metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(acetato-κ2O,O′)aqua­(μ4-1H-benzimidazole-5,6-di­carboxyl­ato-κ5N3:O5,O5′:O5,O6:O6′)praseodymium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: xuxuan2004@yahoo.com.cn

(Received 20 August 2010; accepted 15 September 2010; online 25 September 2010)

In the title complex, [Pr(C9H4N2O4)(C2H3O2)(H2O)]n, the PrIII ion is coordinated by five O atoms and one N atom from four benzimidazole-5,6-dicarboxyl­ate ligands, two O atoms from an acetate ligand and one water mol­ecule, giving a tricapped trigonal-prismatic geometry. The benzimidazole-5,6-dicarboxyl­ate and acetate ligands connect the PrIII ions, forming a layer in the ac plane; the layers are further linked by N—H⋯O and O—H⋯O hydrogen bonding and ππ stacking inter­actions between neighboring pyridine rings [the centroid–centroid distance is 3.467 (1) Å], assembling a three-dimensional supra­molecular network. The acetate methyl group is disordered over two positions with site-occupancy factors of 0.75 and 0.25.

Related literature

For related structures, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Wang et al. (2009[Wang, H., Song, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m1258.]); Wei et al. (2008[Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087-2089.]); Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299-2306.]); Zhai (2009[Zhai, H. (2009). Acta Cryst. E65, m1483.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(C9H4N2O4)(C2H3O2)(H2O)]

  • Mr = 422.11

  • Triclinic, [P \overline 1]

  • a = 7.4284 (5) Å

  • b = 9.0109 (7) Å

  • c = 9.7239 (7) Å

  • α = 87.075 (1)°

  • β = 86.498 (1)°

  • γ = 84.274 (1)°

  • V = 645.77 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.81 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.386, Tmax = 0.485

  • 3963 measured reflections

  • 2327 independent reflections

  • 2184 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.04

  • 2327 reflections

  • 199 parameters

  • 22 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.85 (2) 1.90 (3) 2.712 (5) 159 (5)
O1W—H1W⋯O2ii 0.83 (2) 2.06 (3) 2.854 (4) 159 (6)
O1W—H2W⋯O5iii 0.84 (2) 1.96 (2) 2.794 (4) 176 (5)
Symmetry codes: (i) x-1, y, z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, studies of coordination polymers built using metals and multifunctional organic ligands, has been a rapidly expanding field. This has been due to their intriguing structural motifs and functional properties, such as molecular adsorption, magnetism, and luminescence. Benzimidazole-5,6-dicarboxylic acid (H2L) is such a multifuctional ligand with both nitrogen and oxygen donor atoms (Gao et al., 2008; Lo et al., 2007; Wang et al., 2009; Wei et al., 2008; Yao et al., 2008; Zhai et al., 2009). For example, Yao and co-workers have successfully synthesized six novel two-dimensional coordination polymers based on this ligand, namely, [MnL]n (1), {[Ni2L2(H2O)4].(H2O)3}n (2), {[Tb(L)(HL)(H2O)].(H2O)}n (3) and {[Ln2L2(HL)2(H2O)2]}n (Ln=Ho (4), Er (5), Lu (6)) (Yao et al., 2008). Wei et al. also obtained a novel five coordinated Mn(II) polymer ([Mn(HL)])n possessing abundant hydrogen bonds and π-π stacking interactions (Wei et al., 2008). Herein, we report the hydrothermal synthesis, structure of the novel coordination polymer.

In the structure of the title compound (Fig. 1), each PrIII centre is nine-coordinated by five oxygen atoms and one N atom from four benzimidazole-5,6-dicarboxylato ligands, two oxygen atoms from an acetate ligand, and one water molecule. The structure can described as having a bicapped trigonal prismatic geometry with Pr···O distances and O···Pr···O angles ranging from 2.373 (3) Å to 2.645 (3) Å and 69.84 (9) ° to 152.88 (1) °, respectively. The benzimidazole-5,6-dicarboxylate and acetate ligands, act as bridging ligands, linking the PrIII metal centres into a layer parallel to the ac plane (Fig. 2). Those layers are further connected via O—H···O and N—H···O hydrogen bonding interactions (Table 1) to form a three-dimensional supramolecular motif, which is stabilized by π-π stacking interactions between neighboring pyridyl rings (the centroid···centroid distance is 3.467 (1) Å).

Related literature top

For related structures, see: Gao et al. (2008); Lo et al. (2007); Wang et al. (2009); Wei et al. (2008); Yao et al. (2008); Zhai et al. (2009).

Experimental top

A mixture of Pr6O11 (0.170 g; 0.17 mmol), benzimidazole-5,6-dicarboxylic acid (0.206 g; 1 mmol), acetic acid (0.06 g; 1 mmol), water (10 ml) was stirred vigorously for 30 min and then sealed in a teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated and maintained at 423 K for 3 days, and then cooled to room temperature at 5 K h-1, which produced colorless block-shaped crystals.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). The H atom bound to the N1 nitrogen atom was refined with distance restraints of N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(O). All other H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93 Å or 0.96 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, together with some symmetry related atoms to complete the coordination units. Displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (#1) x, y, -1+z; (#2) -x, 1-y, -z; (#3) 1-x, 1-y, -z.]
[Figure 2] Fig. 2. A view of the layers parallel to the ac plane.
Poly[(acetato-κ2O,O')aqua(µ4-1H- benzimidazole-5,6-dicarboxylato- κ5N3:O5,O5':O5,O6: O6')praseodymium(III)] top
Crystal data top
[Pr(C9H4N2O4)(C2H3O2)(H2O)]Z = 2
Mr = 422.11F(000) = 408
Triclinic, P1Dx = 2.171 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4284 (5) ÅCell parameters from 2989 reflections
b = 9.0109 (7) Åθ = 2.3–28.4°
c = 9.7239 (7) ŵ = 3.81 mm1
α = 87.075 (1)°T = 296 K
β = 86.498 (1)°Block, colourless
γ = 84.274 (1)°0.26 × 0.22 × 0.19 mm
V = 645.77 (8) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2327 independent reflections
Radiation source: fine-focus sealed tube2184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.386, Tmax = 0.485k = 1010
3963 measured reflectionsl = 711
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.0511P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2327 reflectionsΔρmax = 1.23 e Å3
199 parametersΔρmin = 1.45 e Å3
22 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (12)
Crystal data top
[Pr(C9H4N2O4)(C2H3O2)(H2O)]γ = 84.274 (1)°
Mr = 422.11V = 645.77 (8) Å3
Triclinic, P1Z = 2
a = 7.4284 (5) ÅMo Kα radiation
b = 9.0109 (7) ŵ = 3.81 mm1
c = 9.7239 (7) ÅT = 296 K
α = 87.075 (1)°0.26 × 0.22 × 0.19 mm
β = 86.498 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2184 reflections with I > 2σ(I)
Tmin = 0.386, Tmax = 0.485Rint = 0.028
3963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02822 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.23 e Å3
2327 reflectionsΔρmin = 1.45 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.35344 (3)0.35784 (2)0.10574 (2)0.01137 (13)
O10.1245 (4)0.2800 (3)0.0551 (3)0.0171 (6)
O1W0.6206 (5)0.2207 (4)0.0136 (4)0.0286 (8)
H1W0.713 (5)0.260 (5)0.032 (6)0.034*
H2W0.626 (7)0.135 (3)0.051 (6)0.034*
O20.1348 (4)0.4123 (3)0.1093 (3)0.0187 (7)
O30.5275 (4)0.4696 (4)0.2957 (3)0.0229 (7)
O40.3620 (4)0.4864 (3)0.1165 (3)0.0169 (6)
O50.3704 (4)0.0699 (3)0.1295 (3)0.0213 (7)
O60.5234 (4)0.2005 (3)0.2842 (3)0.0222 (7)
N10.1290 (5)0.2444 (4)0.6358 (4)0.0197 (8)
H10.237 (4)0.219 (6)0.642 (6)0.024*
N20.1301 (5)0.3045 (4)0.7108 (4)0.0183 (8)
C10.0176 (5)0.3514 (4)0.1395 (4)0.0124 (8)
C20.0663 (5)0.3516 (4)0.2883 (4)0.0128 (8)
C30.0669 (6)0.3032 (5)0.3815 (5)0.0179 (9)
H30.17800.28200.35220.021*
C40.0292 (5)0.2876 (5)0.5200 (5)0.0158 (9)
C50.1336 (5)0.3240 (4)0.5684 (4)0.0137 (8)
C60.2660 (5)0.3744 (4)0.4746 (4)0.0138 (8)
H60.37470.39950.50560.017*
C70.2352 (5)0.3872 (4)0.3345 (4)0.0121 (8)
C80.3828 (5)0.4492 (4)0.2436 (4)0.0117 (8)
C90.0292 (6)0.2583 (5)0.7442 (5)0.0191 (9)
H90.06960.23710.83480.023*
C100.4743 (7)0.0768 (5)0.2356 (6)0.0304 (9)
C110.5650 (11)0.0621 (7)0.2989 (8)0.0304 (9)0.75
H11A0.67770.09070.25690.046*0.75
H11B0.58770.04310.39610.046*0.75
H11C0.48760.14120.28400.046*0.75
C11'0.477 (3)0.055 (2)0.332 (2)0.0304 (9)0.25
H11D0.53680.14300.28910.046*0.25
H11E0.54130.03090.41780.046*0.25
H11F0.35510.07170.34910.046*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01163 (17)0.01259 (17)0.00993 (17)0.00185 (9)0.00044 (10)0.00098 (10)
O10.0192 (15)0.0188 (15)0.0137 (16)0.0041 (12)0.0014 (12)0.0035 (12)
O1W0.0286 (18)0.0164 (16)0.042 (2)0.0047 (14)0.0170 (16)0.0049 (15)
O20.0167 (15)0.0199 (15)0.0190 (17)0.0033 (12)0.0052 (13)0.0022 (13)
O30.0175 (16)0.0315 (18)0.0207 (18)0.0097 (13)0.0023 (13)0.0039 (14)
O40.0200 (15)0.0180 (15)0.0131 (16)0.0055 (12)0.0002 (12)0.0008 (12)
O50.0240 (16)0.0159 (15)0.0239 (18)0.0040 (12)0.0013 (14)0.0006 (13)
O60.0206 (16)0.0198 (16)0.0252 (18)0.0003 (12)0.0048 (13)0.0019 (13)
N10.0150 (18)0.029 (2)0.016 (2)0.0078 (15)0.0018 (15)0.0025 (16)
N20.0203 (19)0.0214 (18)0.0130 (19)0.0036 (15)0.0017 (15)0.0006 (15)
C10.0136 (19)0.0106 (18)0.013 (2)0.0035 (15)0.0002 (16)0.0017 (16)
C20.0128 (19)0.0126 (19)0.013 (2)0.0012 (15)0.0005 (16)0.0008 (16)
C30.014 (2)0.022 (2)0.018 (2)0.0019 (17)0.0023 (17)0.0015 (18)
C40.013 (2)0.019 (2)0.015 (2)0.0007 (16)0.0010 (17)0.0014 (17)
C50.015 (2)0.0135 (19)0.012 (2)0.0001 (15)0.0013 (16)0.0017 (16)
C60.0109 (19)0.0138 (19)0.017 (2)0.0015 (15)0.0002 (16)0.0017 (17)
C70.0126 (19)0.0108 (18)0.013 (2)0.0006 (15)0.0012 (16)0.0015 (16)
C80.015 (2)0.0105 (18)0.010 (2)0.0011 (15)0.0008 (16)0.0011 (15)
C90.022 (2)0.025 (2)0.010 (2)0.0049 (18)0.0024 (17)0.0032 (18)
C100.037 (2)0.0221 (19)0.031 (2)0.0040 (18)0.0026 (19)0.0054 (17)
C110.037 (2)0.0221 (19)0.031 (2)0.0040 (18)0.0026 (19)0.0054 (17)
C11'0.037 (2)0.0221 (19)0.031 (2)0.0040 (18)0.0026 (19)0.0054 (17)
Geometric parameters (Å, º) top
Pr1—O12.373 (3)N2—C91.310 (6)
Pr1—O62.498 (3)N2—C51.386 (6)
Pr1—O2i2.501 (3)N2—Pr1iv2.603 (4)
Pr1—O42.511 (3)C1—C21.512 (6)
Pr1—O3ii2.528 (3)C2—C31.389 (6)
Pr1—O1W2.541 (3)C2—C71.429 (6)
Pr1—N2iii2.603 (4)C3—C41.389 (6)
Pr1—O52.606 (3)C3—H30.9300
Pr1—O4ii2.646 (3)C4—C51.399 (6)
Pr1—C8ii2.963 (4)C5—C61.394 (6)
O1—C11.261 (5)C6—C71.393 (6)
O1W—H1W0.833 (19)C6—H60.9300
O1W—H2W0.836 (19)C7—C81.499 (6)
O2—C11.253 (5)C8—Pr1ii2.963 (4)
O2—Pr1i2.501 (3)C9—H90.9300
O3—C81.250 (5)C10—C111.503 (8)
O3—Pr1ii2.528 (3)C10—C11'1.55 (2)
O4—C81.278 (5)C11—H11A0.9600
O4—Pr1ii2.646 (3)C11—H11B0.9600
O5—C101.253 (6)C11—H11C0.9600
O6—C101.267 (6)C11'—H11D0.9600
N1—C91.342 (6)C11'—H11E0.9600
N1—C41.372 (6)C11'—H11F0.9600
N1—H10.85 (2)
O1—Pr1—O6125.76 (10)C10—O6—Pr196.4 (3)
O1—Pr1—O2i79.97 (10)C9—N1—C4107.0 (4)
O6—Pr1—O2i135.37 (10)C9—N1—H1125 (4)
O1—Pr1—O469.81 (9)C4—N1—H1128 (4)
O6—Pr1—O4147.25 (10)C9—N2—C5104.1 (4)
O2i—Pr1—O470.88 (10)C9—N2—Pr1iv122.6 (3)
O1—Pr1—O3ii152.91 (11)C5—N2—Pr1iv133.1 (3)
O6—Pr1—O3ii72.06 (11)O2—C1—O1123.2 (4)
O2i—Pr1—O3ii73.82 (11)O2—C1—C2117.7 (4)
O4—Pr1—O3ii106.94 (10)O1—C1—C2118.8 (3)
O1—Pr1—O1W96.60 (11)C3—C2—C7120.7 (4)
O6—Pr1—O1W74.37 (12)C3—C2—C1113.5 (4)
O2i—Pr1—O1W145.00 (11)C7—C2—C1125.7 (4)
O4—Pr1—O1W75.25 (11)C2—C3—C4118.0 (4)
O3ii—Pr1—O1W108.74 (11)C2—C3—H3121.0
O1—Pr1—N2iii84.24 (11)C4—C3—H3121.0
O6—Pr1—N2iii71.46 (11)N1—C4—C3132.5 (4)
O2i—Pr1—N2iii76.78 (11)N1—C4—C5104.9 (4)
O4—Pr1—N2iii141.25 (11)C3—C4—C5122.5 (4)
O3ii—Pr1—N2iii83.25 (11)N2—C5—C6130.8 (4)
O1W—Pr1—N2iii137.92 (11)N2—C5—C4109.9 (4)
O1—Pr1—O575.84 (10)C6—C5—C4119.3 (4)
O6—Pr1—O550.87 (10)C7—C6—C5119.8 (4)
O2i—Pr1—O5141.76 (10)C7—C6—H6120.1
O4—Pr1—O5125.30 (10)C5—C6—H6120.1
O3ii—Pr1—O5122.16 (11)C6—C7—C2119.7 (4)
O1W—Pr1—O567.81 (10)C6—C7—C8115.3 (3)
N2iii—Pr1—O571.75 (11)C2—C7—C8124.8 (4)
O1—Pr1—O4ii139.88 (10)O3—C8—O4119.5 (4)
O6—Pr1—O4ii86.63 (10)O3—C8—C7118.6 (4)
O2i—Pr1—O4ii92.78 (10)O4—C8—C7121.9 (3)
O4—Pr1—O4ii70.53 (11)O3—C8—Pr1ii57.8 (2)
O3ii—Pr1—O4ii49.85 (9)O4—C8—Pr1ii63.2 (2)
O1W—Pr1—O4ii67.41 (10)C7—C8—Pr1ii165.0 (3)
N2iii—Pr1—O4ii132.75 (10)N2—C9—N1114.0 (4)
O5—Pr1—O4ii124.59 (9)N2—C9—H9123.0
O1—Pr1—C8ii159.06 (10)N1—C9—H9123.0
O6—Pr1—C8ii75.06 (10)O5—C10—O6121.2 (4)
O2i—Pr1—C8ii85.58 (10)O5—C10—C11121.3 (5)
O4—Pr1—C8ii91.20 (10)O6—C10—C11117.1 (5)
O3ii—Pr1—C8ii24.71 (10)O5—C10—C11'115.5 (10)
O1W—Pr1—C8ii86.57 (11)O6—C10—C11'119.2 (10)
N2iii—Pr1—C8ii107.21 (11)C10—C11—H11A109.5
O5—Pr1—C8ii124.02 (10)C10—C11—H11B109.5
O4ii—Pr1—C8ii25.55 (10)H11A—C11—H11B109.5
C1—O1—Pr1131.7 (3)C10—C11—H11C109.5
Pr1—O1W—H1W124 (3)H11A—C11—H11C109.5
Pr1—O1W—H2W127 (3)H11B—C11—H11C109.5
H1W—O1W—H2W108 (3)C10—C11'—H11D109.5
C1—O2—Pr1i148.2 (3)C10—C11'—H11E109.5
C8—O3—Pr1ii97.5 (2)H11D—C11'—H11E109.5
C8—O4—Pr1137.6 (3)C10—C11'—H11F109.5
C8—O4—Pr1ii91.2 (2)H11D—C11'—H11F109.5
Pr1—O4—Pr1ii109.47 (11)H11E—C11'—H11F109.5
C10—O5—Pr191.6 (3)
O6—Pr1—O1—C1171.8 (3)O2—C1—C2—C349.4 (5)
O2i—Pr1—O1—C132.1 (3)O1—C1—C2—C3124.8 (4)
O4—Pr1—O1—C141.1 (3)O2—C1—C2—C7134.6 (4)
O3ii—Pr1—O1—C146.8 (5)O1—C1—C2—C751.3 (6)
O1W—Pr1—O1—C1112.7 (4)C7—C2—C3—C41.4 (6)
N2iii—Pr1—O1—C1109.6 (4)C1—C2—C3—C4174.8 (4)
O5—Pr1—O1—C1177.8 (4)C9—N1—C4—C3176.2 (5)
O4ii—Pr1—O1—C150.3 (4)C9—N1—C4—C51.1 (5)
C8ii—Pr1—O1—C115.0 (5)C2—C3—C4—N1179.5 (4)
O1—Pr1—O4—C858.8 (4)C2—C3—C4—C52.5 (6)
O6—Pr1—O4—C866.6 (4)C9—N2—C5—C6178.5 (4)
O2i—Pr1—O4—C8144.9 (4)Pr1iv—N2—C5—C63.1 (7)
O3ii—Pr1—O4—C8149.6 (4)C9—N2—C5—C40.0 (5)
O1W—Pr1—O4—C844.1 (4)Pr1iv—N2—C5—C4175.3 (3)
N2iii—Pr1—O4—C8109.9 (4)N1—C4—C5—N20.7 (5)
O5—Pr1—O4—C84.3 (4)C3—C4—C5—N2177.0 (4)
O4ii—Pr1—O4—C8114.9 (4)N1—C4—C5—C6179.3 (4)
C8ii—Pr1—O4—C8130.2 (3)C3—C4—C5—C61.7 (6)
O1—Pr1—O4—Pr1ii173.75 (13)N2—C5—C6—C7178.6 (4)
O6—Pr1—O4—Pr1ii48.4 (2)C4—C5—C6—C70.3 (6)
O2i—Pr1—O4—Pr1ii100.20 (12)C5—C6—C7—C21.3 (6)
O3ii—Pr1—O4—Pr1ii34.66 (13)C5—C6—C7—C8177.3 (4)
O1W—Pr1—O4—Pr1ii70.84 (12)C3—C2—C7—C60.4 (6)
N2iii—Pr1—O4—Pr1ii135.22 (14)C1—C2—C7—C6176.2 (4)
O5—Pr1—O4—Pr1ii119.17 (11)C3—C2—C7—C8176.0 (4)
O4ii—Pr1—O4—Pr1ii0.0C1—C2—C7—C88.2 (6)
C8ii—Pr1—O4—Pr1ii15.29 (12)Pr1ii—O3—C8—O414.5 (4)
O1—Pr1—O5—C10169.4 (3)Pr1ii—O3—C8—C7163.1 (3)
O6—Pr1—O5—C100.2 (3)Pr1—O4—C8—O3107.5 (4)
O2i—Pr1—O5—C10117.0 (3)Pr1ii—O4—C8—O313.7 (4)
O4—Pr1—O5—C10138.6 (3)Pr1—O4—C8—C775.0 (5)
O3ii—Pr1—O5—C1011.5 (3)Pr1ii—O4—C8—C7163.8 (3)
O1W—Pr1—O5—C1087.3 (3)Pr1—O4—C8—Pr1ii121.2 (3)
N2iii—Pr1—O5—C1080.8 (3)C6—C7—C8—O37.4 (5)
O4ii—Pr1—O5—C1049.0 (3)C2—C7—C8—O3176.9 (4)
C8ii—Pr1—O5—C1018.0 (3)C6—C7—C8—O4170.1 (4)
O1—Pr1—O6—C1013.2 (3)C2—C7—C8—O45.6 (6)
O2i—Pr1—O6—C10128.3 (3)C6—C7—C8—Pr1ii64.3 (11)
O4—Pr1—O6—C1096.2 (3)C2—C7—C8—Pr1ii111.4 (10)
O3ii—Pr1—O6—C10170.2 (3)C5—N2—C9—N10.7 (5)
O1W—Pr1—O6—C1073.6 (3)Pr1iv—N2—C9—N1176.7 (3)
N2iii—Pr1—O6—C1081.4 (3)C4—N1—C9—N21.2 (5)
O5—Pr1—O6—C100.2 (3)Pr1—O5—C10—O60.4 (5)
O4ii—Pr1—O6—C10141.1 (3)Pr1—O5—C10—C11171.3 (5)
C8ii—Pr1—O6—C10164.2 (3)Pr1—O5—C10—C11'157.3 (10)
Pr1i—O2—C1—O1128.3 (5)Pr1—O6—C10—O50.4 (5)
Pr1i—O2—C1—C257.8 (7)Pr1—O6—C10—C11171.7 (5)
Pr1—O1—C1—O288.8 (5)Pr1—O6—C10—C11'156.5 (11)
Pr1—O1—C1—C297.4 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6v0.85 (2)1.90 (3)2.712 (5)159 (5)
O1W—H1W···O2vi0.83 (2)2.06 (3)2.854 (4)159 (6)
O1W—H2W···O5vii0.84 (2)1.96 (2)2.794 (4)176 (5)
Symmetry codes: (v) x1, y, z+1; (vi) x+1, y, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pr(C9H4N2O4)(C2H3O2)(H2O)]
Mr422.11
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4284 (5), 9.0109 (7), 9.7239 (7)
α, β, γ (°)87.075 (1), 86.498 (1), 84.274 (1)
V3)645.77 (8)
Z2
Radiation typeMo Kα
µ (mm1)3.81
Crystal size (mm)0.26 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.386, 0.485
No. of measured, independent and
observed [I > 2σ(I)] reflections
3963, 2327, 2184
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.04
No. of reflections2327
No. of parameters199
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23, 1.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.85 (2)1.90 (3)2.712 (5)159 (5)
O1W—H1W···O2ii0.833 (19)2.06 (3)2.854 (4)159 (6)
O1W—H2W···O5iii0.836 (19)1.959 (19)2.794 (4)176 (5)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for supporting this work.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Song, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m1258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.  Web of Science CrossRef CAS Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhai, H. (2009). Acta Cryst. E65, m1483.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds