organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bi­phenyl-2,2′,4,4′-tetra­carb­­oxy­lic acid monohydrate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: zay@hpu.edu.cn

(Received 11 August 2010; accepted 18 September 2010; online 25 September 2010)

In the title compound, C16H10O8·H2O, the dihedral angle between the two benzene rings is 71.63 (5)°. In the crystal structure, pairs of inversion-related mol­ecules are stacked [mean inter­planar spacing = 3.5195 (18) Å], and O—H⋯O and C—H⋯O hydrogen bonds create a three-dimensional network.

Related literature

For general background to the use of aromatic carboxyl­ates as building blocks for the construction of various architectures, see: Li et al. (2008[Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun. 11, 1405- 1408.]); Du et al. (2007[Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011-1028.]). For previous studies on the synthesis of aromatic carboxyl­ate hydrates, see: Jiang et al. (2008[Jiang, Y., Men, J., Liu, C.-Y., Zhang, Y. & Gao, G.-W. (2008). Acta Cryst. E64, o846.]); Li et al. (2009[Li, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10O8·H2O

  • Mr = 348.26

  • Triclinic, [P \overline 1]

  • a = 7.1765 (1) Å

  • b = 9.4677 (2) Å

  • c = 11.9301 (2) Å

  • α = 106.013 (1)°

  • β = 100.098 (1)°

  • γ = 96.753 (1)°

  • V = 755.18 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.976

  • 13177 measured reflections

  • 2663 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.123

  • S = 1.03

  • 2663 reflections

  • 236 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O9 0.82 1.79 2.6076 (18) 174
O1—H1A⋯O2i 0.82 1.87 2.680 (2) 169
O3—H3A⋯O4ii 0.82 1.84 2.6400 (17) 166
O7—H7A⋯O5iii 0.82 1.82 2.6280 (17) 171
O9—H9B⋯O8iv 0.85 (1) 1.92 (1) 2.7616 (19) 170 (2)
O9—H9A⋯O8v 0.84 (1) 2.20 (1) 2.983 (2) 154 (2)
C12—H12⋯O3vi 0.93 2.57 3.451 (2) 159
Symmetry codes: (i) -x+2, -y+3, -z+1; (ii) -x, -y+2, -z+1; (iii) x, y-1, z; (iv) -x, -y+2, -z+2; (v) x, y+1, z; (vi) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic carboxylates have been proven to be effective building blocks in constructing various architectures (Li et al., 2008; Du et al., 2007). Many crystal structures of aromatic carboxylic hydrates have been reported (Jiang et al., 2008; Li et al., 2009). In this paper, we report the synthesis and structure of a new aromatic carboxylic hydrate, biphenyl-2, 2', 4, 4' -tetracarboxylic acid monohydrate, (Fig. 1).

The dihedral angle between the two benzene rings of biphenyl-2, 2', 4, 4' -tetracarboxylic acid monohydrate is 71.63 (5)°, which is markedly different from 42.30 (11)° found in the biphenyl-2, 3, 3', 4'-tetracarboxylic acid monohydrate (Jiang et al., 2008). This might be a result of the hydrogen bonding ineractions of the title compound. The lattice water molecule links with biphenyl-2, 2', 4, 4'-tetracarboxylic acid via O—H···O hydrogen bonding. The extensive O—H···O hydrogen bonding and a weak intermolecular C—H···O hydrogen bond helps to stabilize the crystal structure (Fig. 2 and Table 1). In addition, pairs of inversion related molecules are stacked with mean interplanar spacing = 3.5195 (18)Å)

Related literature top

For general background to the use of aromatic carboxylates as building blocks, see: Li et al. (2008); Du et al. (2007). For previous studies on the synthesis of aromatic carboxylate hydrates, see: Jiang et al. (2008); Li et al. (2009).

Experimental top

A mixture of C16H10O8 (0.3360 g), BaCl2 (0.3451 g) and water (12 ml) was stirred at room temperature for 6 h. The solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, a colorless crystalline solid appeared about a month later. The resulting colorless blocks were filtered off washed with water and dried at ambient temperature.

Refinement top

The H atoms of water molecules were located in difference Fourier maps and refined. All other hydrogen atoms were included in calculated positions and refined using a riding model with isotropic thermal parameters derived from the parent atoms (C—H = 0.93Å, O—H = 0.82 Å, Uiso (H) = 1.2Ueq (C) or 1.5Ueq (O)).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. The O···H—O and C—H···O hydrogen bonds of biphenyl-2, 2', 4, 4' -tetracarboxylic acid monhydrate.
Biphenyl-2,2',4,4'-tetracarboxylic acid monohydrate top
Crystal data top
C16H10O8·H2OZ = 2
Mr = 348.26F(000) = 360
Triclinic, P1Dx = 1.532 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1765 (1) ÅCell parameters from 9316 reflections
b = 9.4677 (2) Åθ = 2.8–27.5°
c = 11.9301 (2) ŵ = 0.13 mm1
α = 106.013 (1)°T = 296 K
β = 100.098 (1)°Block, yellow
γ = 96.753 (1)°0.22 × 0.20 × 0.19 mm
V = 755.18 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2663 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.972, Tmax = 0.976k = 1111
13177 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.3599P]
where P = (Fo2 + 2Fc2)/3
2663 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H10O8·H2Oγ = 96.753 (1)°
Mr = 348.26V = 755.18 (2) Å3
Triclinic, P1Z = 2
a = 7.1765 (1) ÅMo Kα radiation
b = 9.4677 (2) ŵ = 0.13 mm1
c = 11.9301 (2) ÅT = 296 K
α = 106.013 (1)°0.22 × 0.20 × 0.19 mm
β = 100.098 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2663 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2441 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.976Rint = 0.019
13177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
2663 reflectionsΔρmin = 0.41 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7651 (3)1.4462 (2)0.51405 (19)0.0815 (6)
H1A0.83621.48510.47990.122*
O21.0447 (2)1.4309 (2)0.61981 (17)0.0734 (5)
O30.19262 (18)1.12724 (18)0.49778 (13)0.0522 (4)
H3A0.07701.09410.47590.078*
O40.17196 (18)0.97698 (17)0.60878 (13)0.0518 (4)
O50.3535 (2)1.20930 (14)0.88045 (14)0.0531 (4)
O60.1817 (2)1.07466 (14)0.96298 (13)0.0448 (3)
H6A0.15021.15510.99160.067*
O70.4508 (2)0.46084 (14)0.83504 (15)0.0531 (4)
H7A0.41320.38730.85390.080*
O80.2313 (2)0.55361 (14)0.92899 (13)0.0474 (4)
O90.1086 (2)1.34013 (16)1.05603 (16)0.0556 (4)
C10.7674 (2)1.1428 (2)0.77090 (16)0.0376 (4)
H10.83551.11130.83060.045*
C20.8611 (3)1.2492 (2)0.73154 (17)0.0398 (4)
H20.99081.28770.76400.048*
C30.7614 (2)1.29848 (19)0.64325 (15)0.0341 (4)
C40.5674 (2)1.24238 (18)0.59864 (14)0.0308 (4)
H40.49901.27830.54190.037*
C50.4723 (2)1.13359 (17)0.63672 (13)0.0273 (3)
C60.5744 (2)1.08125 (17)0.72423 (14)0.0283 (4)
C70.4997 (2)0.95149 (17)0.76245 (14)0.0278 (3)
C80.3751 (2)0.95295 (17)0.84121 (14)0.0275 (3)
C90.3250 (2)0.82523 (17)0.87296 (14)0.0288 (4)
H90.24090.82590.92410.035*
C100.3984 (2)0.69691 (17)0.82967 (14)0.0298 (4)
C110.5231 (3)0.69593 (18)0.75326 (15)0.0346 (4)
H110.57290.61030.72360.041*
C120.5734 (2)0.82211 (19)0.72119 (15)0.0337 (4)
H120.65880.82060.67070.040*
C130.8643 (3)1.4007 (2)0.59059 (18)0.0441 (5)
C140.2659 (2)1.07440 (18)0.57925 (14)0.0289 (4)
C150.3025 (2)1.09080 (18)0.89507 (15)0.0305 (4)
C160.3493 (2)0.56452 (18)0.86928 (15)0.0326 (4)
H9B0.0046 (19)1.370 (2)1.0685 (19)0.049*
H9A0.177 (2)1.4042 (19)1.037 (2)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0562 (10)0.1074 (15)0.0975 (14)0.0142 (10)0.0034 (9)0.0776 (12)
O20.0451 (9)0.0946 (13)0.0903 (13)0.0128 (8)0.0080 (8)0.0581 (11)
O30.0305 (7)0.0725 (10)0.0609 (9)0.0063 (6)0.0048 (6)0.0472 (8)
O40.0309 (7)0.0645 (9)0.0665 (9)0.0116 (6)0.0020 (6)0.0463 (8)
O50.0791 (10)0.0269 (7)0.0717 (10)0.0150 (6)0.0410 (8)0.0268 (6)
O60.0483 (8)0.0325 (7)0.0667 (9)0.0130 (6)0.0330 (7)0.0210 (6)
O70.0648 (9)0.0334 (7)0.0836 (10)0.0199 (7)0.0408 (8)0.0341 (7)
O80.0514 (8)0.0381 (7)0.0709 (9)0.0136 (6)0.0310 (7)0.0326 (7)
O90.0501 (9)0.0410 (8)0.0905 (11)0.0181 (6)0.0342 (8)0.0280 (8)
C10.0303 (9)0.0426 (10)0.0421 (9)0.0012 (7)0.0001 (7)0.0243 (8)
C20.0291 (9)0.0432 (10)0.0462 (10)0.0070 (7)0.0026 (7)0.0210 (8)
C30.0327 (9)0.0336 (9)0.0372 (9)0.0034 (7)0.0087 (7)0.0158 (7)
C40.0323 (9)0.0319 (8)0.0319 (8)0.0013 (7)0.0071 (7)0.0172 (7)
C50.0268 (8)0.0283 (8)0.0293 (8)0.0022 (6)0.0083 (6)0.0125 (6)
C60.0290 (8)0.0278 (8)0.0306 (8)0.0020 (6)0.0081 (6)0.0130 (6)
C70.0270 (8)0.0286 (8)0.0292 (8)0.0011 (6)0.0027 (6)0.0147 (6)
C80.0264 (8)0.0256 (8)0.0328 (8)0.0024 (6)0.0051 (6)0.0144 (6)
C90.0288 (8)0.0274 (8)0.0350 (8)0.0029 (6)0.0103 (6)0.0156 (6)
C100.0315 (8)0.0252 (8)0.0349 (8)0.0028 (6)0.0063 (7)0.0142 (6)
C110.0409 (9)0.0277 (8)0.0401 (9)0.0095 (7)0.0136 (7)0.0138 (7)
C120.0378 (9)0.0340 (9)0.0356 (9)0.0068 (7)0.0148 (7)0.0164 (7)
C130.0344 (10)0.0508 (11)0.0503 (11)0.0077 (8)0.0054 (8)0.0289 (9)
C140.0274 (8)0.0321 (8)0.0310 (8)0.0028 (6)0.0075 (6)0.0159 (6)
C150.0309 (8)0.0277 (8)0.0371 (8)0.0049 (6)0.0078 (7)0.0165 (7)
C160.0337 (9)0.0264 (8)0.0422 (9)0.0048 (6)0.0097 (7)0.0170 (7)
Geometric parameters (Å, º) top
O1—C131.260 (2)C3—C41.384 (2)
O1—H1A0.8200C3—C131.486 (2)
O2—C131.256 (2)C4—C51.391 (2)
O3—C141.274 (2)C4—H40.9300
O3—H3A0.8200C5—C61.405 (2)
O4—C141.243 (2)C5—C141.489 (2)
O5—C151.207 (2)C6—C71.498 (2)
O6—C151.309 (2)C7—C121.391 (2)
O6—H6A0.8200C7—C81.405 (2)
O7—C161.309 (2)C8—C91.390 (2)
O7—H7A0.8200C8—C151.484 (2)
O8—C161.211 (2)C9—C101.385 (2)
O9—H9B0.852 (9)C9—H90.9300
O9—H9A0.843 (9)C10—C111.384 (2)
C1—C21.378 (2)C10—C161.483 (2)
C1—C61.389 (2)C11—C121.380 (2)
C1—H10.9300C11—H110.9300
C2—C31.387 (3)C12—H120.9300
C2—H20.9300
C13—O1—H1A109.5C9—C8—C15119.43 (14)
C14—O3—H3A109.5C7—C8—C15120.93 (14)
C15—O6—H6A109.5C10—C9—C8121.11 (15)
C16—O7—H7A109.5C10—C9—H9119.4
H9B—O9—H9A109.6 (14)C8—C9—H9119.4
C2—C1—C6122.08 (16)C11—C10—C9119.36 (14)
C2—C1—H1119.0C11—C10—C16120.69 (15)
C6—C1—H1119.0C9—C10—C16119.91 (15)
C1—C2—C3119.76 (16)C12—C11—C10119.95 (15)
C1—C2—H2120.1C12—C11—H11120.0
C3—C2—H2120.1C10—C11—H11120.0
C4—C3—C2119.01 (15)C11—C12—C7121.64 (15)
C4—C3—C13120.32 (16)C11—C12—H12119.2
C2—C3—C13120.49 (16)C7—C12—H12119.2
C3—C4—C5121.54 (15)O2—C13—O1123.66 (18)
C3—C4—H4119.2O2—C13—C3118.64 (17)
C5—C4—H4119.2O1—C13—C3117.59 (16)
C4—C5—C6119.40 (14)O4—C14—O3122.26 (15)
C4—C5—C14117.74 (14)O4—C14—C5121.23 (14)
C6—C5—C14122.84 (14)O3—C14—C5116.51 (14)
C1—C6—C5118.14 (14)O5—C15—O6122.33 (16)
C1—C6—C7115.96 (14)O5—C15—C8123.22 (15)
C5—C6—C7125.51 (14)O6—C15—C8114.42 (14)
C12—C7—C8118.34 (14)O8—C16—O7123.12 (15)
C12—C7—C6115.43 (14)O8—C16—C10124.19 (15)
C8—C7—C6126.07 (14)O7—C16—C10112.68 (14)
C9—C8—C7119.59 (15)
C6—C1—C2—C30.5 (3)C8—C9—C10—C110.2 (2)
C1—C2—C3—C41.7 (3)C8—C9—C10—C16177.30 (15)
C1—C2—C3—C13173.46 (18)C9—C10—C11—C120.2 (3)
C2—C3—C4—C52.7 (3)C16—C10—C11—C12177.33 (16)
C13—C3—C4—C5172.56 (16)C10—C11—C12—C70.9 (3)
C3—C4—C5—C61.3 (2)C8—C7—C12—C111.7 (2)
C3—C4—C5—C14176.96 (15)C6—C7—C12—C11177.43 (15)
C2—C1—C6—C51.9 (3)C4—C3—C13—O2168.9 (2)
C2—C1—C6—C7171.29 (17)C2—C3—C13—O26.2 (3)
C4—C5—C6—C11.0 (2)C4—C3—C13—O17.5 (3)
C14—C5—C6—C1179.14 (15)C2—C3—C13—O1177.4 (2)
C4—C5—C6—C7171.49 (15)C4—C5—C14—O4179.96 (16)
C14—C5—C6—C76.6 (2)C6—C5—C14—O41.8 (3)
C1—C6—C7—C1267.3 (2)C4—C5—C14—O30.9 (2)
C5—C6—C7—C12105.40 (19)C6—C5—C14—O3177.24 (16)
C1—C6—C7—C8108.06 (19)C9—C8—C15—O5173.05 (17)
C5—C6—C7—C879.3 (2)C7—C8—C15—O54.3 (3)
C12—C7—C8—C91.7 (2)C9—C8—C15—O65.2 (2)
C6—C7—C8—C9176.93 (15)C7—C8—C15—O6177.43 (15)
C12—C7—C8—C15175.65 (15)C11—C10—C16—O8174.54 (17)
C6—C7—C8—C150.5 (2)C9—C10—C16—O88.0 (3)
C7—C8—C9—C101.0 (2)C11—C10—C16—O76.9 (2)
C15—C8—C9—C10176.42 (14)C9—C10—C16—O7170.53 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O90.821.792.6076 (18)174
C4—H4···O30.932.372.706 (2)101
C9—H9···O60.932.382.711 (2)101
O1—H1A···O2i0.821.872.680 (2)169
O3—H3A···O4ii0.821.842.6400 (17)166
O7—H7A···O5iii0.821.822.6280 (17)171
O9—H9B···O8iv0.85 (1)1.92 (1)2.7616 (19)170 (2)
O9—H9A···O8v0.84 (1)2.20 (1)2.983 (2)154 (2)
C12—H12···O3vi0.932.573.451 (2)159
Symmetry codes: (i) x+2, y+3, z+1; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x, y+2, z+2; (v) x, y+1, z; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H10O8·H2O
Mr348.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1765 (1), 9.4677 (2), 11.9301 (2)
α, β, γ (°)106.013 (1), 100.098 (1), 96.753 (1)
V3)755.18 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.972, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
13177, 2663, 2441
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.03
No. of reflections2663
No. of parameters236
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O90.821.792.6076 (18)173.6
C4—H4···O30.932.372.706 (2)101.3
C9—H9···O60.932.382.711 (2)101.0
O1—H1A···O2i0.821.872.680 (2)169.1
O3—H3A···O4ii0.821.842.6400 (17)165.8
O7—H7A···O5iii0.821.822.6280 (17)170.8
O9—H9B···O8iv0.852 (9)1.918 (11)2.7616 (19)170 (2)
O9—H9A···O8v0.843 (9)2.202 (13)2.983 (2)154 (2)
C12—H12···O3vi0.932.573.451 (2)158.7
Symmetry codes: (i) x+2, y+3, z+1; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x, y+2, z+2; (v) x, y+1, z; (vi) x+1, y+2, z+1.
 

Acknowledgements

We thank the Universities and Colleges Natural Science Foundation of Henan (2009 A150011) and the Natural Science Foundation of China (200903036) for support.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, Y., Men, J., Liu, C.-Y., Zhang, Y. & Gao, G.-W. (2008). Acta Cryst. E64, o846.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun. 11, 1405– 1408.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds