metal-organic compounds
A one-dimensional copper(II) phenylenediphosphonate: catena-poly[[(1,10-phenanthroline-κ2N,N′)copper(II)]-μ3-[m-phenylenediphosphonato-κ3O:O′:O′′]]
aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu
The title compound, [Cu(1,3-HO3PC6H4PO3H)(C12H8N2)]n, is a coordination polymer of the metal–diphosphonate family. The chain structure is constructed from `4+1' square-pyramidally coordinated copper(II) atoms bonded to chelating phenanthroline (phen) ligands and linked through 1,3-phenyldihydrogendiphosphonate ligands. The basal plane of the Cu(II) site is defined by the phen nitrogen donors and phosphonate oxygen atoms from two diphosphonate ligands, while the apical position is occupied by an oxygen donor from a third diphosphonate ligand. The chains propagate along the a-axis direction. Inversion-related phen groups engage in π-π stacking with a mean distance of 3.376 (2) Å between the ring planes. O—H⋯O hydrogen-bonding interactions between the protonated {P—OH} groups of one chain and the {P=O} groups of adjacent chains stabilize the crystal packing.
Related literature
For general background to metal-organophosphonates, see: Clearfield (1998); Finn et al. (2003); Vermeulen (1997). For copper-organophosphonates, see: DeBurgomaster et al. (2010) and references therein; Arnold et al. (2002) and references therein. For our recent studies of metal-organophosphonates, see: Armatas et al. (2009); Ouellette et al. (2009). For the catalytic, ion exchange, sensor and non-linear optical properties of transition metal compounds of organophosphonic ligands, see: Bakmutova et al. (2008); Konar et al. (2007); Vermeulen (1997); Turner et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536810037359/pk2259sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037359/pk2259Isup2.hkl
A mixture of copper acetate monohydrate (0.096 g, 0.48 mmol), 1,10-phenanthroline (0.117 g, 0.50 mmol), 1,3-phenyldiphosphonic acid (0.118 g, 0.50 mmol), and H2O (10.00 ml, 554.94 mmol) in the mole ratio 1.00:1.04:1.04:1156 was heated to 170°C for 4 days. Initial and final pH values of 3.0 and 3.0, respectively, were recorded. Blue rods suitable for X-ray diffraction were isolated in 70% yield. Anal. Calcd. for C18H14CuN2O6P2: C, 45.0; H, 2.92; N, 5.84. Found: C, 44.8; H, 2.86; N, 5.95.
Hydrogen atoms of the phenanthroline ring and the phosphonate protons were located on the difference Fourier and were subsequently positioned geometrically with C—H = 0.95 Å and O—H = 0.84 Å. These latter hydrogen atoms were constrained to ride on their parent atoms with Uiso(H) = 1.2 x Uiso(C) and Uiso(H) = 1.5 x Uiso(O).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C12H8N2)(C6H6O6P2)] | Z = 2 |
Mr = 479.79 | F(000) = 486 |
Triclinic, P1 | Dx = 1.823 Mg m−3 Dm = 1.81 (2) Mg m−3 Dm measured by not measured |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6142 (10) Å | Cell parameters from 5367 reflections |
b = 9.0554 (10) Å | θ = 2.3–28.4° |
c = 12.1094 (13) Å | µ = 1.48 mm−1 |
α = 99.688 (2)° | T = 98 K |
β = 106.542 (2)° | Block, blue |
γ = 98.184 (2)° | 0.35 × 0.30 × 0.21 mm |
V = 874.30 (17) Å3 |
Bruker APEX CCD area-detector diffractometer | 4190 independent reflections |
Radiation source: fine-focus sealed tube | 4042 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 28.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −11→11 |
Tmin = 0.626, Tmax = 0.747 | k = −11→11 |
8704 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0425P)2 + 1.0147P] where P = (Fo2 + 2Fc2)/3 |
4190 reflections | (Δ/σ)max = 0.001 |
262 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
[Cu(C12H8N2)(C6H6O6P2)] | γ = 98.184 (2)° |
Mr = 479.79 | V = 874.30 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.6142 (10) Å | Mo Kα radiation |
b = 9.0554 (10) Å | µ = 1.48 mm−1 |
c = 12.1094 (13) Å | T = 98 K |
α = 99.688 (2)° | 0.35 × 0.30 × 0.21 mm |
β = 106.542 (2)° |
Bruker APEX CCD area-detector diffractometer | 4190 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 4042 reflections with I > 2σ(I) |
Tmin = 0.626, Tmax = 0.747 | Rint = 0.018 |
8704 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.71 e Å−3 |
4190 reflections | Δρmin = −0.67 e Å−3 |
262 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.32660 (3) | 0.82971 (3) | 0.58802 (2) | 0.01190 (8) | |
P1 | 0.32369 (6) | 1.03977 (6) | 0.85348 (4) | 0.01186 (11) | |
P2 | −0.33649 (6) | 1.05190 (6) | 0.64714 (4) | 0.01144 (11) | |
O1 | 0.31787 (17) | 1.03279 (17) | 0.72590 (12) | 0.0148 (3) | |
O2 | 0.33003 (18) | 0.88390 (17) | 0.88644 (13) | 0.0163 (3) | |
H2 | 0.3720 | 0.8969 | 0.9599 | 0.025* | |
O3 | 0.46333 (18) | 1.16671 (18) | 0.94061 (13) | 0.0162 (3) | |
O4 | −0.43602 (17) | 0.89210 (17) | 0.62759 (13) | 0.0138 (3) | |
O5 | −0.44080 (17) | 1.17467 (17) | 0.67394 (13) | 0.0151 (3) | |
H5 | −0.5181 | 1.1348 | 0.6956 | 0.023* | |
O6 | −0.26911 (17) | 1.08135 (18) | 0.54895 (13) | 0.0151 (3) | |
N1 | 0.0864 (2) | 0.7410 (2) | 0.55889 (15) | 0.0134 (3) | |
N2 | 0.3570 (2) | 0.6720 (2) | 0.68729 (15) | 0.0138 (3) | |
C1 | 0.1322 (2) | 1.0872 (2) | 0.86658 (17) | 0.0124 (4) | |
C2 | −0.0105 (2) | 1.0504 (2) | 0.76856 (17) | 0.0130 (4) | |
H2A | −0.0062 | 1.0002 | 0.6943 | 0.016* | |
C3 | −0.1596 (2) | 1.0864 (2) | 0.77792 (17) | 0.0122 (4) | |
C4 | −0.1667 (2) | 1.1571 (2) | 0.88791 (18) | 0.0145 (4) | |
H4 | −0.2678 | 1.1808 | 0.8953 | 0.017* | |
C5 | −0.0249 (3) | 1.1930 (2) | 0.98692 (18) | 0.0160 (4) | |
H5A | −0.0298 | 1.2404 | 1.0617 | 0.019* | |
C6 | 0.1235 (2) | 1.1592 (2) | 0.97584 (18) | 0.0143 (4) | |
H6 | 0.2198 | 1.1853 | 1.0431 | 0.017* | |
C7 | −0.0474 (3) | 0.7773 (2) | 0.49048 (18) | 0.0153 (4) | |
H7 | −0.0340 | 0.8447 | 0.4401 | 0.018* | |
C8 | −0.2076 (3) | 0.7190 (3) | 0.49042 (19) | 0.0184 (4) | |
H8 | −0.3007 | 0.7471 | 0.4408 | 0.022* | |
C9 | −0.2286 (3) | 0.6210 (3) | 0.56286 (19) | 0.0179 (4) | |
H9 | −0.3364 | 0.5812 | 0.5636 | 0.021* | |
C10 | −0.0895 (3) | 0.5798 (2) | 0.63595 (18) | 0.0154 (4) | |
C11 | 0.0661 (2) | 0.6437 (2) | 0.62948 (18) | 0.0134 (4) | |
C12 | −0.0956 (3) | 0.4795 (3) | 0.7153 (2) | 0.0187 (4) | |
H12 | −0.1994 | 0.4363 | 0.7209 | 0.022* | |
C13 | 0.0445 (3) | 0.4451 (3) | 0.78248 (19) | 0.0192 (4) | |
H13 | 0.0370 | 0.3798 | 0.8353 | 0.023* | |
C14 | 0.2038 (3) | 0.5059 (2) | 0.77509 (18) | 0.0165 (4) | |
C15 | 0.2133 (3) | 0.6059 (2) | 0.69964 (18) | 0.0138 (4) | |
C16 | 0.3533 (3) | 0.4700 (3) | 0.83802 (19) | 0.0194 (4) | |
H16 | 0.3534 | 0.4010 | 0.8891 | 0.023* | |
C17 | 0.4990 (3) | 0.5359 (3) | 0.82459 (19) | 0.0192 (4) | |
H17 | 0.6005 | 0.5120 | 0.8659 | 0.023* | |
C18 | 0.4971 (3) | 0.6387 (2) | 0.74959 (18) | 0.0166 (4) | |
H18 | 0.5988 | 0.6860 | 0.7430 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00830 (12) | 0.01613 (14) | 0.01135 (13) | 0.00099 (9) | 0.00196 (9) | 0.00652 (9) |
P1 | 0.0083 (2) | 0.0170 (3) | 0.0100 (2) | 0.00289 (18) | 0.00145 (18) | 0.00446 (19) |
P2 | 0.0076 (2) | 0.0163 (3) | 0.0108 (2) | 0.00190 (18) | 0.00179 (18) | 0.00644 (18) |
O1 | 0.0121 (6) | 0.0218 (8) | 0.0115 (7) | 0.0033 (6) | 0.0042 (5) | 0.0056 (6) |
O2 | 0.0172 (7) | 0.0183 (7) | 0.0130 (7) | 0.0043 (6) | 0.0024 (6) | 0.0053 (6) |
O3 | 0.0107 (6) | 0.0199 (8) | 0.0160 (7) | 0.0019 (6) | 0.0014 (5) | 0.0044 (6) |
O4 | 0.0090 (6) | 0.0176 (7) | 0.0145 (7) | 0.0013 (5) | 0.0026 (5) | 0.0058 (6) |
O5 | 0.0109 (6) | 0.0186 (7) | 0.0172 (7) | 0.0041 (6) | 0.0038 (5) | 0.0080 (6) |
O6 | 0.0106 (6) | 0.0240 (8) | 0.0123 (7) | 0.0029 (6) | 0.0033 (5) | 0.0089 (6) |
N1 | 0.0130 (8) | 0.0138 (8) | 0.0129 (8) | 0.0012 (6) | 0.0035 (6) | 0.0039 (6) |
N2 | 0.0122 (8) | 0.0165 (8) | 0.0128 (8) | 0.0031 (6) | 0.0032 (6) | 0.0043 (6) |
C1 | 0.0102 (8) | 0.0153 (9) | 0.0126 (9) | 0.0028 (7) | 0.0028 (7) | 0.0063 (7) |
C2 | 0.0119 (9) | 0.0163 (10) | 0.0112 (9) | 0.0027 (7) | 0.0035 (7) | 0.0044 (7) |
C3 | 0.0094 (8) | 0.0153 (9) | 0.0113 (9) | 0.0006 (7) | 0.0020 (7) | 0.0053 (7) |
C4 | 0.0125 (9) | 0.0181 (10) | 0.0151 (10) | 0.0034 (7) | 0.0057 (7) | 0.0069 (8) |
C5 | 0.0161 (9) | 0.0202 (10) | 0.0122 (9) | 0.0036 (8) | 0.0051 (8) | 0.0041 (8) |
C6 | 0.0117 (9) | 0.0176 (10) | 0.0116 (9) | 0.0009 (7) | 0.0007 (7) | 0.0046 (7) |
C7 | 0.0138 (9) | 0.0169 (10) | 0.0142 (9) | 0.0024 (8) | 0.0029 (7) | 0.0043 (8) |
C8 | 0.0130 (9) | 0.0224 (11) | 0.0181 (10) | 0.0042 (8) | 0.0026 (8) | 0.0029 (8) |
C9 | 0.0125 (9) | 0.0200 (10) | 0.0196 (10) | −0.0002 (8) | 0.0063 (8) | 0.0007 (8) |
C10 | 0.0149 (9) | 0.0156 (10) | 0.0148 (10) | −0.0004 (8) | 0.0062 (8) | 0.0010 (8) |
C11 | 0.0136 (9) | 0.0132 (9) | 0.0132 (9) | 0.0009 (7) | 0.0049 (7) | 0.0023 (7) |
C12 | 0.0192 (10) | 0.0183 (10) | 0.0195 (10) | −0.0012 (8) | 0.0101 (8) | 0.0041 (8) |
C13 | 0.0248 (11) | 0.0171 (10) | 0.0166 (10) | −0.0012 (8) | 0.0092 (8) | 0.0060 (8) |
C14 | 0.0207 (10) | 0.0139 (10) | 0.0143 (10) | 0.0014 (8) | 0.0055 (8) | 0.0035 (8) |
C15 | 0.0152 (9) | 0.0139 (9) | 0.0119 (9) | 0.0018 (7) | 0.0040 (7) | 0.0030 (7) |
C16 | 0.0257 (11) | 0.0178 (10) | 0.0148 (10) | 0.0056 (9) | 0.0041 (8) | 0.0073 (8) |
C17 | 0.0201 (10) | 0.0207 (11) | 0.0158 (10) | 0.0069 (8) | 0.0018 (8) | 0.0061 (8) |
C18 | 0.0148 (9) | 0.0186 (10) | 0.0153 (10) | 0.0034 (8) | 0.0034 (8) | 0.0033 (8) |
Cu1—O6i | 1.9339 (15) | C4—C5 | 1.399 (3) |
Cu1—O4ii | 1.9371 (14) | C4—H4 | 0.9500 |
Cu1—N2 | 2.0142 (18) | C5—C6 | 1.393 (3) |
Cu1—N1 | 2.0166 (17) | C5—H5A | 0.9500 |
Cu1—O1 | 2.2918 (15) | C6—H6 | 0.9500 |
P1—O1 | 1.5215 (15) | C7—C8 | 1.406 (3) |
P1—O2 | 1.5341 (16) | C7—H7 | 0.9500 |
P1—O3 | 1.5352 (16) | C8—C9 | 1.377 (3) |
P1—C1 | 1.805 (2) | C8—H8 | 0.9500 |
P2—O6 | 1.5092 (15) | C9—C10 | 1.411 (3) |
P2—O4 | 1.5169 (15) | C9—H9 | 0.9500 |
P2—O5 | 1.5741 (15) | C10—C11 | 1.411 (3) |
P2—C3 | 1.803 (2) | C10—C12 | 1.435 (3) |
O2—H2 | 0.8400 | C11—C15 | 1.433 (3) |
O4—Cu1iii | 1.9371 (14) | C12—C13 | 1.360 (3) |
O5—H5 | 0.8400 | C12—H12 | 0.9500 |
O6—Cu1i | 1.9340 (15) | C13—C14 | 1.437 (3) |
N1—C7 | 1.333 (3) | C13—H13 | 0.9500 |
N1—C11 | 1.354 (3) | C14—C15 | 1.400 (3) |
N2—C18 | 1.333 (3) | C14—C16 | 1.410 (3) |
N2—C15 | 1.356 (3) | C16—C17 | 1.376 (3) |
C1—C2 | 1.396 (3) | C16—H16 | 0.9500 |
C1—C6 | 1.401 (3) | C17—C18 | 1.404 (3) |
C2—C3 | 1.400 (3) | C17—H17 | 0.9500 |
C2—H2A | 0.9500 | C18—H18 | 0.9500 |
C3—C4 | 1.399 (3) | ||
O6i—Cu1—O4ii | 96.46 (6) | C3—C4—H4 | 120.0 |
O6i—Cu1—N2 | 160.52 (7) | C6—C5—C4 | 120.02 (19) |
O4ii—Cu1—N2 | 90.51 (7) | C6—C5—H5A | 120.0 |
O6i—Cu1—N1 | 90.87 (7) | C4—C5—H5A | 120.0 |
O4ii—Cu1—N1 | 171.94 (7) | C5—C6—C1 | 120.71 (19) |
N2—Cu1—N1 | 81.49 (7) | C5—C6—H6 | 119.6 |
O6i—Cu1—O1 | 98.12 (6) | C1—C6—H6 | 119.6 |
O4ii—Cu1—O1 | 91.46 (6) | N1—C7—C8 | 122.1 (2) |
N2—Cu1—O1 | 99.88 (6) | N1—C7—H7 | 118.9 |
N1—Cu1—O1 | 90.82 (6) | C8—C7—H7 | 118.9 |
O1—P1—O2 | 111.95 (9) | C9—C8—C7 | 119.4 (2) |
O1—P1—O3 | 112.39 (9) | C9—C8—H8 | 120.3 |
O2—P1—O3 | 112.01 (9) | C7—C8—H8 | 120.3 |
O1—P1—C1 | 107.19 (9) | C8—C9—C10 | 119.79 (19) |
O2—P1—C1 | 106.22 (9) | C8—C9—H9 | 120.1 |
O3—P1—C1 | 106.62 (9) | C10—C9—H9 | 120.1 |
O6—P2—O4 | 115.35 (9) | C11—C10—C9 | 116.6 (2) |
O6—P2—O5 | 110.16 (8) | C11—C10—C12 | 118.5 (2) |
O4—P2—O5 | 110.15 (8) | C9—C10—C12 | 124.91 (19) |
O6—P2—C3 | 106.07 (9) | N1—C11—C10 | 123.45 (19) |
O4—P2—C3 | 109.09 (9) | N1—C11—C15 | 116.48 (18) |
O5—P2—C3 | 105.48 (9) | C10—C11—C15 | 120.06 (19) |
P1—O1—Cu1 | 128.96 (9) | C13—C12—C10 | 121.23 (19) |
P1—O2—H2 | 109.5 | C13—C12—H12 | 119.4 |
P2—O4—Cu1iii | 127.78 (9) | C10—C12—H12 | 119.4 |
P2—O5—H5 | 109.5 | C12—C13—C14 | 121.2 (2) |
P2—O6—Cu1i | 138.73 (9) | C12—C13—H13 | 119.4 |
C7—N1—C11 | 118.57 (18) | C14—C13—H13 | 119.4 |
C7—N1—Cu1 | 128.72 (15) | C15—C14—C16 | 117.0 (2) |
C11—N1—Cu1 | 112.34 (13) | C15—C14—C13 | 118.7 (2) |
C18—N2—C15 | 118.12 (18) | C16—C14—C13 | 124.3 (2) |
C18—N2—Cu1 | 128.83 (15) | N2—C15—C14 | 123.71 (19) |
C15—N2—Cu1 | 112.63 (13) | N2—C15—C11 | 115.95 (18) |
C2—C1—C6 | 118.83 (18) | C14—C15—C11 | 120.34 (19) |
C2—C1—P1 | 120.67 (15) | C17—C16—C14 | 119.2 (2) |
C6—C1—P1 | 120.50 (15) | C17—C16—H16 | 120.4 |
C1—C2—C3 | 121.07 (18) | C14—C16—H16 | 120.4 |
C1—C2—H2A | 119.5 | C16—C17—C18 | 119.7 (2) |
C3—C2—H2A | 119.5 | C16—C17—H17 | 120.1 |
C4—C3—C2 | 119.43 (18) | C18—C17—H17 | 120.1 |
C4—C3—P2 | 120.71 (15) | N2—C18—C17 | 122.1 (2) |
C2—C3—P2 | 119.75 (15) | N2—C18—H18 | 118.9 |
C5—C4—C3 | 119.92 (18) | C17—C18—H18 | 118.9 |
C5—C4—H4 | 120.0 | ||
O2—P1—O1—Cu1 | −2.35 (13) | C2—C3—C4—C5 | 0.9 (3) |
O3—P1—O1—Cu1 | 124.73 (10) | P2—C3—C4—C5 | −175.41 (16) |
C1—P1—O1—Cu1 | −118.45 (11) | C3—C4—C5—C6 | 0.4 (3) |
O6i—Cu1—O1—P1 | 169.38 (10) | C4—C5—C6—C1 | −1.0 (3) |
O4ii—Cu1—O1—P1 | −93.88 (11) | C2—C1—C6—C5 | 0.4 (3) |
N2—Cu1—O1—P1 | −3.11 (12) | P1—C1—C6—C5 | −178.59 (16) |
N1—Cu1—O1—P1 | 78.39 (11) | C11—N1—C7—C8 | 0.7 (3) |
O6—P2—O4—Cu1iii | −106.17 (11) | Cu1—N1—C7—C8 | −171.75 (16) |
O5—P2—O4—Cu1iii | 19.28 (13) | N1—C7—C8—C9 | −0.1 (3) |
C3—P2—O4—Cu1iii | 134.62 (11) | C7—C8—C9—C10 | −0.2 (3) |
O4—P2—O6—Cu1i | 97.16 (15) | C8—C9—C10—C11 | −0.1 (3) |
O5—P2—O6—Cu1i | −28.29 (17) | C8—C9—C10—C12 | 179.7 (2) |
C3—P2—O6—Cu1i | −141.97 (14) | C7—N1—C11—C10 | −1.0 (3) |
O6i—Cu1—N1—C7 | −16.18 (18) | Cu1—N1—C11—C10 | 172.65 (16) |
N2—Cu1—N1—C7 | −178.19 (19) | C7—N1—C11—C15 | 178.83 (18) |
O1—Cu1—N1—C7 | 81.95 (18) | Cu1—N1—C11—C15 | −7.6 (2) |
O6i—Cu1—N1—C11 | 171.00 (14) | C9—C10—C11—N1 | 0.7 (3) |
N2—Cu1—N1—C11 | 9.00 (14) | C12—C10—C11—N1 | −179.16 (19) |
O1—Cu1—N1—C11 | −90.87 (14) | C9—C10—C11—C15 | −179.11 (18) |
O6i—Cu1—N2—C18 | 110.8 (2) | C12—C10—C11—C15 | 1.0 (3) |
O4ii—Cu1—N2—C18 | −0.45 (18) | C11—C10—C12—C13 | −0.4 (3) |
N1—Cu1—N2—C18 | 178.63 (19) | C9—C10—C12—C13 | 179.7 (2) |
O1—Cu1—N2—C18 | −92.02 (18) | C10—C12—C13—C14 | −1.1 (3) |
O6i—Cu1—N2—C15 | −76.9 (2) | C12—C13—C14—C15 | 2.0 (3) |
O4ii—Cu1—N2—C15 | 171.83 (14) | C12—C13—C14—C16 | −177.0 (2) |
N1—Cu1—N2—C15 | −9.08 (14) | C18—N2—C15—C14 | 0.7 (3) |
O1—Cu1—N2—C15 | 80.27 (14) | Cu1—N2—C15—C14 | −172.44 (16) |
O1—P1—C1—C2 | 26.20 (19) | C18—N2—C15—C11 | −179.11 (18) |
O2—P1—C1—C2 | −93.64 (17) | Cu1—N2—C15—C11 | 7.7 (2) |
O3—P1—C1—C2 | 146.75 (16) | C16—C14—C15—N2 | −2.1 (3) |
O1—P1—C1—C6 | −154.87 (16) | C13—C14—C15—N2 | 178.79 (19) |
O2—P1—C1—C6 | 85.30 (18) | C16—C14—C15—C11 | 177.76 (19) |
O3—P1—C1—C6 | −34.31 (19) | C13—C14—C15—C11 | −1.4 (3) |
C6—C1—C2—C3 | 0.9 (3) | N1—C11—C15—N2 | −0.1 (3) |
P1—C1—C2—C3 | 179.87 (16) | C10—C11—C15—N2 | 179.72 (18) |
C1—C2—C3—C4 | −1.5 (3) | N1—C11—C15—C14 | −179.95 (18) |
C1—C2—C3—P2 | 174.77 (16) | C10—C11—C15—C14 | −0.1 (3) |
O6—P2—C3—C4 | 141.91 (17) | C15—C14—C16—C17 | 1.3 (3) |
O4—P2—C3—C4 | −93.26 (18) | C13—C14—C16—C17 | −179.6 (2) |
O5—P2—C3—C4 | 25.05 (19) | C14—C16—C17—C18 | 0.6 (3) |
O6—P2—C3—C2 | −34.34 (19) | C15—N2—C18—C17 | 1.3 (3) |
O4—P2—C3—C2 | 90.49 (17) | Cu1—N2—C18—C17 | 173.27 (16) |
O5—P2—C3—C2 | −151.21 (16) | C16—C17—C18—N2 | −2.0 (3) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x+1, y, z; (iii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3iv | 0.84 | 1.81 | 2.489 (2) | 136 |
O5—H5···O1iii | 0.84 | 1.74 | 2.574 (2) | 173 |
Symmetry codes: (iii) x−1, y, z; (iv) −x+1, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C12H8N2)(C6H6O6P2)] |
Mr | 479.79 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 98 |
a, b, c (Å) | 8.6142 (10), 9.0554 (10), 12.1094 (13) |
α, β, γ (°) | 99.688 (2), 106.542 (2), 98.184 (2) |
V (Å3) | 874.30 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.48 |
Crystal size (mm) | 0.35 × 0.30 × 0.21 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.626, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8704, 4190, 4042 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.087, 1.09 |
No. of reflections | 4190 |
No. of parameters | 262 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.71, −0.67 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.84 | 1.81 | 2.489 (2) | 136.4 |
O5—H5···O1ii | 0.84 | 1.74 | 2.574 (2) | 172.8 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1, y, z. |
Acknowledgements
This work was supported by a grant from the National Science Foundation, CHE-0907787.
References
Armatas, N. G., Ouellette, W., Whitenack, K., Pelcher, J., Liu, H., Romaine, E., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 8897–8910. Web of Science CrossRef PubMed CAS Google Scholar
Arnold, D. I., Ouyang, X. & Clearfield, A. (2002). Chem. Mater. 14, 2020–2027. Web of Science CSD CrossRef CAS Google Scholar
Bakmutova, E., Ouyang, X., Medvedev, D. G. & Clearfield, A. (2008). Inorg. Chem. 42, 7046–7051. Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510. CrossRef CAS Google Scholar
DeBurgomaster, P., Ouellette, W., Liu, H., O'Connor, C. J. & Zubieta, J. (2010). CrystEngComm, 12, 446–469. Web of Science CSD CrossRef CAS Google Scholar
Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421–601. CAS Google Scholar
Konar, S., Zon, J., Prosvirin, A. V., Dunbar, K. R. & Clearfield, A. (2007). Inorg. Chem. 46, 5229–5236. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ouellette, W., Wang, G., Liu, H., Yee, G. T., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 953–963. Web of Science CSD CrossRef PubMed CAS Google Scholar
Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, A., Jaffres, P.-A., MacLean, E. J., Villemin, D., McKee, V. & Hix, G. B. (2003). Dalton Trans. pp. 1314–1319. Web of Science CSD CrossRef Google Scholar
Vermeulen, L. A. (1997). Prog. Inorg. Chem. 44, 143–166. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal organophosphonate materials are prototypical organic-inorganic hybrid composites, often exhibiting layered or pillared-layer structures (Clearfield, 1998; Finn et al., (2003)). A variety of transition metal compounds of organophosphonic ligands have been investigated for their catalytic, ion exchange, sensor and non-linear optical properties (Bakmutova et al. (2008); Konar et al.,(2007); Vermeulen, (1997); Turner et al. (2003)). In the specific case of copper-organophosphonate materials, layered structures are the most common, adopting the prototypical 'pillared' layer motif (Arnold, et al. (2002)). In the course of our extensive studies of metal-organophosphonate chemistry (Armatas et al. (2009); Ouellette et al. (2009); DeBurgomaster, et al. (2010)), we have noted the structural influences of coligands and/or secondary metal-organic moieties. For the title compound, [Cu(phen)(1,3-HO3PC6H4PO3H)] (Fig.), the bidentate phenanthroline ligand by occupying three coordination sites about the Cu(II) centers constrains structural extension to one-dimension. The material exhibits a chain motif running parallel to the [100] direction (Fig. 2). The five coordinate {CuO3N2} geometry at the Cu(II) site is defined by the nitrogen donors of the chelating phenanthroline ligand and oxygen donors from two distinct 1,3-phenyldiphosphonate ligands in the basal and an oxygen donor from a third diphosphosphonate ligand in the apical position. The '4 + 1' axially distorted Jahn-Teller geometry exhibits an elongated Cu—O bond length of 2.292 (2) Å, compared to Cu—O bond distances of 1.934 (2)Å and 1.937 (2)Å for the oxygen donors in the basal plane. Each phenyldiphosphonate ligand bridges three copper sites in the chain. The resultant connectivity pattern generates two repeating heterocyclic rings; the first consists of two copper sites bridged by two diphosphonate ligands to give the sixteen-membered {–Cu—O—P—C—C—C—P—O–}2 ring while the second is the common {M2(µ2-phosphonate-O,O')2} motif or in this case the eight-membered {–Cu—O—P—O–}2 ring. The alternating ring structure is similar to that observed for the previously reported [Cu(2,2'-bipyridine)(1,3,5-(HO3P)2C6H3PO3H2)] (DeBurgomaster, et al. (2010)). Charge-balance requirements dictate that the diphosphonate ligand must be doubly protonated, that is (HO3PC6H4PO3H)2-. The P2—O5 bond distance of 1.574 (2) Å, compared to distances of 1.509 (2)Å and 1.517 (2)Å for P2—O4 and P2—O6, establishes O5 as one protonation site, an observation confirmed by the appearance of a peak consistent with the O5 proton on the difference Fourier map. The location of the second proton is less clear with O2 and O3 as possibilities. Based on the appearance of a peak consistent with an O2 proton in the difference Fourier, oxygen atom O2 was deemed the site of protonation. The pendant {P = O} and {P—OH} groups of adjacent chains engage in hydrogen-bonding to link the chains into a three-dimensional framework (Fig. 3).