organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2607-o2608

tert-Butyl N-[(11-exo-benzyl­­oxy­carbonyl-8-oxo­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecane-11-endo-yl­oxy)carbon­yl­methyl]carbamate

aSchool of Chemistry, University of KwaZulu–Natal, Durban 4000, South Africa, bSchool of Pharmacy and Pharmacology, University of KwaZulu–Natal, Durban, South Africa, and cDepartment of Biochemistry, University of KwaZulu–Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 8 September 2010; accepted 13 September 2010; online 25 September 2010)

The structure of the title compound, C26H29NO7, at 173 K has an inter­molecular N—H⋯O hydrogen bond. This is one of the few examples where a mono-ketone penta­cyclo­undecane (PCU) mol­ecule exibits hydrogen bonding in the solid state. The dihedral angles of the amide and ester groups are normal and unaffected by the cage structure. A longer than normal C—C bond [1.571 (4) Å] was found within the cage structure.

Related literature

For examples of cage structures with C—C bonds lengths that differ from normal, see: Marchand (1989[Marchand, A. P. (1989). Chem. Rev. 89, 1011-1033.]); Kruger et al. (2006[Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2006). Acta Cryst. E62, o268-o270.]). For examples of crystal structures of mono-ketone PCU mol­ecules bearing heteroatoms, see: Watson et al. (2000[Watson, W. H., Bodige, S. G., Marchand, A. P. & Chong, H.-S. (2000). Struct. Chem. 11, 257-260.]); Flippen-Anderson et al. (1991[Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813-817.]); Liu et al. (2001[Liu, X., Kassiou, M., Christie, M. J. & Hambley, T. W. (2001). Aust. J. Chem. 54, 31-35.]). For the synthesis of the precursors, see: Martins et al. (1993[Martins, F. J. C., Viljoen, A. M., Kruger, H. G. & Joubert, J. A. (1993). Tetrahedron, 49, 9573-9580.]).

[Scheme 1]

Experimental

Crystal data
  • C26H29NO7

  • Mr = 467.50

  • Monoclinic, C c

  • a = 9.7260 (2) Å

  • b = 27.5398 (7) Å

  • c = 9.3500 (2) Å

  • β = 107.679 (1)°

  • V = 2386.14 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 173 K

  • 0.24 × 0.22 × 0.19 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.694, Tmax = 0.753

  • 8919 measured reflections

  • 3948 independent reflections

  • 3802 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.07

  • 3948 reflections

  • 311 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1760 Friedel pairs

  • Flack parameter: 0.00 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.96 (1) 1.99 (2) 2.882 (2) 154 (2)
Symmetry code: (i) [x, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pentacycloundecane (PCU) derivatives have been reported in a wide range of chemical fields (Marchand, 1989). We have reported the structures of a number of PCU derivatives including a mono-ketone ethylene acetal (Kruger et al., 2006). Previous examples of this group of mono-ketone molecules have included crown ether (Watson et al., 2000), nitro derivatives (Flippen-Anderson et al., 1991) and benzylic amines (Liu et al., 2001). The title compound (Fig. 1) is a rare example of a monoketone PCU with an intermolecular hydrogen bonding interaction and also features a PCU cage ester bond (Watson et al., 2000). The intermolecular N1—H···O1 bond interaction (2.882 Å) holds the structure in interdigitated rows. The intermolecular distances between the ring centroids in the a axis direction of 5.641–7.710 Å, suggests that there is no π-stacking interaction between parallel molecules (Fig. 2).

Related literature top

For examples of cage structures with C—C bonds lengths that differ from normal, see: Marchand (1989); Kruger et al. (2006). For examples of crystal structures of mono-ketone PCU molecules bearing heteroatoms, see: Watson et al. (2000); Flippen-Anderson et al. (1991); Liu et al. (2001). For the synthesis of the precursors, see: Martins et al. (1993).

Experimental top

5-Hydroxy-4-oxahexacyclo[5.4.0.02,6.03,10.05,9]dodecane-3-carboxybenzylester (1.0 g, 3.2 mmol) (Martins et al., 1993) was dissolved in dichloromethane (15 ml) and reacted, under stirring, with BOC-glycine (1.2 g, 6.4 mmol), diisopropylcarbodiimide (0.7 ml, 6.4 mmol), and DMAP (0.04 g, 0.32 mmol) overnight at ambient temperature. The resulting solution was washed with HCl (0.1 N) and water and then extracted with ethyl acetate. The organic layer was dried Na2SO4, filtered, and concentrated under vacuum. The product was isolated by silica flash column chromatography (15% ethyl acetate in hexane) to give the product, (0.6 g, 60% yield). Crystallization of the product was carried out by dissolving the product in 5 ml a solvent mixture of ethyl acetate and hexane (1:5) at 22 °C.

1H NMR (CDCl3, 400 MHz) δ p.p.m.: 1.42 (9.0H, s), 1.53 (1.0H, d, J=11.17 Hz), 1.72 (1.0H, s), 1.84 (1.0H, d, J=11.25 Hz), 2.49 (2.0H, m, J=2.21 Hz), 2.58 (1.0H, d, J=4.04 Hz), 2.63 (1.0H, d, J=3.72 Hz), 2.81 (1.0H, m, J=5.01 Hz), 2.99 (1.0H, q, J=3.19 Hz), 3.05 (1.0H, d, J=6.92 Hz), 3.59 (1.0H, t, J=7.06 Hz), 3.83 (2.0H, m, J=9.47 Hz), 4.85 (1.0H, s), 5.12 (2.0H, d, J=5.32 Hz), 7.28–7.34 (5.0H, m, J=4.99 Hz).

13C NMR (CDCl3, 100 MHz) δ p.p.m.: 28.32 (s), 36.25 (s), 38.15 (s), 40.54 (s), 41.50 (s), 41.93 (s), 42.35 (s), 43.15 (s), 43.92 (s), 50.17 (s), 54.33 (s), 67.42 (s), 79.87 (s), 84.66 (s), 128.43 (t, J=20.32 Hz), 135.10 (s), 155.41 (s), 169.43 (d, J=23.32 Hz), 214.23 (s)

IR (neat) Vmax cm-1:3373.08, 2973.02, 1710.33, 1518.09, 1366.27, 1268.62, 1150.16, 1116.67, 1061.14, 743.63, 697.37.

HR ESI m/z: calcd for C26H29NO7 [M+H]+: 490.1826 found 490.1823.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except H1N on N1, were positioned geometrically with C—H = 0.95 - 1.00 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 - 1.5 Ueq (C). The hydrogen atom H1N was located in a difference electron density maps and refined with simple bond length constraints.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the numbering scheme. All non-hydrogen atoms are shown as ellipsoids with probability level of 30%.
[Figure 2] Fig. 2. Partial projection viewed along [100]. All hydrogen atoms except the hydrogen H1N on N1 are omitted. The hydrogen bonds are shown as dotted lines.
tert-Butyl N-[(11-exo-benzyloxycarbonyl-8- oxopentacyclo[5.4.0.02,6.03,10.05,9]undecane-11-endo- yloxy)carbonylmethyl]carbamate top
Crystal data top
C26H29NO7F(000) = 992
Mr = 467.50Dx = 1.301 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54178 Å
a = 9.7260 (2) ÅCell parameters from 8919 reflections
b = 27.5398 (7) Åθ = 5.9–68.1°
c = 9.3500 (2) ŵ = 0.78 mm1
β = 107.679 (1)°T = 173 K
V = 2386.14 (9) Å3Block, colourless
Z = 40.24 × 0.22 × 0.19 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3948 independent reflections
Radiation source: fine-focus sealed tube3802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
0.5° ϕ scans and ω scansθmax = 68.1°, θmin = 5.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1111
Tmin = 0.694, Tmax = 0.753k = 3032
8919 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0509P)2 + 1.0452P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3948 reflectionsΔρmax = 0.21 e Å3
311 parametersΔρmin = 0.18 e Å3
3 restraintsAbsolute structure: Flack (1983), 1760 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (18)
Crystal data top
C26H29NO7V = 2386.14 (9) Å3
Mr = 467.50Z = 4
Monoclinic, CcCu Kα radiation
a = 9.7260 (2) ŵ = 0.78 mm1
b = 27.5398 (7) ÅT = 173 K
c = 9.3500 (2) Å0.24 × 0.22 × 0.19 mm
β = 107.679 (1)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3948 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3802 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.753Rint = 0.024
8919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.21 e Å3
S = 1.07Δρmin = 0.18 e Å3
3948 reflectionsAbsolute structure: Flack (1983), 1760 Friedel pairs
311 parametersAbsolute structure parameter: 0.00 (18)
3 restraints
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of ϕ and ω scans of 0.5°, 40 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65693 (19)1.00052 (6)0.9771 (2)0.0521 (4)
O20.76432 (15)0.90113 (5)0.91549 (15)0.0358 (3)
O30.7061 (2)0.87716 (7)0.67501 (18)0.0564 (5)
O41.1178 (2)0.90102 (8)0.6733 (2)0.0619 (5)
O51.00520 (16)0.93227 (6)0.44177 (16)0.0452 (4)
O60.5895 (2)0.78765 (6)0.8670 (3)0.0661 (5)
O70.8234 (2)0.80702 (6)0.9488 (3)0.0642 (5)
N10.9078 (2)0.94186 (8)0.6227 (2)0.0454 (4)
H1N0.836 (2)0.9596 (8)0.549 (2)0.049 (7)*
C10.4838 (3)0.88257 (10)1.2375 (3)0.0584 (6)
H1A0.55640.88071.33790.070*
H1B0.38710.87391.24420.070*
C20.4852 (3)0.93103 (9)1.1615 (3)0.0504 (6)
H20.45990.95971.21400.060*
C30.6376 (3)0.93282 (8)1.1385 (2)0.0423 (5)
H30.71400.94741.22480.051*
C40.6031 (2)0.96254 (8)0.9971 (2)0.0411 (5)
C50.4713 (3)0.93899 (8)0.8917 (3)0.0464 (5)
H50.41630.95840.80210.056*
C60.3875 (3)0.92269 (9)1.0015 (3)0.0507 (6)
H60.28460.93320.97770.061*
C70.5258 (3)0.85303 (8)1.1207 (3)0.0503 (6)
H70.53350.81731.13970.060*
C80.6645 (2)0.87760 (8)1.1087 (2)0.0385 (4)
H80.75450.86421.18090.046*
C90.6564 (2)0.86978 (7)0.9442 (2)0.0375 (4)
C100.5005 (3)0.88424 (8)0.8639 (3)0.0445 (5)
H100.46050.87270.75790.053*
C110.4164 (3)0.86818 (9)0.9720 (3)0.0503 (6)
H110.33050.84680.93050.060*
C120.7770 (2)0.90133 (7)0.7760 (2)0.0377 (4)
C130.8940 (3)0.93654 (8)0.7718 (2)0.0422 (5)
H13A0.87250.96860.80770.051*
H13B0.98700.92520.84090.051*
C141.0199 (2)0.92285 (8)0.5870 (2)0.0394 (5)
C151.1196 (2)0.91702 (8)0.3776 (2)0.0402 (5)
C161.2606 (3)0.94073 (13)0.4606 (3)0.0650 (8)
H16A1.24840.97610.45750.097*
H16B1.33400.93180.41310.097*
H16C1.29110.92970.56520.097*
C171.0661 (3)0.93591 (14)0.2193 (3)0.0681 (8)
H17A1.06060.97140.22100.102*
H17B0.97010.92250.16940.102*
H17C1.13280.92600.16440.102*
C181.1285 (4)0.86241 (11)0.3777 (4)0.0756 (9)
H18A1.03400.84890.32280.113*
H18B1.15740.85050.48140.113*
H18C1.20000.85230.32900.113*
C190.6842 (3)0.81669 (8)0.9137 (3)0.0483 (5)
C200.8571 (4)0.75648 (10)0.9237 (6)0.1008 (15)
H20A0.78390.74360.83340.121*
H20B0.85530.73641.01090.121*
C211.0032 (3)0.75425 (8)0.9029 (3)0.0489 (6)
C221.0989 (4)0.71945 (11)0.9751 (3)0.0657 (8)
H221.07660.69931.04740.079*
C231.2270 (3)0.71335 (13)0.9445 (4)0.0726 (8)
H231.29100.68820.99310.087*
C241.2633 (3)0.74254 (11)0.8465 (5)0.0752 (9)
H241.35430.73890.82980.090*
C251.1698 (4)0.77737 (10)0.7713 (3)0.0625 (7)
H251.19480.79760.70080.075*
C261.0372 (3)0.78318 (9)0.7980 (3)0.0537 (6)
H260.97070.80690.74420.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0568 (10)0.0371 (8)0.0610 (10)0.0109 (7)0.0157 (8)0.0025 (7)
O20.0419 (8)0.0373 (7)0.0348 (7)0.0062 (6)0.0216 (6)0.0046 (6)
O30.0766 (12)0.0561 (10)0.0430 (9)0.0195 (9)0.0279 (8)0.0168 (7)
O40.0599 (11)0.0840 (13)0.0476 (9)0.0323 (9)0.0251 (8)0.0226 (9)
O50.0425 (8)0.0613 (10)0.0387 (8)0.0141 (7)0.0227 (7)0.0115 (7)
O60.0722 (12)0.0430 (10)0.1014 (15)0.0175 (9)0.0537 (12)0.0225 (9)
O70.0624 (11)0.0325 (8)0.1147 (15)0.0020 (8)0.0524 (11)0.0000 (9)
N10.0460 (11)0.0583 (11)0.0396 (10)0.0134 (9)0.0244 (9)0.0137 (8)
C10.0604 (16)0.0588 (14)0.0715 (16)0.0052 (12)0.0429 (14)0.0033 (13)
C20.0528 (14)0.0471 (13)0.0614 (15)0.0017 (10)0.0326 (12)0.0095 (11)
C30.0477 (12)0.0437 (12)0.0398 (11)0.0039 (9)0.0200 (9)0.0083 (9)
C40.0410 (11)0.0354 (11)0.0498 (12)0.0035 (8)0.0182 (10)0.0077 (9)
C50.0442 (12)0.0386 (11)0.0528 (13)0.0024 (9)0.0095 (10)0.0039 (10)
C60.0374 (12)0.0401 (12)0.0777 (17)0.0016 (9)0.0219 (11)0.0018 (11)
C70.0553 (14)0.0384 (11)0.0744 (16)0.0039 (10)0.0455 (13)0.0086 (10)
C80.0437 (11)0.0375 (11)0.0416 (11)0.0001 (9)0.0239 (9)0.0002 (8)
C90.0419 (11)0.0343 (10)0.0436 (11)0.0072 (8)0.0239 (9)0.0063 (8)
C100.0442 (12)0.0392 (12)0.0503 (12)0.0066 (9)0.0148 (9)0.0098 (9)
C110.0432 (12)0.0412 (12)0.0724 (15)0.0093 (9)0.0267 (11)0.0121 (11)
C120.0482 (12)0.0341 (10)0.0356 (10)0.0030 (9)0.0201 (9)0.0043 (8)
C130.0501 (12)0.0475 (12)0.0369 (11)0.0020 (9)0.0248 (10)0.0016 (9)
C140.0435 (11)0.0412 (11)0.0381 (11)0.0039 (9)0.0193 (9)0.0060 (9)
C150.0399 (11)0.0477 (12)0.0395 (11)0.0057 (9)0.0219 (9)0.0026 (9)
C160.0528 (15)0.090 (2)0.0597 (16)0.0151 (14)0.0291 (13)0.0203 (14)
C170.0548 (16)0.113 (3)0.0451 (13)0.0158 (15)0.0281 (12)0.0128 (14)
C180.103 (2)0.0515 (15)0.101 (2)0.0018 (15)0.074 (2)0.0042 (15)
C190.0599 (14)0.0373 (12)0.0645 (14)0.0069 (10)0.0441 (12)0.0068 (10)
C200.105 (3)0.0329 (14)0.207 (5)0.0056 (14)0.112 (3)0.0042 (19)
C210.0586 (14)0.0324 (10)0.0659 (15)0.0048 (10)0.0341 (12)0.0034 (10)
C220.090 (2)0.0604 (16)0.0514 (14)0.0184 (15)0.0279 (14)0.0185 (12)
C230.0599 (17)0.073 (2)0.077 (2)0.0147 (14)0.0076 (15)0.0090 (15)
C240.0459 (13)0.0561 (17)0.128 (3)0.0112 (13)0.0331 (16)0.0265 (18)
C250.089 (2)0.0453 (13)0.0697 (17)0.0167 (13)0.0478 (16)0.0030 (12)
C260.0608 (15)0.0406 (12)0.0575 (14)0.0066 (10)0.0144 (12)0.0122 (10)
Geometric parameters (Å, º) top
O1—C41.210 (3)C9—C101.527 (3)
O2—C121.347 (2)C9—C191.529 (3)
O2—C91.445 (2)C10—C111.546 (3)
O3—C121.189 (3)C10—H101.0000
O4—C141.205 (3)C11—H111.0000
O5—C141.347 (3)C12—C131.505 (3)
O5—C151.476 (2)C13—H13A0.9900
O6—C191.198 (3)C13—H13B0.9900
O7—C191.320 (3)C15—C161.504 (4)
O7—C201.465 (3)C15—C171.505 (3)
N1—C141.340 (3)C15—C181.506 (4)
N1—C131.448 (3)C16—H16A0.9800
N1—H1N0.955 (10)C16—H16B0.9800
C1—C71.514 (4)C16—H16C0.9800
C1—C21.514 (4)C17—H17A0.9800
C1—H1A0.9900C17—H17B0.9800
C1—H1B0.9900C17—H17C0.9800
C2—C61.526 (4)C18—H18A0.9800
C2—C31.562 (3)C18—H18B0.9800
C2—H21.0000C18—H18C0.9800
C3—C41.504 (3)C20—C211.494 (4)
C3—C81.582 (3)C20—H20A0.9900
C3—H31.0000C20—H20B0.9900
C4—C51.506 (3)C21—C221.364 (4)
C5—C61.559 (4)C21—C261.379 (3)
C5—C101.570 (3)C22—C231.371 (5)
C5—H51.0000C22—H220.9500
C6—C111.567 (3)C23—C241.343 (5)
C6—H61.0000C23—H230.9500
C7—C111.530 (4)C24—C251.361 (5)
C7—C81.544 (3)C24—H240.9500
C7—H71.0000C25—C261.395 (4)
C8—C91.531 (3)C25—H250.9500
C8—H81.0000C26—H260.9500
C12—O2—C9117.85 (16)C7—C11—H11117.4
C14—O5—C15119.49 (17)C10—C11—H11117.4
C19—O7—C20114.5 (2)C6—C11—H11117.4
C14—N1—C13121.39 (19)O3—C12—O2124.4 (2)
C14—N1—H1N119.6 (17)O3—C12—C13126.89 (19)
C13—N1—H1N119.0 (17)O2—C12—C13108.69 (17)
C7—C1—C295.3 (2)N1—C13—C12112.50 (19)
C7—C1—H1A112.7N1—C13—H13A109.1
C2—C1—H1A112.7C12—C13—H13A109.1
C7—C1—H1B112.7N1—C13—H13B109.1
C2—C1—H1B112.7C12—C13—H13B109.1
H1A—C1—H1B110.2H13A—C13—H13B107.8
C1—C2—C6103.6 (2)O4—C14—N1124.4 (2)
C1—C2—C3103.7 (2)O4—C14—O5126.3 (2)
C6—C2—C3101.79 (18)N1—C14—O5109.31 (19)
C1—C2—H2115.3O5—C15—C16110.40 (19)
C6—C2—H2115.3O5—C15—C17102.88 (18)
C3—C2—H2115.3C16—C15—C17110.2 (2)
C4—C3—C299.81 (19)O5—C15—C18109.52 (19)
C4—C3—C8111.90 (17)C16—C15—C18113.0 (2)
C2—C3—C8102.04 (17)C17—C15—C18110.4 (2)
C4—C3—H3113.9C15—C16—H16A109.5
C2—C3—H3113.9C15—C16—H16B109.5
C8—C3—H3113.9H16A—C16—H16B109.5
O1—C4—C3128.0 (2)C15—C16—H16C109.5
O1—C4—C5126.4 (2)H16A—C16—H16C109.5
C3—C4—C5105.04 (19)H16B—C16—H16C109.5
C4—C5—C6101.77 (19)C15—C17—H17A109.5
C4—C5—C10111.17 (19)C15—C17—H17B109.5
C6—C5—C1089.40 (18)H17A—C17—H17B109.5
C4—C5—H5116.8C15—C17—H17C109.5
C6—C5—H5116.8H17A—C17—H17C109.5
C10—C5—H5116.8H17B—C17—H17C109.5
C2—C6—C5107.93 (19)C15—C18—H18A109.5
C2—C6—C11103.0 (2)C15—C18—H18B109.5
C5—C6—C1190.14 (18)H18A—C18—H18B109.5
C2—C6—H6117.3C15—C18—H18C109.5
C5—C6—H6117.3H18A—C18—H18C109.5
C11—C6—H6117.3H18B—C18—H18C109.5
C1—C7—C11104.1 (2)O6—C19—O7125.0 (2)
C1—C7—C8104.5 (2)O6—C19—C9123.1 (2)
C11—C7—C8101.31 (18)O7—C19—C9111.9 (2)
C1—C7—H7115.1O7—C20—C21109.1 (2)
C11—C7—H7115.1O7—C20—H20A109.9
C8—C7—H7115.1C21—C20—H20A109.9
C9—C8—C7103.44 (18)O7—C20—H20B109.9
C9—C8—C3110.57 (17)C21—C20—H20B109.9
C7—C8—C3102.31 (17)H20A—C20—H20B108.3
C9—C8—H8113.2C22—C21—C26118.9 (3)
C7—C8—H8113.2C22—C21—C20119.8 (3)
C3—C8—H8113.2C26—C21—C20120.8 (3)
O2—C9—C10114.94 (17)C21—C22—C23120.6 (3)
O2—C9—C19110.94 (17)C21—C22—H22119.7
C10—C9—C19111.30 (18)C23—C22—H22119.7
O2—C9—C8106.48 (16)C24—C23—C22120.8 (3)
C10—C9—C8101.39 (17)C24—C23—H23119.6
C19—C9—C8111.31 (18)C22—C23—H23119.6
C9—C10—C11104.35 (19)C23—C24—C25120.1 (3)
C9—C10—C5111.82 (18)C23—C24—H24119.9
C11—C10—C590.48 (18)C25—C24—H24119.9
C9—C10—H10115.7C24—C25—C26119.8 (3)
C11—C10—H10115.7C24—C25—H25120.1
C5—C10—H10115.7C26—C25—H25120.1
C7—C11—C10108.19 (19)C21—C26—C25119.7 (2)
C7—C11—C6102.3 (2)C21—C26—H26120.2
C10—C11—C689.98 (18)C25—C26—H26120.2
C7—C1—C2—C652.8 (2)C4—C5—C10—C92.9 (3)
C7—C1—C2—C353.2 (2)C6—C5—C10—C9105.3 (2)
C1—C2—C3—C4149.0 (2)C4—C5—C10—C11102.8 (2)
C6—C2—C3—C441.6 (2)C6—C5—C10—C110.38 (19)
C1—C2—C3—C833.9 (2)C1—C7—C11—C10127.0 (2)
C6—C2—C3—C873.4 (2)C8—C7—C11—C1018.7 (2)
C2—C3—C4—O1122.5 (3)C1—C7—C11—C632.9 (2)
C8—C3—C4—O1130.2 (2)C8—C7—C11—C675.4 (2)
C2—C3—C4—C549.2 (2)C9—C10—C11—C79.3 (2)
C8—C3—C4—C558.2 (2)C5—C10—C11—C7103.4 (2)
O1—C4—C5—C6136.1 (2)C9—C10—C11—C6112.32 (18)
C3—C4—C5—C635.7 (2)C5—C10—C11—C60.38 (18)
O1—C4—C5—C10129.9 (3)C2—C6—C11—C70.6 (2)
C3—C4—C5—C1058.2 (2)C5—C6—C11—C7109.02 (19)
C1—C2—C6—C5128.2 (2)C2—C6—C11—C10108.1 (2)
C3—C2—C6—C520.8 (2)C5—C6—C11—C100.38 (19)
C1—C2—C6—C1133.8 (2)C9—O2—C12—O30.6 (3)
C3—C2—C6—C1173.7 (2)C9—O2—C12—C13179.57 (17)
C4—C5—C6—C28.2 (2)C14—N1—C13—C12107.3 (3)
C10—C5—C6—C2103.3 (2)O3—C12—C13—N14.5 (3)
C4—C5—C6—C11111.89 (19)O2—C12—C13—N1175.63 (18)
C10—C5—C6—C110.38 (18)C13—N1—C14—O41.3 (4)
C2—C1—C7—C1152.6 (2)C13—N1—C14—O5178.9 (2)
C2—C1—C7—C853.3 (2)C15—O5—C14—O42.7 (4)
C1—C7—C8—C9148.1 (2)C15—O5—C14—N1176.98 (19)
C11—C7—C8—C940.1 (2)C14—O5—C15—C1659.9 (3)
C1—C7—C8—C333.1 (2)C14—O5—C15—C17177.5 (2)
C11—C7—C8—C374.8 (2)C14—O5—C15—C1865.1 (3)
C4—C3—C8—C93.2 (2)C20—O7—C19—O61.1 (4)
C2—C3—C8—C9109.08 (19)C20—O7—C19—C9179.3 (3)
C4—C3—C8—C7106.4 (2)O2—C9—C19—O6147.2 (2)
C2—C3—C8—C70.6 (2)C10—C9—C19—O617.9 (3)
C12—O2—C9—C1067.7 (2)C8—C9—C19—O694.5 (3)
C12—O2—C9—C1959.7 (2)O2—C9—C19—O734.5 (3)
C12—O2—C9—C8179.06 (17)C10—C9—C19—O7163.9 (2)
C7—C8—C9—O2167.11 (17)C8—C9—C19—O783.8 (2)
C3—C8—C9—O258.2 (2)C19—O7—C20—C21155.9 (3)
C7—C8—C9—C1046.57 (19)O7—C20—C21—C22134.8 (3)
C3—C8—C9—C1062.3 (2)O7—C20—C21—C2652.9 (5)
C7—C8—C9—C1971.9 (2)C26—C21—C22—C230.2 (5)
C3—C8—C9—C19179.23 (18)C20—C21—C22—C23172.6 (3)
O2—C9—C10—C11148.11 (17)C21—C22—C23—C242.3 (5)
C19—C9—C10—C1184.7 (2)C22—C23—C24—C252.9 (5)
C8—C9—C10—C1133.7 (2)C23—C24—C25—C261.1 (5)
O2—C9—C10—C551.7 (3)C22—C21—C26—C252.0 (4)
C19—C9—C10—C5178.88 (19)C20—C21—C26—C25174.3 (3)
C8—C9—C10—C562.7 (2)C24—C25—C26—C211.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.96 (1)1.99 (2)2.882 (2)154 (2)
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H29NO7
Mr467.50
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)9.7260 (2), 27.5398 (7), 9.3500 (2)
β (°) 107.679 (1)
V3)2386.14 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.78
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.694, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
8919, 3948, 3802
Rint0.024
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.07
No. of reflections3948
No. of parameters311
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18
Absolute structureFlack (1983), 1760 Friedel pairs
Absolute structure parameter0.00 (18)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.955 (10)1.993 (15)2.882 (2)154 (2)
Symmetry code: (i) x, y+2, z1/2.
 

Acknowledgements

The authors would like to thank Dr Hong Su (University of Capetown) for the data collection and structure refinement.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKruger, H. G., Rademeyer, M. & Ramdhani, R. (2006). Acta Cryst. E62, o268–o270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X., Kassiou, M., Christie, M. J. & Hambley, T. W. (2001). Aust. J. Chem. 54, 31–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarchand, A. P. (1989). Chem. Rev. 89, 1011–1033.  CrossRef CAS Web of Science Google Scholar
First citationMartins, F. J. C., Viljoen, A. M., Kruger, H. G. & Joubert, J. A. (1993). Tetrahedron, 49, 9573–9580.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H., Bodige, S. G., Marchand, A. P. & Chong, H.-S. (2000). Struct. Chem. 11, 257–260.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2607-o2608
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds