organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-amino-5-cyano-2,4-bis­­(4-methyl­phen­yl)-4H-pyran-3-carboxyl­ate

aCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: krishstrucbio@gmail.com

(Received 28 August 2010; accepted 4 September 2010; online 11 September 2010)

In the title compound, C23H22N2O3, the pyran ring adopts a twisted boat conformation. The tolyl rings and carboxyl­ate group are attached to the pyran ring with torsion angles of −77.1 (2), 59.5 (3) and 17.8 (3)°, respectively. The ethyl group is disordered over two orientations with a site-occupancy ratio of 0.508 (5):0.492 (5). In the crystal, mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds, generating a chain running the a axis. Weak C—H⋯O, C—H⋯N and C—H⋯π inter­actions are also observed.

Related literature

For the use of related compounds in organic synthesis, see: Liang et al. (2009[Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636-3538.]). For the synthesis, see: Vasuki & Kumaravel (2008[Vasuki, G. & Kumaravel, K. (2008). Tetrahedron Lett. 49, 5636-5638.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Athimoolam et al. (2007[Athimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680-o4681.]); Kannan et al. (2010[Kannan, M., Kumaravel, K., Vasuki, G. & Krishna, R. (2010). Acta Cryst. E66, o1242.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N2O3

  • Mr = 374.43

  • Triclinic, [P \overline 1]

  • a = 8.3485 (2) Å

  • b = 11.4057 (3) Å

  • c = 11.6689 (3) Å

  • α = 72.902 (2)°

  • β = 72.690 (2)°

  • γ = 89.182 (2)°

  • V = 1010.64 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 18989 measured reflections

  • 3554 independent reflections

  • 2971 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.192

  • S = 1.04

  • 3554 reflections

  • 243 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.22 3.081 (3) 177
N2—H2B⋯O3ii 0.86 2.31 3.088 (3) 150
C6—H6⋯O3iii 0.93 2.51 3.432 (2) 171
C18—H18⋯N1iv 0.93 2.60 3.318 (3) 135
C23—H23ACgv 0.92 2.85 3.770 (4) 160
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z; (iii) -x+2, -y+1, -z; (iv) -x+2, -y, -z; (v) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Like the title compounds some of the related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). The title compound was synthesized by using Rapid four-component reactions in water (Vasuki & Kumaravel, 2008) and undertaken this study.

In the title compound (I), the pyran (A) ring adopts screw-boat conformation with the puckering parameters: Amplitude (Q) =0.221 (2) Å, Theta (θ) = 101.3 (5)° and Phi (ϕ) = 17.6 (7)°(Cremer & Pople, 1975), the puckered C11 atom having the maximum deviation of 0.137 (3) Å. The one toluene ring (Fig. 1) deviates significantly from planarity and attached with pyran ring by an (+)-syn-clinal conformation with torsion angle (C6—C5—C8—C12) of 59.5 (3)°, whereas the other toluene ring does not deviates from planarity and attached with pyran ring by torsion angle (C10—C11—C17—C22) of -77.1 (2)°, indiacting an (-)-syn-clinal conformtion. The carboxylate group is attached to pyran ring at C12 with the torsion angle of C11—C12—C13—O3 = 17.8 (3)°, indicating an (+)-syn-periplanar conformation. Moreover the O-ethyl group of carboxylate is disordered with the refined site-occupancy ratio of 0.508 (5)/0.492 (5). The two N—H···N and one N—H···O intermolecular interactions with a distance of 3.081 (4) Å and 3.088 (3) Å respectively are observed (Fig 2), in which the N—H···N intermolecular interaction forms R22 (12) ring motifs. The weak C—H···O, C—H···N and C—H···π [Cg: centroid of C17, C18, C19, C20, C21 and C22] (Fig. 3) intermolecular interaction also stabilized their three dimensional network of the crystal packing with a distance of 3.432 (3) Å, 3.318 (3) Å and 3.770 (4) Å respectively.

Related literature top

For the use of related compounds in organic synthesis, see: Liang et al. (2009). For the synthesis, see: Vasuki & Kumaravel (2008). For conformational analysis, see: Cremer & Pople (1975). For related structures, see: Athimoolam et al. (2007); Kannan et al. (2010).

Experimental top

The title compound was prepared by the successive addition of 4-methylbenzaldehyde(0.240 g, 2 mmol) and piperidine (5 mol %) to a stirred aqueous mixture of malononitrile(0.132 g, 2 mmol) and ethyl 3-oxo-3-p-tolyl propanoate (0.412 g, 2 mmol) at room temperature under an open atmosphere with vigorous stirring for 5–10 min. The precipitated solid was filtered, washed with water and then with a mixture of ethylacetate/hexane (20:80) (Vasuki & Kumaravel, 2008). The product obtained was pure by TLC and 1H NMR spectroscopy. However, the products were further purified by recrystallization from ethanol. Analysis calculated for ethyl6-amino-5-cyano-2, 4-bis (4-methylphenyl)-4H-pyran-3-carboxylate showed that it has C23 H22 N2 O3.

Refinement top

The non-hydrogen atoms where refined anisotropically whereas hydrogen atoms were refined isotropically. The C—H and amine H atoms were positioned geometrically (C—H= 0.93–0.97 and N—H=0.86 Å) and were refined, using riding model with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other atoms. The O-ethyl group of carboxylate shows disordered in two postition in the final refinement, the occupancy factors of two possible sites, O2B/C14B/C15B and O2A/C14A/C15A, converged to 0.508 (5) and 0.492 (5). For the disordered unit, the distance of C—C and C—O bond restrained to be 1.53 (10) Å and 1.43 (10) Å respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The O-ethyl group is disordered over two positions with site-occupancy factor, from refinement of 0.508 (5) and 0.492 (5).
[Figure 2] Fig. 2. : The crystal packing of (I), showing intermolecular hydrogen bonding interactions as dashed lines.
[Figure 3] Fig. 3. : A view of R22 (12) ring motifs formed by N—H···N interaction between to molecules and viewed along b* axis. The ring forming atoms are shown in ball and stick model and the Hydrogen bond are shown in green dashed lines.
[Figure 4] Fig. 4. : The molecular interaction showing the weak C—H···pi interaction between two molecules (dashed line in blue color), In which the Cg is the centriod of C17—C22 ring. The disordered B section of the molecules omited for clarity.
Ethyl 6-amino-5-cyano-2,4-bis(4-methylphenyl)-4H-pyran-3-carboxylate top
Crystal data top
C23H22N2O3Z = 2
Mr = 374.43F(000) = 396
Triclinic, P1Dx = 1.230 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3485 (2) ÅCell parameters from 9717 reflections
b = 11.4057 (3) Åθ = 2.2–32°
c = 11.6689 (3) ŵ = 0.08 mm1
α = 72.902 (2)°T = 293 K
β = 72.690 (2)°Rectangular, colourless
γ = 89.182 (2)°0.30 × 0.20 × 0.20 mm
V = 1010.64 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3554 independent reflections
Radiation source: fine-focus sealed tube2971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω and ϕ scanh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1313
Tmin = 0.981, Tmax = 0.984l = 1313
18989 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0869P)2 + 0.7661P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.025
3554 reflectionsΔρmax = 0.56 e Å3
243 parametersΔρmin = 0.58 e Å3
7 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
C23H22N2O3γ = 89.182 (2)°
Mr = 374.43V = 1010.64 (4) Å3
Triclinic, P1Z = 2
a = 8.3485 (2) ÅMo Kα radiation
b = 11.4057 (3) ŵ = 0.08 mm1
c = 11.6689 (3) ÅT = 293 K
α = 72.902 (2)°0.30 × 0.20 × 0.20 mm
β = 72.690 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3554 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2971 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.022
18989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0667 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
3554 reflectionsΔρmin = 0.58 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4425 (5)0.8123 (3)0.3388 (4)0.0986 (13)
H1A0.34520.79590.41200.148*
H1B0.42060.87390.27010.148*
H1C0.53690.84120.35680.148*
C20.4816 (3)0.69499 (14)0.30303 (19)0.0648 (8)
C30.4067 (2)0.58140 (17)0.38598 (15)0.0720 (9)
H30.32820.57690.46310.086*
C40.4491 (2)0.47452 (13)0.35366 (15)0.0618 (7)
H40.39900.39850.40920.074*
C50.5664 (2)0.48123 (12)0.23840 (15)0.0473 (6)
C60.6414 (2)0.59482 (15)0.15545 (14)0.0718 (9)
H60.71990.59930.07830.086*
C70.5990 (3)0.70170 (12)0.18776 (18)0.0803 (10)
H70.64910.77770.13230.096*
C80.6149 (3)0.3670 (2)0.2054 (2)0.0449 (5)
C90.4918 (3)0.2162 (2)0.1459 (2)0.0466 (6)
C100.6432 (3)0.1734 (2)0.1069 (2)0.0472 (6)
C110.7915 (3)0.2049 (2)0.1436 (2)0.0453 (6)
H110.89140.22070.06950.054*
C120.7648 (3)0.3221 (2)0.1804 (2)0.0453 (6)
C130.9216 (3)0.3763 (2)0.1813 (2)0.0532 (6)
O2A0.8984 (11)0.4720 (4)0.2391 (6)0.0562 (13)0.492 (5)
C14A1.0588 (11)0.5280 (9)0.2238 (9)0.072 (2)0.492 (5)
H14A1.12080.56570.13570.086*0.492 (5)
H14B1.12620.46920.26340.086*0.492 (5)
C15A1.0050 (13)0.6246 (9)0.2921 (12)0.122 (3)0.492 (5)
H15A0.93310.67820.25390.184*0.492 (5)
H15B1.10290.67190.28620.184*0.492 (5)
H15C0.94530.58440.37910.184*0.492 (5)
O2B0.8938 (10)0.4347 (5)0.2773 (4)0.0562 (13)0.508 (5)
C14B1.0311 (12)0.5012 (7)0.2866 (8)0.072 (2)0.508 (5)
H14C1.12600.45070.28280.086*0.508 (5)
H14D0.99840.51590.36790.086*0.508 (5)
C15B1.0869 (14)0.6244 (7)0.1830 (9)0.122 (3)0.508 (5)
H15D1.10800.61180.10220.184*0.508 (5)
H15E1.18790.65920.18770.184*0.508 (5)
H15F0.99970.67960.19410.184*0.508 (5)
C160.6647 (3)0.0898 (2)0.0364 (3)0.0536 (6)
C170.82337 (19)0.09928 (12)0.24806 (13)0.0442 (5)
C180.95357 (19)0.02588 (15)0.21696 (12)0.0555 (6)
H181.02040.04200.13370.067*
C190.9840 (2)0.07159 (15)0.31037 (16)0.0649 (7)
H191.07110.12070.28960.078*
C200.8841 (2)0.09565 (14)0.43487 (14)0.0596 (7)
C210.7539 (2)0.02225 (16)0.46597 (11)0.0626 (7)
H210.68710.03830.54930.075*
C220.72354 (18)0.07522 (15)0.37256 (15)0.0568 (7)
H220.63640.12430.39340.068*
C230.9202 (5)0.1997 (3)0.5378 (3)0.0826 (10)
H23A0.99320.16820.57360.124*
H23B0.97360.26180.50260.124*
H23C0.81650.23490.60230.124*
N10.6900 (3)0.0234 (3)0.0223 (3)0.0743 (8)
N20.3450 (3)0.1811 (2)0.1388 (2)0.0598 (6)
H2A0.33890.12380.10580.072*
H2B0.25600.21570.16720.072*
O10.4731 (2)0.30688 (16)0.20301 (18)0.0545 (5)
O31.0577 (2)0.35407 (19)0.1320 (2)0.0723 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.112 (3)0.087 (2)0.135 (3)0.041 (2)0.050 (3)0.079 (3)
C20.0700 (18)0.0665 (18)0.086 (2)0.0278 (14)0.0392 (16)0.0500 (16)
C30.0619 (17)0.088 (2)0.081 (2)0.0153 (15)0.0124 (15)0.0570 (19)
C40.0554 (16)0.0655 (17)0.0693 (17)0.0027 (13)0.0092 (13)0.0376 (14)
C50.0441 (12)0.0527 (14)0.0593 (14)0.0138 (10)0.0217 (11)0.0324 (12)
C60.093 (2)0.0535 (16)0.0626 (17)0.0186 (15)0.0089 (16)0.0245 (14)
C70.110 (3)0.0493 (16)0.080 (2)0.0200 (16)0.0216 (19)0.0258 (15)
C80.0424 (12)0.0490 (13)0.0520 (13)0.0063 (10)0.0163 (10)0.0264 (11)
C90.0454 (13)0.0517 (13)0.0560 (14)0.0103 (10)0.0202 (11)0.0318 (11)
C100.0441 (13)0.0514 (13)0.0591 (14)0.0115 (10)0.0191 (11)0.0329 (12)
C110.0371 (12)0.0496 (13)0.0564 (14)0.0096 (10)0.0132 (10)0.0281 (11)
C120.0429 (13)0.0448 (12)0.0553 (14)0.0074 (10)0.0161 (10)0.0249 (11)
C130.0471 (14)0.0437 (13)0.0726 (17)0.0051 (10)0.0212 (12)0.0204 (12)
O2A0.0596 (13)0.029 (3)0.092 (3)0.007 (2)0.037 (3)0.022 (3)
C14A0.067 (3)0.061 (4)0.100 (6)0.011 (3)0.031 (5)0.035 (5)
C15A0.127 (7)0.093 (4)0.177 (8)0.009 (4)0.073 (6)0.058 (6)
O2B0.0596 (13)0.029 (3)0.092 (3)0.007 (2)0.037 (3)0.022 (3)
C14B0.067 (3)0.061 (4)0.100 (6)0.011 (3)0.031 (5)0.035 (5)
C15B0.127 (7)0.093 (4)0.177 (8)0.009 (4)0.073 (6)0.058 (6)
C160.0396 (13)0.0638 (15)0.0714 (17)0.0123 (11)0.0192 (12)0.0396 (14)
C170.0354 (11)0.0472 (12)0.0590 (14)0.0056 (9)0.0157 (10)0.0283 (11)
C180.0460 (14)0.0573 (15)0.0624 (16)0.0134 (11)0.0101 (12)0.0238 (13)
C190.0545 (16)0.0587 (16)0.079 (2)0.0183 (13)0.0179 (14)0.0213 (14)
C200.0549 (15)0.0535 (15)0.0720 (18)0.0024 (12)0.0233 (13)0.0170 (13)
C210.0607 (17)0.0669 (17)0.0587 (16)0.0007 (13)0.0117 (13)0.0233 (14)
C220.0497 (14)0.0629 (16)0.0636 (16)0.0121 (12)0.0136 (12)0.0318 (13)
C230.083 (2)0.0685 (19)0.089 (2)0.0005 (16)0.0342 (19)0.0051 (17)
N10.0520 (13)0.0912 (18)0.108 (2)0.0174 (12)0.0227 (13)0.0750 (17)
N20.0434 (11)0.0730 (15)0.0879 (16)0.0170 (10)0.0276 (11)0.0542 (13)
O10.0403 (9)0.0644 (11)0.0780 (12)0.0137 (8)0.0196 (8)0.0489 (10)
O30.0395 (10)0.0768 (13)0.1065 (16)0.0053 (9)0.0157 (10)0.0432 (12)
Geometric parameters (Å, º) top
C1—C21.518 (3)C14A—C15A1.5295 (10)
C1—H1A0.9600C14A—H14A0.9700
C1—H1B0.9600C14A—H14B0.9700
C1—H1C0.9600C15A—H15A0.9600
C2—C31.3900C15A—H15B0.9600
C2—C71.3900C15A—H15C0.9600
C3—C41.3900O2B—C14B1.4309 (10)
C3—H30.9300C14B—C15B1.5295 (10)
C4—C51.3900C14B—H14C0.9700
C4—H40.9300C14B—H14D0.9700
C5—C61.3900C15B—H15D0.9600
C5—C81.482 (2)C15B—H15E0.9600
C6—C71.3900C15B—H15F0.9600
C6—H60.9300C16—N11.140 (3)
C7—H70.9300C17—C181.3900
C8—C121.329 (3)C17—C221.3900
C8—O11.388 (3)C18—C191.3900
C9—N21.328 (3)C18—H180.9300
C9—C101.347 (3)C19—C201.3900
C9—O11.371 (3)C19—H190.9300
C10—C161.410 (3)C20—C211.3900
C10—C111.505 (3)C20—C231.520 (3)
C11—C121.514 (3)C21—C221.3900
C11—C171.525 (3)C21—H210.9300
C11—H110.9800C22—H220.9300
C12—C131.460 (3)C23—H23A0.9600
C13—O31.172 (3)C23—H23B0.9600
C13—O2A1.4256 (10)C23—H23C0.9600
C13—O2B1.4261 (10)N2—H2A0.8600
O2A—C14A1.4309 (10)N2—H2B0.8600
C2—C1—H1A109.5O2A—C14A—C15A100.8 (5)
C2—C1—H1B109.5O2A—C14A—H14A111.6
H1A—C1—H1B109.5C15A—C14A—H14A111.6
C2—C1—H1C109.5O2A—C14A—H14B111.6
H1A—C1—H1C109.5C15A—C14A—H14B111.6
H1B—C1—H1C109.5H14A—C14A—H14B109.4
C3—C2—C7120.0C13—O2B—C14B119.8 (6)
C3—C2—C1120.8 (2)O2B—C14B—C15B113.5 (6)
C7—C2—C1119.1 (2)O2B—C14B—H14C108.9
C4—C3—C2120.0C15B—C14B—H14C108.8
C4—C3—H3120.0O2B—C14B—H14D108.9
C2—C3—H3120.0C15B—C14B—H14D108.9
C3—C4—C5120.0H14C—C14B—H14D107.7
C3—C4—H4120.0C14B—C15B—H15D109.5
C5—C4—H4120.0C14B—C15B—H15E109.5
C6—C5—C4120.0H15D—C15B—H15E109.5
C6—C5—C8120.01 (14)C14B—C15B—H15F109.5
C4—C5—C8119.97 (14)H15D—C15B—H15F109.5
C5—C6—C7120.0H15E—C15B—H15F109.5
C5—C6—H6120.0N1—C16—C10176.8 (3)
C7—C6—H6120.0C18—C17—C22120.0
C6—C7—C2120.0C18—C17—C11118.98 (12)
C6—C7—H7120.0C22—C17—C11121.02 (12)
C2—C7—H7120.0C17—C18—C19120.0
C12—C8—O1121.7 (2)C17—C18—H18120.0
C12—C8—C5129.4 (2)C19—C18—H18120.0
O1—C8—C5108.85 (17)C20—C19—C18120.0
N2—C9—C10128.6 (2)C20—C19—H19120.0
N2—C9—O1110.53 (19)C18—C19—H19120.0
C10—C9—O1120.9 (2)C19—C20—C21120.0
C9—C10—C16120.4 (2)C19—C20—C23120.16 (18)
C9—C10—C11122.1 (2)C21—C20—C23119.81 (18)
C16—C10—C11117.4 (2)C20—C21—C22120.0
C10—C11—C12109.30 (18)C20—C21—H21120.0
C10—C11—C17111.98 (19)C22—C21—H21120.0
C12—C11—C17111.80 (18)C21—C22—C17120.0
C10—C11—H11107.9C21—C22—H22120.0
C12—C11—H11107.9C17—C22—H22120.0
C17—C11—H11107.9C20—C23—H23A109.5
C8—C12—C13126.6 (2)C20—C23—H23B109.5
C8—C12—C11121.9 (2)H23A—C23—H23B109.5
C13—C12—C11111.49 (18)C20—C23—H23C109.5
O3—C13—O2A120.1 (4)H23A—C23—H23C109.5
O3—C13—O2B120.3 (4)H23B—C23—H23C109.5
O2A—C13—O2B20.6 (4)C9—N2—H2A120.0
O3—C13—C12125.93 (19)C9—N2—H2B120.0
O2A—C13—C12113.7 (4)H2A—N2—H2B120.0
O2B—C13—C12111.8 (4)C9—O1—C8119.48 (17)
C13—O2A—C14A109.7 (5)
C7—C2—C3—C40.0C8—C12—C13—O2A13.2 (5)
C1—C2—C3—C4177.4 (2)C11—C12—C13—O2A168.1 (3)
C2—C3—C4—C50.0C8—C12—C13—O2B35.5 (4)
C3—C4—C5—C60.0C11—C12—C13—O2B145.8 (3)
C3—C4—C5—C8178.43 (18)O3—C13—O2A—C14A0.6 (7)
C4—C5—C6—C70.0O2B—C13—O2A—C14A97.0 (19)
C8—C5—C6—C7178.43 (18)C12—C13—O2A—C14A174.0 (5)
C5—C6—C7—C20.0C13—O2A—C14A—C15A179.6 (8)
C3—C2—C7—C60.0O3—C13—O2B—C14B20.1 (7)
C1—C2—C7—C6177.5 (2)O2A—C13—O2B—C14B75.7 (19)
C6—C5—C8—C1259.5 (3)C12—C13—O2B—C14B175.3 (5)
C4—C5—C8—C12118.9 (3)C13—O2B—C14B—C15B73.4 (11)
C6—C5—C8—O1120.33 (18)C9—C10—C16—N1163 (6)
C4—C5—C8—O161.2 (2)C11—C10—C16—N121 (6)
N2—C9—C10—C167.7 (5)C10—C11—C17—C18102.33 (18)
O1—C9—C10—C16173.2 (2)C12—C11—C17—C18134.63 (16)
N2—C9—C10—C11167.9 (3)C10—C11—C17—C2277.07 (19)
O1—C9—C10—C1111.2 (4)C12—C11—C17—C2246.0 (2)
C9—C10—C11—C1222.1 (3)C22—C17—C18—C190.0
C16—C10—C11—C12162.2 (2)C11—C17—C18—C19179.41 (16)
C9—C10—C11—C17102.4 (3)C17—C18—C19—C200.0
C16—C10—C11—C1773.3 (3)C18—C19—C20—C210.0
O1—C8—C12—C13179.3 (2)C18—C19—C20—C23178.2 (2)
C5—C8—C12—C130.8 (4)C19—C20—C21—C220.0
O1—C8—C12—C112.1 (4)C23—C20—C21—C22178.2 (2)
C5—C8—C12—C11177.8 (2)C20—C21—C22—C170.0
C10—C11—C12—C815.4 (3)C18—C17—C22—C210.0
C17—C11—C12—C8109.1 (3)C11—C17—C22—C21179.39 (16)
C10—C11—C12—C13163.4 (2)N2—C9—O1—C8171.9 (2)
C17—C11—C12—C1372.1 (2)C10—C9—O1—C88.8 (4)
C8—C12—C13—O3160.9 (3)C12—C8—O1—C915.7 (4)
C11—C12—C13—O317.8 (4)C5—C8—O1—C9164.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.223.081 (3)177
N2—H2B···O3ii0.862.313.088 (3)150
C6—H6···O3iii0.932.513.432 (2)171
C18—H18···N1iv0.932.603.318 (3)135
C23—H23A···Cgv0.922.853.770 (4)160
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1, z; (iv) x+2, y, z; (v) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H22N2O3
Mr374.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3485 (2), 11.4057 (3), 11.6689 (3)
α, β, γ (°)72.902 (2), 72.690 (2), 89.182 (2)
V3)1010.64 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
18989, 3554, 2971
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.192, 1.04
No. of reflections3554
No. of parameters243
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.58

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.223.081 (3)177.3
N2—H2B···O3ii0.862.313.088 (3)150.1
C6—H6···O3iii0.932.513.432 (2)170.9
C18—H18···N1iv0.932.603.318 (3)134.8
C23—H23A···Cgv0.922.853.770 (4)160
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1, z; (iv) x+2, y, z; (v) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the Centre of Excellence in Bioinformatics, Pondicherry University, for providing facilities and GV thanks the Department of Science and Technology, New Delhi, Government of India, (No. SR/S5/ GC-22/2007) for financial support.

References

First citationAthimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680–o4681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKannan, M., Kumaravel, K., Vasuki, G. & Krishna, R. (2010). Acta Cryst. E66, o1242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3538.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasuki, G. & Kumaravel, K. (2008). Tetrahedron Lett. 49, 5636–5638.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds