metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1304-m1305

A one-dimensional copper(II) phenyl­ene­di­phospho­nate: catena-poly[[(1,10-phenanthroline-κ2N,N′)copper(II)]-μ3-[m-phenyl­enedi­phospho­nato-κ3O:O′:O′′]]

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 4 August 2010; accepted 17 September 2010; online 30 September 2010)

The title compound, [Cu(1,3-HO3PC6H4PO3H)(C12H8N2)]n, is a coordination polymer of the metal–diphospho­nate family. The chain structure is constructed from `4+1' square-py­rami­dally coordinated copper(II) atoms bonded to chelating phenanthroline (phen) ligands and linked through 1,3-phenyldihydrogendiphospho­nate ligands. The basal plane of the Cu(II) site is defined by the phen nitro­gen donors and phospho­nate oxygen atoms from two diphospho­nate ligands, while the apical position is occupied by an oxygen donor from a third diphospho­nate ligand. The chains propagate along the a-axis direction. Inversion-related phen groups engage in π-π stacking with a mean distance of 3.376 (2) Å between the ring planes. O—H⋯O hydrogen-bonding inter­actions between the protonated {P—OH} groups of one chain and the {P=O} groups of adjacent chains stabilize the crystal packing.

Related literature

For general background to metal-organo­phospho­nates, see: Clearfield (1998[Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510.]); Finn et al. (2003[Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421-601.]); Vermeulen (1997[Vermeulen, L. A. (1997). Prog. Inorg. Chem. 44, 143-166.]). For copper-organo­phospho­nates, see: DeBurgomaster et al. (2010[DeBurgomaster, P., Ouellette, W., Liu, H., O'Connor, C. J. & Zubieta, J. (2010). CrystEngComm, 12, 446-469.]) and references therein; Arnold et al. (2002[Arnold, D. I., Ouyang, X. & Clearfield, A. (2002). Chem. Mater. 14, 2020-2027.]) and references therein. For our recent studies of metal-organo­phospho­nates, see: Armatas et al. (2009[Armatas, N. G., Ouellette, W., Whitenack, K., Pelcher, J., Liu, H., Romaine, E., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 8897-8910.]); Ouellette et al. (2009[Ouellette, W., Wang, G., Liu, H., Yee, G. T., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 953-963.]). For the catalytic, ion exchange, sensor and non-linear optical properties of transition metal compounds of organo­phospho­nic ligands, see: Bakmutova et al. (2008[Bakmutova, E., Ouyang, X., Medvedev, D. G. & Clearfield, A. (2008). Inorg. Chem. 42, 7046-7051.]); Konar et al. (2007[Konar, S., Zon, J., Prosvirin, A. V., Dunbar, K. R. & Clearfield, A. (2007). Inorg. Chem. 46, 5229-5236.]); Vermeulen (1997[Vermeulen, L. A. (1997). Prog. Inorg. Chem. 44, 143-166.]); Turner et al. (2003[Turner, A., Jaffres, P.-A., MacLean, E. J., Villemin, D., McKee, V. & Hix, G. B. (2003). Dalton Trans. pp. 1314-1319.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H6O6P2)(C12H8N2)]

  • Mr = 479.79

  • Triclinic, [P \overline 1]

  • a = 8.6142 (10) Å

  • b = 9.0554 (10) Å

  • c = 12.1094 (13) Å

  • α = 99.688 (2)°

  • β = 106.542 (2)°

  • γ = 98.184 (2)°

  • V = 874.30 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 98 K

  • 0.35 × 0.30 × 0.21 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.626, Tmax = 0.747

  • 8704 measured reflections

  • 4190 independent reflections

  • 4042 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.09

  • 4190 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 1.81 2.489 (2) 136
O5—H5⋯O1ii 0.84 1.74 2.574 (2) 173
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2006[Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal organophosphonate materials are prototypical organic-inorganic hybrid composites, often exhibiting layered or pillared-layer structures (Clearfield, 1998; Finn et al., (2003)). A variety of transition metal compounds of organophosphonic ligands have been investigated for their catalytic, ion exchange, sensor and non-linear optical properties (Bakmutova et al. (2008); Konar et al.,(2007); Vermeulen, (1997); Turner et al. (2003)). In the specific case of copper-organophosphonate materials, layered structures are the most common, adopting the prototypical 'pillared' layer motif (Arnold, et al. (2002)). In the course of our extensive studies of metal-organophosphonate chemistry (Armatas et al. (2009); Ouellette et al. (2009); DeBurgomaster, et al. (2010)), we have noted the structural influences of coligands and/or secondary metal-organic moieties. For the title compound, [Cu(phen)(1,3-HO3PC6H4PO3H)] (Fig.), the bidentate phenanthroline ligand by occupying three coordination sites about the Cu(II) centers constrains structural extension to one-dimension. The material exhibits a chain motif running parallel to the [100] direction (Fig. 2). The five coordinate {CuO3N2} geometry at the Cu(II) site is defined by the nitrogen donors of the chelating phenanthroline ligand and oxygen donors from two distinct 1,3-phenyldiphosphonate ligands in the basal and an oxygen donor from a third diphosphosphonate ligand in the apical position. The '4 + 1' axially distorted Jahn-Teller geometry exhibits an elongated Cu—O bond length of 2.292 (2) Å, compared to Cu—O bond distances of 1.934 (2)Å and 1.937 (2)Å for the oxygen donors in the basal plane. Each phenyldiphosphonate ligand bridges three copper sites in the chain. The resultant connectivity pattern generates two repeating heterocyclic rings; the first consists of two copper sites bridged by two diphosphonate ligands to give the sixteen-membered {–Cu—O—P—C—C—C—P—O–}2 ring while the second is the common {M2(µ2-phosphonate-O,O')2} motif or in this case the eight-membered {–Cu—O—P—O–}2 ring. The alternating ring structure is similar to that observed for the previously reported [Cu(2,2'-bipyridine)(1,3,5-(HO3P)2C6H3PO3H2)] (DeBurgomaster, et al. (2010)). Charge-balance requirements dictate that the diphosphonate ligand must be doubly protonated, that is (HO3PC6H4PO3H)2-. The P2—O5 bond distance of 1.574 (2) Å, compared to distances of 1.509 (2)Å and 1.517 (2)Å for P2—O4 and P2—O6, establishes O5 as one protonation site, an observation confirmed by the appearance of a peak consistent with the O5 proton on the difference Fourier map. The location of the second proton is less clear with O2 and O3 as possibilities. Based on the appearance of a peak consistent with an O2 proton in the difference Fourier, oxygen atom O2 was deemed the site of protonation. The pendant {P = O} and {P—OH} groups of adjacent chains engage in hydrogen-bonding to link the chains into a three-dimensional framework (Fig. 3).

Related literature top

For general background to metal-organophosphonates, see: Clearfield (1998); Finn et al. (2003); Vermeulen (1997). For copper-organophosphonates, see: DeBurgomaster et al. (2010) and references therein; Arnold et al. (2002) and references therein. For our recent studies of metal-organophosphonates, see Armatas et al. (2009); Ouellette et al. (2009). For the catalytic, ion exchange, sensor and non-linear optical properties of transition metal compounds of organophosphonic ligands, see: Bakmutova et al. (2008); Konar et al. (2007); Vermeulen (1997); Turner et al. (2003).

Experimental top

A mixture of copper acetate monohydrate (0.096 g, 0.48 mmol), 1,10-phenanthroline (0.117 g, 0.50 mmol), 1,3-phenyldiphosphonic acid (0.118 g, 0.50 mmol), and H2O (10.00 ml, 554.94 mmol) in the mole ratio 1.00:1.04:1.04:1156 was heated to 170°C for 4 days. Initial and final pH values of 3.0 and 3.0, respectively, were recorded. Blue rods suitable for X-ray diffraction were isolated in 70% yield. Anal. Calcd. for C18H14CuN2O6P2: C, 45.0; H, 2.92; N, 5.84. Found: C, 44.8; H, 2.86; N, 5.95.

Refinement top

Hydrogen atoms of the phenanthroline ring and the phosphonate protons were located on the difference Fourier and were subsequently positioned geometrically with C—H = 0.95 Å and O—H = 0.84 Å. These latter hydrogen atoms were constrained to ride on their parent atoms with Uiso(H) = 1.2 x Uiso(C) and Uiso(H) = 1.5 x Uiso(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-labeling scheme and displacement ellipsoids at the 50% probability level. Color scheme: copper, blue; phosphorus, yellow; nitrogen, light blue; oxygen, red; carbon, black; hydrogen, pink.
[Figure 2] Fig. 2. A view of the chain structure of [Cu(phen)(1,3-HO3PC6H4PO3H)]n which propagates along the a-axis direction. The π-π stacking of phen groups is also shown. Color scheme as for Fig. 1.
[Figure 3] Fig. 3. The packing diagram of the compound viewed down the a axis. Hydrogen bonds are shown as dashed lines. Color scheme as for Fig. 1.
catena-poly[[(1,10-phenanthroline-κ2N,N')copper(II)]- µ3-[m-phenylenediphosphonato-κ3O:O':O'']] top
Crystal data top
[Cu(C12H8N2)(C6H6O6P2)]Z = 2
Mr = 479.79F(000) = 486
Triclinic, P1Dx = 1.823 Mg m3
Dm = 1.81 (2) Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6142 (10) ÅCell parameters from 5367 reflections
b = 9.0554 (10) Åθ = 2.3–28.4°
c = 12.1094 (13) ŵ = 1.48 mm1
α = 99.688 (2)°T = 98 K
β = 106.542 (2)°Block, blue
γ = 98.184 (2)°0.35 × 0.30 × 0.21 mm
V = 874.30 (17) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
4190 independent reflections
Radiation source: fine-focus sealed tube4042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.626, Tmax = 0.747k = 1111
8704 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0425P)2 + 1.0147P]
where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu(C12H8N2)(C6H6O6P2)]γ = 98.184 (2)°
Mr = 479.79V = 874.30 (17) Å3
Triclinic, P1Z = 2
a = 8.6142 (10) ÅMo Kα radiation
b = 9.0554 (10) ŵ = 1.48 mm1
c = 12.1094 (13) ÅT = 98 K
α = 99.688 (2)°0.35 × 0.30 × 0.21 mm
β = 106.542 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4190 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4042 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.747Rint = 0.018
8704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.09Δρmax = 0.71 e Å3
4190 reflectionsΔρmin = 0.67 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.32660 (3)0.82971 (3)0.58802 (2)0.01190 (8)
P10.32369 (6)1.03977 (6)0.85348 (4)0.01186 (11)
P20.33649 (6)1.05190 (6)0.64714 (4)0.01144 (11)
O10.31787 (17)1.03279 (17)0.72590 (12)0.0148 (3)
O20.33003 (18)0.88390 (17)0.88644 (13)0.0163 (3)
H20.37200.89690.95990.025*
O30.46333 (18)1.16671 (18)0.94061 (13)0.0162 (3)
O40.43602 (17)0.89210 (17)0.62759 (13)0.0138 (3)
O50.44080 (17)1.17467 (17)0.67394 (13)0.0151 (3)
H50.51811.13480.69560.023*
O60.26911 (17)1.08135 (18)0.54895 (13)0.0151 (3)
N10.0864 (2)0.7410 (2)0.55889 (15)0.0134 (3)
N20.3570 (2)0.6720 (2)0.68729 (15)0.0138 (3)
C10.1322 (2)1.0872 (2)0.86658 (17)0.0124 (4)
C20.0105 (2)1.0504 (2)0.76856 (17)0.0130 (4)
H2A0.00621.00020.69430.016*
C30.1596 (2)1.0864 (2)0.77792 (17)0.0122 (4)
C40.1667 (2)1.1571 (2)0.88791 (18)0.0145 (4)
H40.26781.18080.89530.017*
C50.0249 (3)1.1930 (2)0.98692 (18)0.0160 (4)
H5A0.02981.24041.06170.019*
C60.1235 (2)1.1592 (2)0.97584 (18)0.0143 (4)
H60.21981.18531.04310.017*
C70.0474 (3)0.7773 (2)0.49048 (18)0.0153 (4)
H70.03400.84470.44010.018*
C80.2076 (3)0.7190 (3)0.49042 (19)0.0184 (4)
H80.30070.74710.44080.022*
C90.2286 (3)0.6210 (3)0.56286 (19)0.0179 (4)
H90.33640.58120.56360.021*
C100.0895 (3)0.5798 (2)0.63595 (18)0.0154 (4)
C110.0661 (2)0.6437 (2)0.62948 (18)0.0134 (4)
C120.0956 (3)0.4795 (3)0.7153 (2)0.0187 (4)
H120.19940.43630.72090.022*
C130.0445 (3)0.4451 (3)0.78248 (19)0.0192 (4)
H130.03700.37980.83530.023*
C140.2038 (3)0.5059 (2)0.77509 (18)0.0165 (4)
C150.2133 (3)0.6059 (2)0.69964 (18)0.0138 (4)
C160.3533 (3)0.4700 (3)0.83802 (19)0.0194 (4)
H160.35340.40100.88910.023*
C170.4990 (3)0.5359 (3)0.82459 (19)0.0192 (4)
H170.60050.51200.86590.023*
C180.4971 (3)0.6387 (2)0.74959 (18)0.0166 (4)
H180.59880.68600.74300.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00830 (12)0.01613 (14)0.01135 (13)0.00099 (9)0.00196 (9)0.00652 (9)
P10.0083 (2)0.0170 (3)0.0100 (2)0.00289 (18)0.00145 (18)0.00446 (19)
P20.0076 (2)0.0163 (3)0.0108 (2)0.00190 (18)0.00179 (18)0.00644 (18)
O10.0121 (6)0.0218 (8)0.0115 (7)0.0033 (6)0.0042 (5)0.0056 (6)
O20.0172 (7)0.0183 (7)0.0130 (7)0.0043 (6)0.0024 (6)0.0053 (6)
O30.0107 (6)0.0199 (8)0.0160 (7)0.0019 (6)0.0014 (5)0.0044 (6)
O40.0090 (6)0.0176 (7)0.0145 (7)0.0013 (5)0.0026 (5)0.0058 (6)
O50.0109 (6)0.0186 (7)0.0172 (7)0.0041 (6)0.0038 (5)0.0080 (6)
O60.0106 (6)0.0240 (8)0.0123 (7)0.0029 (6)0.0033 (5)0.0089 (6)
N10.0130 (8)0.0138 (8)0.0129 (8)0.0012 (6)0.0035 (6)0.0039 (6)
N20.0122 (8)0.0165 (8)0.0128 (8)0.0031 (6)0.0032 (6)0.0043 (6)
C10.0102 (8)0.0153 (9)0.0126 (9)0.0028 (7)0.0028 (7)0.0063 (7)
C20.0119 (9)0.0163 (10)0.0112 (9)0.0027 (7)0.0035 (7)0.0044 (7)
C30.0094 (8)0.0153 (9)0.0113 (9)0.0006 (7)0.0020 (7)0.0053 (7)
C40.0125 (9)0.0181 (10)0.0151 (10)0.0034 (7)0.0057 (7)0.0069 (8)
C50.0161 (9)0.0202 (10)0.0122 (9)0.0036 (8)0.0051 (8)0.0041 (8)
C60.0117 (9)0.0176 (10)0.0116 (9)0.0009 (7)0.0007 (7)0.0046 (7)
C70.0138 (9)0.0169 (10)0.0142 (9)0.0024 (8)0.0029 (7)0.0043 (8)
C80.0130 (9)0.0224 (11)0.0181 (10)0.0042 (8)0.0026 (8)0.0029 (8)
C90.0125 (9)0.0200 (10)0.0196 (10)0.0002 (8)0.0063 (8)0.0007 (8)
C100.0149 (9)0.0156 (10)0.0148 (10)0.0004 (8)0.0062 (8)0.0010 (8)
C110.0136 (9)0.0132 (9)0.0132 (9)0.0009 (7)0.0049 (7)0.0023 (7)
C120.0192 (10)0.0183 (10)0.0195 (10)0.0012 (8)0.0101 (8)0.0041 (8)
C130.0248 (11)0.0171 (10)0.0166 (10)0.0012 (8)0.0092 (8)0.0060 (8)
C140.0207 (10)0.0139 (10)0.0143 (10)0.0014 (8)0.0055 (8)0.0035 (8)
C150.0152 (9)0.0139 (9)0.0119 (9)0.0018 (7)0.0040 (7)0.0030 (7)
C160.0257 (11)0.0178 (10)0.0148 (10)0.0056 (9)0.0041 (8)0.0073 (8)
C170.0201 (10)0.0207 (11)0.0158 (10)0.0069 (8)0.0018 (8)0.0061 (8)
C180.0148 (9)0.0186 (10)0.0153 (10)0.0034 (8)0.0034 (8)0.0033 (8)
Geometric parameters (Å, º) top
Cu1—O6i1.9339 (15)C4—C51.399 (3)
Cu1—O4ii1.9371 (14)C4—H40.9500
Cu1—N22.0142 (18)C5—C61.393 (3)
Cu1—N12.0166 (17)C5—H5A0.9500
Cu1—O12.2918 (15)C6—H60.9500
P1—O11.5215 (15)C7—C81.406 (3)
P1—O21.5341 (16)C7—H70.9500
P1—O31.5352 (16)C8—C91.377 (3)
P1—C11.805 (2)C8—H80.9500
P2—O61.5092 (15)C9—C101.411 (3)
P2—O41.5169 (15)C9—H90.9500
P2—O51.5741 (15)C10—C111.411 (3)
P2—C31.803 (2)C10—C121.435 (3)
O2—H20.8400C11—C151.433 (3)
O4—Cu1iii1.9371 (14)C12—C131.360 (3)
O5—H50.8400C12—H120.9500
O6—Cu1i1.9340 (15)C13—C141.437 (3)
N1—C71.333 (3)C13—H130.9500
N1—C111.354 (3)C14—C151.400 (3)
N2—C181.333 (3)C14—C161.410 (3)
N2—C151.356 (3)C16—C171.376 (3)
C1—C21.396 (3)C16—H160.9500
C1—C61.401 (3)C17—C181.404 (3)
C2—C31.400 (3)C17—H170.9500
C2—H2A0.9500C18—H180.9500
C3—C41.399 (3)
O6i—Cu1—O4ii96.46 (6)C3—C4—H4120.0
O6i—Cu1—N2160.52 (7)C6—C5—C4120.02 (19)
O4ii—Cu1—N290.51 (7)C6—C5—H5A120.0
O6i—Cu1—N190.87 (7)C4—C5—H5A120.0
O4ii—Cu1—N1171.94 (7)C5—C6—C1120.71 (19)
N2—Cu1—N181.49 (7)C5—C6—H6119.6
O6i—Cu1—O198.12 (6)C1—C6—H6119.6
O4ii—Cu1—O191.46 (6)N1—C7—C8122.1 (2)
N2—Cu1—O199.88 (6)N1—C7—H7118.9
N1—Cu1—O190.82 (6)C8—C7—H7118.9
O1—P1—O2111.95 (9)C9—C8—C7119.4 (2)
O1—P1—O3112.39 (9)C9—C8—H8120.3
O2—P1—O3112.01 (9)C7—C8—H8120.3
O1—P1—C1107.19 (9)C8—C9—C10119.79 (19)
O2—P1—C1106.22 (9)C8—C9—H9120.1
O3—P1—C1106.62 (9)C10—C9—H9120.1
O6—P2—O4115.35 (9)C11—C10—C9116.6 (2)
O6—P2—O5110.16 (8)C11—C10—C12118.5 (2)
O4—P2—O5110.15 (8)C9—C10—C12124.91 (19)
O6—P2—C3106.07 (9)N1—C11—C10123.45 (19)
O4—P2—C3109.09 (9)N1—C11—C15116.48 (18)
O5—P2—C3105.48 (9)C10—C11—C15120.06 (19)
P1—O1—Cu1128.96 (9)C13—C12—C10121.23 (19)
P1—O2—H2109.5C13—C12—H12119.4
P2—O4—Cu1iii127.78 (9)C10—C12—H12119.4
P2—O5—H5109.5C12—C13—C14121.2 (2)
P2—O6—Cu1i138.73 (9)C12—C13—H13119.4
C7—N1—C11118.57 (18)C14—C13—H13119.4
C7—N1—Cu1128.72 (15)C15—C14—C16117.0 (2)
C11—N1—Cu1112.34 (13)C15—C14—C13118.7 (2)
C18—N2—C15118.12 (18)C16—C14—C13124.3 (2)
C18—N2—Cu1128.83 (15)N2—C15—C14123.71 (19)
C15—N2—Cu1112.63 (13)N2—C15—C11115.95 (18)
C2—C1—C6118.83 (18)C14—C15—C11120.34 (19)
C2—C1—P1120.67 (15)C17—C16—C14119.2 (2)
C6—C1—P1120.50 (15)C17—C16—H16120.4
C1—C2—C3121.07 (18)C14—C16—H16120.4
C1—C2—H2A119.5C16—C17—C18119.7 (2)
C3—C2—H2A119.5C16—C17—H17120.1
C4—C3—C2119.43 (18)C18—C17—H17120.1
C4—C3—P2120.71 (15)N2—C18—C17122.1 (2)
C2—C3—P2119.75 (15)N2—C18—H18118.9
C5—C4—C3119.92 (18)C17—C18—H18118.9
C5—C4—H4120.0
O2—P1—O1—Cu12.35 (13)C2—C3—C4—C50.9 (3)
O3—P1—O1—Cu1124.73 (10)P2—C3—C4—C5175.41 (16)
C1—P1—O1—Cu1118.45 (11)C3—C4—C5—C60.4 (3)
O6i—Cu1—O1—P1169.38 (10)C4—C5—C6—C11.0 (3)
O4ii—Cu1—O1—P193.88 (11)C2—C1—C6—C50.4 (3)
N2—Cu1—O1—P13.11 (12)P1—C1—C6—C5178.59 (16)
N1—Cu1—O1—P178.39 (11)C11—N1—C7—C80.7 (3)
O6—P2—O4—Cu1iii106.17 (11)Cu1—N1—C7—C8171.75 (16)
O5—P2—O4—Cu1iii19.28 (13)N1—C7—C8—C90.1 (3)
C3—P2—O4—Cu1iii134.62 (11)C7—C8—C9—C100.2 (3)
O4—P2—O6—Cu1i97.16 (15)C8—C9—C10—C110.1 (3)
O5—P2—O6—Cu1i28.29 (17)C8—C9—C10—C12179.7 (2)
C3—P2—O6—Cu1i141.97 (14)C7—N1—C11—C101.0 (3)
O6i—Cu1—N1—C716.18 (18)Cu1—N1—C11—C10172.65 (16)
N2—Cu1—N1—C7178.19 (19)C7—N1—C11—C15178.83 (18)
O1—Cu1—N1—C781.95 (18)Cu1—N1—C11—C157.6 (2)
O6i—Cu1—N1—C11171.00 (14)C9—C10—C11—N10.7 (3)
N2—Cu1—N1—C119.00 (14)C12—C10—C11—N1179.16 (19)
O1—Cu1—N1—C1190.87 (14)C9—C10—C11—C15179.11 (18)
O6i—Cu1—N2—C18110.8 (2)C12—C10—C11—C151.0 (3)
O4ii—Cu1—N2—C180.45 (18)C11—C10—C12—C130.4 (3)
N1—Cu1—N2—C18178.63 (19)C9—C10—C12—C13179.7 (2)
O1—Cu1—N2—C1892.02 (18)C10—C12—C13—C141.1 (3)
O6i—Cu1—N2—C1576.9 (2)C12—C13—C14—C152.0 (3)
O4ii—Cu1—N2—C15171.83 (14)C12—C13—C14—C16177.0 (2)
N1—Cu1—N2—C159.08 (14)C18—N2—C15—C140.7 (3)
O1—Cu1—N2—C1580.27 (14)Cu1—N2—C15—C14172.44 (16)
O1—P1—C1—C226.20 (19)C18—N2—C15—C11179.11 (18)
O2—P1—C1—C293.64 (17)Cu1—N2—C15—C117.7 (2)
O3—P1—C1—C2146.75 (16)C16—C14—C15—N22.1 (3)
O1—P1—C1—C6154.87 (16)C13—C14—C15—N2178.79 (19)
O2—P1—C1—C685.30 (18)C16—C14—C15—C11177.76 (19)
O3—P1—C1—C634.31 (19)C13—C14—C15—C111.4 (3)
C6—C1—C2—C30.9 (3)N1—C11—C15—N20.1 (3)
P1—C1—C2—C3179.87 (16)C10—C11—C15—N2179.72 (18)
C1—C2—C3—C41.5 (3)N1—C11—C15—C14179.95 (18)
C1—C2—C3—P2174.77 (16)C10—C11—C15—C140.1 (3)
O6—P2—C3—C4141.91 (17)C15—C14—C16—C171.3 (3)
O4—P2—C3—C493.26 (18)C13—C14—C16—C17179.6 (2)
O5—P2—C3—C425.05 (19)C14—C16—C17—C180.6 (3)
O6—P2—C3—C234.34 (19)C15—N2—C18—C171.3 (3)
O4—P2—C3—C290.49 (17)Cu1—N2—C18—C17173.27 (16)
O5—P2—C3—C2151.21 (16)C16—C17—C18—N22.0 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3iv0.841.812.489 (2)136
O5—H5···O1iii0.841.742.574 (2)173
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C12H8N2)(C6H6O6P2)]
Mr479.79
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.6142 (10), 9.0554 (10), 12.1094 (13)
α, β, γ (°)99.688 (2), 106.542 (2), 98.184 (2)
V3)874.30 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.35 × 0.30 × 0.21
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.626, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
8704, 4190, 4042
Rint0.018
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.09
No. of reflections4190
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.67

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.812.489 (2)136.4
O5—H5···O1ii0.841.742.574 (2)172.8
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y, z.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation, CHE-0907787.

References

First citationArmatas, N. G., Ouellette, W., Whitenack, K., Pelcher, J., Liu, H., Romaine, E., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 8897–8910.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArnold, D. I., Ouyang, X. & Clearfield, A. (2002). Chem. Mater. 14, 2020–2027.  Web of Science CSD CrossRef CAS Google Scholar
First citationBakmutova, E., Ouyang, X., Medvedev, D. G. & Clearfield, A. (2008). Inorg. Chem. 42, 7046–7051.  Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510.  CrossRef CAS Google Scholar
First citationDeBurgomaster, P., Ouellette, W., Liu, H., O'Connor, C. J. & Zubieta, J. (2010). CrystEngComm, 12, 446–469.  Web of Science CSD CrossRef CAS Google Scholar
First citationFinn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421–601.  CAS Google Scholar
First citationKonar, S., Zon, J., Prosvirin, A. V., Dunbar, K. R. & Clearfield, A. (2007). Inorg. Chem. 46, 5229–5236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuellette, W., Wang, G., Liu, H., Yee, G. T., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 953–963.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, A., Jaffres, P.-A., MacLean, E. J., Villemin, D., McKee, V. & Hix, G. B. (2003). Dalton Trans. pp. 1314–1319.  Web of Science CSD CrossRef Google Scholar
First citationVermeulen, L. A. (1997). Prog. Inorg. Chem. 44, 143–166.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1304-m1305
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds