C8—N2—C12—C111.2 (8)
Cl1—Cr1—N2—C8168.7 (14)Cr1—N2—C12—C11179.8 (4)
Cl2—Cr1—N2—C891.5 (4)C8—N2—C12—C13178.6 (5)
Cl3—Cr1—N2—C890.5 (4)Cr1—N2—C12—C130.0 (6)
N2—Cr1—N3—C130.9 (4)C10—C11—C12—N20.2 (9)
N1—Cr1—N3—C130.6 (7)C10—C11—C12—C13179.5 (6)
Cl1—Cr1—N3—C13178.1 (4)C14—N3—C13—C12176.8 (5)
Cl2—Cr1—N3—C1386.9 (4)Cr1—N3—C13—C121.2 (7)
Cl3—Cr1—N3—C1388.7 (4)N2—C12—C13—N30.8 (7)
N2—Cr1—N3—C14176.2 (5)C11—C12—C13—N3179.4 (6)
N1—Cr1—N3—C14175.9 (4)C13—N3—C14—C1567.8 (7)
Cl1—Cr1—N3—C142.8 (4)Cr1—N3—C14—C15107.2 (5)
Cl2—Cr1—N3—C1488.4 (4)C13—N3—C14—C19111.8 (7)
Cl3—Cr1—N3—C1496.0 (4)Cr1—N3—C14—C1973.1 (7)
C6—C1—C2—C30.3 (11)C19—C14—C15—C162.3 (9)
C1—C2—C3—C40.8 (11)N3—C14—C15—C16177.3 (5)
C1—C2—C3—Br1175.3 (5)C14—C15—C16—C170.1 (9)
C2—C3—C4—C51.1 (11)C15—C16—C17—C182.0 (10)
Br1—C3—C4—C5174.9 (5)C15—C16—C17—Br2178.8 (5)
C3—C4—C5—C60.4 (10)C16—C17—C18—C191.5 (11)
C4—C5—C6—C10.7 (10)Br2—C17—C18—C19179.3 (5)
C4—C5—C6—N1176.0 (6)C15—C14—C19—C182.9 (10)
C2—C1—C6—C51.0 (10)N3—C14—C19—C18176.8 (6)
C2—C1—C6—N1175.9 (6)C17—C18—C19—C140.9 (11)

Experimental details

Crystal data
Chemical formula[CrCl3(C19H13Br2N3)]
Mr601.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.722 (3), 10.111 (2), 18.905 (3)
β (°) 124.702 (12)
V3)2156.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.62
Crystal size (mm)0.20 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.457, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
11189, 4177, 2279
Rint0.053
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.153, 0.97
No. of reflections4177
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the NWU Graduate Experimental Research Funds (project No. 09YSY22) for financial support.

References

First citationBarboiu, M., Dumitru, F., Legrand, Y.-M., Petit, E. & vander Lee, A. (2009). Chem. Commun. pp. 2192–2194.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.  Google Scholar
First citationCeniceros-Gomez, A. E., Barba-Behrens, N., Quiroz-Castro, M. E., Bernes, S., Nöth, H. & Castillo-Blum, S. E. (2000). Polyhedron, 19, 1821–1827.  Web of Science CSD CrossRef CAS Google Scholar
First citationGong, D. R., Wang, B. L., Bai, C. X., Bi, J. F., Wang, F., Dong, W. M., Zhang, X. Q. & Jiang, L. S. (2009). Polymer, 50, 6259–6264.  Web of Science CSD CrossRef CAS Google Scholar
First citationLegrand, Y.-M., Dumitru, F., Lee, A. V. D. & Barboiu, M. (2009). Supramol. Chem. 21, 230–237.  Web of Science CSD CrossRef CAS Google Scholar
First citationRohini, R., Shanker, K., Reddy, P. M., Ho, Y.-P. & &Ravinder, V. (2009). Eur. J. Med. Chem. 44, 3330–3339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen,Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugiyama, H., Aharonian, G., Gambarotta, S., Yap, G. P. A. & Budzelaar, P. H. M. (2002). J. Am. Chem. Soc. 124, 12268–12274.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSun, W. H., Zhang, S. & Jie, S. Y. (2009), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101357931, 22 pp.  Google Scholar
First citationXiao, L. W., Zhang, M. & Sun, W. H. (2010). Polyhedron, 29, 142–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y. R., Li, W., Huang, X. B., Zhang, L. T., Qin, W., Wu, J., Wang, J. D., Jiang, B. B. & Huang, Z. L. (2010), Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 101649012, 19 pp.  Google Scholar
First citationYin, J., Dasgupta, S. & Wu, J. S. (2010). Org. Lett. 12, 1712–1715.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds