metal-organic compounds
(η5-Pentamethylcyclopentadienyl)(η6-toluene)ruthenium(II) hexafluoridophosphate
aDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca
In the title complex, [Ru(C7H8)(C10H15)]PF6, the cation lies on a mirror plane and the anion lies on an inversion center. The distance between the Ru atom and the centroid of the benzene ring is 1.706 (5) Å and the distance between the Ru atom and the cyclopentadienyl ring is 1.811 (5) Å. The is stabilized by weak C—H⋯F hydrogen bonds. The H atoms of the methyl groups which lie on the mirror plane are disordered over two sites with equal occupancies.
Related literature
For reviews on half-sandwich complexes containing group 8 metals, see: Coville et al. (1992); Jiménez-Tenorio et al. (2004). For the synthesis and properties of the title complex, see: Arliguie et al. (1988); Schmid et al. (2003); Loughrey et al. (2008). For related structures, see: Fagan et al. (1989, 1990); He et al. (1991); Nolan et al. (1993). For bifunctional catalysts for the homogenous hydrogenation of polar bonds, see: Clapham et al. (2004); O et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810036299/pk2266sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810036299/pk2266Isup2.hkl
A Schlenk flask was charged with [Ni(C—NH2)2](PF6)2 (32 mg, 0.084 mmol) and RuCp*(cod)Cl (30 mg, 0.041 mmol). Dry acetonitrile (8 ml) was added to the reaction mixture, and it was refluxed under an argon atmosphere for 3 h. The deep green solution was evaporated under reduced pressure, and the residue was extracted with oxygen-free tetrahydrofuran (4 ml) and toluene (1 ml), and filtered through a pad of Celite under a nitrogen atmosphere. To the yellow-brown solution was added pyridine (11 mg, 15 fold excess), and the orange coloured solution was evaporated under reduced pressure. The solid residue was extracted with tetrahydrofuran (3 ml) and dichloromethane (1 ml). Addition of diethyl ether (8 ml) to this solution afforded an orange precipitate, which gave the crude products of [RuCp*(C—NH2)py]PF6 and about 17% of the title salt, [Cp*Ru(η6-toluene)]PF6, as determined by 1H NMR spectroscopy of the bulk solid. This was filtered and dried in vacuum to yield an orange powder. Suitable crystals for an X-ray diffraction study were obtained by slow diffusion of diethyl ether into a of the mixture in acetone under a nitrogen atmosphere to afford colourless blocks.
Hydrogen atoms were placed in calculated positions with C—H distances ranging from 0.95 to 1.00 Å and included in the
in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ru(C7H8)(C10H15)]PF6 | F(000) = 952 |
Mr = 473.39 | Dx = 1.696 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 11870 reflections |
a = 13.9735 (4) Å | θ = 2.7–27.5° |
b = 15.3266 (4) Å | µ = 0.99 mm−1 |
c = 8.6576 (6) Å | T = 150 K |
V = 1854.17 (15) Å3 | Block, colourless |
Z = 4 | 0.22 × 0.15 × 0.10 mm |
Nonius KappaCCD diffractometer | 2200 independent reflections |
Radiation source: fine-focus sealed tube | 1611 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
ϕ scans and ω scans with κ offsets | h = −17→18 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −15→19 |
Tmin = 0.711, Tmax = 0.863 | l = −11→11 |
11870 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.065P)2 + 3.7819P] where P = (Fo2 + 2Fc2)/3 |
2200 reflections | (Δ/σ)max = 0.003 |
128 parameters | Δρmax = 2.11 e Å−3 |
0 restraints | Δρmin = −2.04 e Å−3 |
[Ru(C7H8)(C10H15)]PF6 | V = 1854.17 (15) Å3 |
Mr = 473.39 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 13.9735 (4) Å | µ = 0.99 mm−1 |
b = 15.3266 (4) Å | T = 150 K |
c = 8.6576 (6) Å | 0.22 × 0.15 × 0.10 mm |
Nonius KappaCCD diffractometer | 2200 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 1611 reflections with I > 2σ(I) |
Tmin = 0.711, Tmax = 0.863 | Rint = 0.062 |
11870 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.07 | Δρmax = 2.11 e Å−3 |
2200 reflections | Δρmin = −2.04 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.09419 (3) | 0.2500 | 0.05036 (5) | 0.02470 (18) | |
C1 | −0.0364 (4) | 0.2500 | 0.1948 (8) | 0.0364 (15) | |
H1 | −0.0414 | 0.2500 | 0.3042 | 0.044* | |
C2 | −0.0326 (3) | 0.1709 (3) | 0.1144 (5) | 0.0329 (10) | |
H2A | −0.0235 | 0.1153 | 0.1730 | 0.040* | |
C3 | −0.0226 (3) | 0.1708 (3) | −0.0472 (5) | 0.0318 (10) | |
H3A | −0.0065 | 0.1147 | −0.1005 | 0.038* | |
C4 | −0.0174 (4) | 0.2500 | −0.1323 (7) | 0.0300 (13) | |
C5 | 0.2303 (3) | 0.2969 (3) | −0.0428 (5) | 0.0266 (9) | |
C6 | 0.2204 (3) | 0.3259 (3) | 0.1143 (5) | 0.0266 (9) | |
C7 | 0.2144 (4) | 0.2500 | 0.2112 (7) | 0.0267 (13) | |
C8 | −0.0027 (5) | 0.2500 | −0.3057 (7) | 0.0393 (16) | |
H8A | −0.0634 | 0.2363 | −0.3571 | 0.059* | 0.50 |
H8B | 0.0452 | 0.2060 | −0.3333 | 0.059* | 0.50 |
H8C | 0.0194 | 0.3077 | −0.3389 | 0.059* | 0.50 |
C9 | 0.2427 (3) | 0.3550 (3) | −0.1801 (6) | 0.0391 (11) | |
H9A | 0.3097 | 0.3733 | −0.1875 | 0.059* | |
H9B | 0.2018 | 0.4065 | −0.1689 | 0.059* | |
H9C | 0.2247 | 0.3232 | −0.2739 | 0.059* | |
C10 | 0.2220 (3) | 0.4184 (3) | 0.1676 (6) | 0.0405 (12) | |
H10A | 0.2883 | 0.4368 | 0.1846 | 0.061* | |
H10B | 0.1860 | 0.4235 | 0.2644 | 0.061* | |
H10C | 0.1926 | 0.4557 | 0.0888 | 0.061* | |
C11 | 0.2061 (4) | 0.2500 | 0.3875 (8) | 0.0399 (16) | |
H11A | 0.1816 | 0.3066 | 0.4224 | 0.060* | 0.50 |
H11B | 0.2692 | 0.2397 | 0.4331 | 0.060* | 0.50 |
H11C | 0.1620 | 0.2037 | 0.4200 | 0.060* | 0.50 |
P1 | 0.0000 | 0.5000 | 0.5000 | 0.0282 (4) | |
F1 | −0.09922 (18) | 0.5503 (2) | 0.4824 (4) | 0.0454 (7) | |
F2 | 0.0208 (2) | 0.51551 (18) | 0.3204 (3) | 0.0450 (7) | |
F3 | −0.0520 (2) | 0.40978 (18) | 0.4592 (3) | 0.0435 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0238 (3) | 0.0249 (3) | 0.0255 (3) | 0.000 | 0.00149 (19) | 0.000 |
C1 | 0.024 (3) | 0.052 (4) | 0.033 (4) | 0.000 | 0.005 (3) | 0.000 |
C2 | 0.026 (2) | 0.034 (2) | 0.039 (3) | −0.0065 (18) | −0.0021 (19) | 0.011 (2) |
C3 | 0.028 (2) | 0.031 (2) | 0.036 (3) | −0.0049 (18) | −0.0049 (18) | −0.002 (2) |
C4 | 0.026 (3) | 0.038 (4) | 0.025 (3) | 0.000 | −0.004 (2) | 0.000 |
C5 | 0.023 (2) | 0.029 (2) | 0.028 (2) | −0.0033 (17) | 0.0042 (16) | 0.0022 (18) |
C6 | 0.0190 (19) | 0.033 (2) | 0.028 (2) | −0.0030 (17) | 0.0053 (16) | −0.0073 (18) |
C7 | 0.021 (3) | 0.040 (3) | 0.019 (3) | 0.000 | −0.001 (2) | 0.000 |
C8 | 0.042 (4) | 0.052 (4) | 0.024 (3) | 0.000 | −0.003 (3) | 0.000 |
C9 | 0.041 (3) | 0.042 (3) | 0.035 (3) | −0.001 (2) | 0.007 (2) | 0.012 (2) |
C10 | 0.037 (2) | 0.036 (3) | 0.049 (3) | −0.005 (2) | 0.011 (2) | −0.011 (2) |
C11 | 0.025 (3) | 0.046 (4) | 0.049 (4) | 0.000 | 0.011 (3) | 0.000 |
P1 | 0.0331 (8) | 0.0276 (8) | 0.0240 (8) | 0.0019 (6) | 0.0018 (7) | −0.0006 (7) |
F1 | 0.0403 (16) | 0.0456 (18) | 0.0502 (18) | 0.0127 (12) | −0.0027 (13) | −0.0017 (14) |
F2 | 0.0653 (18) | 0.0425 (16) | 0.0273 (14) | −0.0008 (14) | 0.0050 (13) | −0.0005 (13) |
F3 | 0.0556 (18) | 0.0311 (15) | 0.0438 (17) | −0.0070 (13) | −0.0045 (13) | −0.0018 (12) |
Ru1—C7 | 2.181 (5) | C6—C7 | 1.436 (5) |
Ru1—C6 | 2.184 (4) | C6—C10 | 1.491 (6) |
Ru1—C6i | 2.184 (4) | C7—C6i | 1.436 (5) |
Ru1—C5 | 2.187 (4) | C7—C11 | 1.531 (9) |
Ru1—C5i | 2.187 (4) | C8—H8A | 0.9800 |
Ru1—C3 | 2.203 (4) | C8—H8B | 0.9800 |
Ru1—C3i | 2.203 (4) | C8—H8C | 0.9800 |
Ru1—C1 | 2.211 (6) | C9—H9A | 0.9800 |
Ru1—C2 | 2.217 (4) | C9—H9B | 0.9800 |
Ru1—C2i | 2.217 (4) | C9—H9C | 0.9800 |
Ru1—C4 | 2.220 (6) | C10—H10A | 0.9800 |
C1—C2 | 1.398 (6) | C10—H10B | 0.9800 |
C1—C2i | 1.398 (6) | C10—H10C | 0.9800 |
C1—H1 | 0.9500 | C11—H11A | 0.9800 |
C2—C3 | 1.406 (6) | C11—H11B | 0.9800 |
C2—H2A | 1.0000 | C11—H11C | 0.9800 |
C3—C4 | 1.422 (6) | P1—F1ii | 1.594 (3) |
C3—H3A | 1.0000 | P1—F1 | 1.594 (3) |
C4—C3i | 1.422 (6) | P1—F2ii | 1.599 (3) |
C4—C8 | 1.515 (9) | P1—F2 | 1.599 (3) |
C5—C6 | 1.437 (6) | P1—F3ii | 1.601 (3) |
C5—C5i | 1.437 (9) | P1—F3 | 1.601 (3) |
C5—C9 | 1.495 (6) | ||
C7—Ru1—C6 | 38.42 (14) | C2—C3—Ru1 | 72.0 (2) |
C7—Ru1—C6i | 38.42 (14) | C4—C3—Ru1 | 71.9 (3) |
C6—Ru1—C6i | 64.3 (2) | C2—C3—H3A | 118.9 |
C7—Ru1—C5 | 64.28 (17) | C4—C3—H3A | 118.9 |
C6—Ru1—C5 | 38.40 (15) | Ru1—C3—H3A | 118.9 |
C6i—Ru1—C5 | 64.29 (15) | C3i—C4—C3 | 117.3 (6) |
C7—Ru1—C5i | 64.28 (17) | C3i—C4—C8 | 121.3 (3) |
C6—Ru1—C5i | 64.29 (15) | C3—C4—C8 | 121.3 (3) |
C6i—Ru1—C5i | 38.40 (15) | C3i—C4—Ru1 | 70.6 (3) |
C5—Ru1—C5i | 38.4 (2) | C3—C4—Ru1 | 70.6 (3) |
C7—Ru1—C3 | 144.60 (13) | C8—C4—Ru1 | 127.7 (4) |
C6—Ru1—C3 | 171.56 (16) | C6—C5—C5i | 108.0 (2) |
C6i—Ru1—C3 | 113.71 (17) | C6—C5—C9 | 125.4 (4) |
C5—Ru1—C3 | 133.16 (16) | C5i—C5—C9 | 126.5 (3) |
C5i—Ru1—C3 | 108.77 (17) | C6—C5—Ru1 | 70.7 (2) |
C7—Ru1—C3i | 144.60 (13) | C5i—C5—Ru1 | 70.81 (11) |
C6—Ru1—C3i | 113.71 (17) | C9—C5—Ru1 | 126.1 (3) |
C6i—Ru1—C3i | 171.56 (16) | C5—C6—C7 | 107.9 (4) |
C5—Ru1—C3i | 108.77 (17) | C5—C6—C10 | 125.8 (4) |
C5i—Ru1—C3i | 133.16 (16) | C7—C6—C10 | 126.2 (4) |
C3—Ru1—C3i | 66.9 (2) | C5—C6—Ru1 | 70.9 (2) |
C7—Ru1—C1 | 105.9 (2) | C7—C6—Ru1 | 70.7 (3) |
C6—Ru1—C1 | 121.52 (17) | C10—C6—Ru1 | 126.6 (3) |
C6i—Ru1—C1 | 121.52 (17) | C6i—C7—C6 | 108.1 (5) |
C5—Ru1—C1 | 157.77 (14) | C6i—C7—C11 | 125.9 (2) |
C5i—Ru1—C1 | 157.77 (14) | C6—C7—C11 | 125.9 (2) |
C3—Ru1—C1 | 66.77 (19) | C6i—C7—Ru1 | 70.9 (3) |
C3i—Ru1—C1 | 66.77 (19) | C6—C7—Ru1 | 70.9 (3) |
C7—Ru1—C2 | 117.11 (16) | C11—C7—Ru1 | 125.3 (4) |
C6—Ru1—C2 | 150.82 (17) | C4—C8—H8A | 109.5 |
C6i—Ru1—C2 | 106.93 (16) | C4—C8—H8B | 109.5 |
C5—Ru1—C2 | 165.19 (17) | H8A—C8—H8B | 109.5 |
C5i—Ru1—C2 | 127.41 (17) | C4—C8—H8C | 109.5 |
C3—Ru1—C2 | 37.09 (17) | H8A—C8—H8C | 109.5 |
C3i—Ru1—C2 | 78.75 (17) | H8B—C8—H8C | 109.5 |
C1—Ru1—C2 | 36.81 (14) | C5—C9—H9A | 109.5 |
C7—Ru1—C2i | 117.11 (16) | C5—C9—H9B | 109.5 |
C6—Ru1—C2i | 106.93 (16) | H9A—C9—H9B | 109.5 |
C6i—Ru1—C2i | 150.82 (17) | C5—C9—H9C | 109.5 |
C5—Ru1—C2i | 127.41 (17) | H9A—C9—H9C | 109.5 |
C5i—Ru1—C2i | 165.19 (17) | H9B—C9—H9C | 109.5 |
C3—Ru1—C2i | 78.75 (17) | C6—C10—H10A | 109.5 |
C3i—Ru1—C2i | 37.09 (17) | C6—C10—H10B | 109.5 |
C1—Ru1—C2i | 36.81 (14) | H10A—C10—H10B | 109.5 |
C2—Ru1—C2i | 66.3 (2) | C6—C10—H10C | 109.5 |
C7—Ru1—C4 | 174.3 (2) | H10A—C10—H10C | 109.5 |
C6—Ru1—C4 | 138.37 (15) | H10B—C10—H10C | 109.5 |
C6i—Ru1—C4 | 138.37 (15) | C7—C11—H11A | 109.5 |
C5—Ru1—C4 | 110.35 (18) | C7—C11—H11B | 109.5 |
C5i—Ru1—C4 | 110.35 (18) | H11A—C11—H11B | 109.5 |
C3—Ru1—C4 | 37.51 (13) | C7—C11—H11C | 109.5 |
C3i—Ru1—C4 | 37.51 (13) | H11A—C11—H11C | 109.5 |
C1—Ru1—C4 | 79.8 (2) | H11B—C11—H11C | 109.5 |
C2—Ru1—C4 | 67.48 (17) | F1ii—P1—F1 | 180.000 (1) |
C2i—Ru1—C4 | 67.48 (17) | F1ii—P1—F2ii | 89.60 (15) |
C2—C1—C2i | 120.1 (6) | F1—P1—F2ii | 90.40 (15) |
C2—C1—Ru1 | 71.8 (3) | F1ii—P1—F2 | 90.40 (15) |
C2i—C1—Ru1 | 71.8 (3) | F1—P1—F2 | 89.60 (15) |
C2—C1—H1 | 119.9 | F2ii—P1—F2 | 180.000 (1) |
C2i—C1—H1 | 119.9 | F1ii—P1—F3ii | 90.12 (16) |
Ru1—C1—H1 | 128.7 | F1—P1—F3ii | 89.88 (16) |
C1—C2—C3 | 120.1 (4) | F2ii—P1—F3ii | 89.79 (14) |
C1—C2—Ru1 | 71.4 (3) | F2—P1—F3ii | 90.21 (14) |
C3—C2—Ru1 | 70.9 (2) | F1ii—P1—F3 | 89.88 (16) |
C1—C2—H2A | 119.4 | F1—P1—F3 | 90.12 (16) |
C3—C2—H2A | 119.4 | F2ii—P1—F3 | 90.21 (14) |
Ru1—C2—H2A | 119.4 | F2—P1—F3 | 89.79 (14) |
C2—C3—C4 | 121.2 (4) | F3ii—P1—F3 | 180.0 |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···F2i | 1.00 | 2.46 | 3.450 (4) | 173 |
C2—H2A···F3i | 1.00 | 2.54 | 3.243 (5) | 127 |
C3—H3A···F2iii | 1.00 | 2.44 | 3.356 (5) | 151 |
C8—H8C···F3iv | 0.98 | 2.55 | 3.258 (5) | 129 |
C10—H10B···F1ii | 0.98 | 2.54 | 3.515 (6) | 175 |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x, −y+1, −z+1; (iii) −x, y−1/2, −z; (iv) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Ru(C7H8)(C10H15)]PF6 |
Mr | 473.39 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 150 |
a, b, c (Å) | 13.9735 (4), 15.3266 (4), 8.6576 (6) |
V (Å3) | 1854.17 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.99 |
Crystal size (mm) | 0.22 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.711, 0.863 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11870, 2200, 1611 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.131, 1.07 |
No. of reflections | 2200 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.11, −2.04 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···F2i | 1.00 | 2.46 | 3.450 (4) | 173 |
C2—H2A···F3i | 1.00 | 2.54 | 3.243 (5) | 127 |
C3—H3A···F2ii | 1.00 | 2.44 | 3.356 (5) | 151 |
C8—H8C···F3iii | 0.98 | 2.55 | 3.258 (5) | 129 |
C10—H10B···F1iv | 0.98 | 2.54 | 3.515 (6) | 175 |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x, y−1/2, −z; (iii) x, y, z−1; (iv) −x, −y+1, −z+1. |
Acknowledgements
NSERC Canada is thanked for a Discovery Grant to RHM. NSERC Canada and the Ministry of Education of Ontario are thanked for graduate scholarships to WWNO.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Arliguie, T., Chaudret, B., Jalon, F. & Lahoz, F. (1988). Chem. Comm. p. 998. CrossRef Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Clapham, S. E., Hadzovic, A. & Morris, R. H. (2004). Coord. Chem. Rev. 248, 2201–2237. Web of Science CrossRef CAS Google Scholar
Coville, N. J., Duplooy, K. E. & Pickl, W. (1992). Coord. Chem. Rev. 116, 1–267. CrossRef CAS Web of Science Google Scholar
Fagan, P. J., Mahoney, W. S., Calabrese, J. C. & Williams, I. D. (1990). Organometallics, 9, 1843–1852. CSD CrossRef CAS Web of Science Google Scholar
Fagan, P. J., Ward, M. D. & Calabrese, J. C. (1989). J. Am. Chem. Soc. 111, 1698–1719. CSD CrossRef CAS Web of Science Google Scholar
He, X. D., Chaudret, B., Dahan, F. & Huang, Y.-S. (1991). Organometallics, 10, 970–979. CSD CrossRef CAS Web of Science Google Scholar
Jiménez-Tenorio, M., Puerta, M. C. & Valerga, V. (2004). Eur. J. Inorg. Chem. pp. 17–32. Google Scholar
O, W. W. N., Lough, A. J. & Morris, R. H. (2010). Chem. Commun. In the press. Google Scholar
Loughrey, B. T., Healy, P. C., Parsons, R. G. & Williams, M. L. (2008). Inorg. Chem. 47, 8589–8591. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nolan, S. P., Martin, K. L., Buzatu, D., Trudell, M. L., Stevens, E. D. & Fagan, P. (1993). J. Struct. Chem. 4, 367–375. CrossRef CAS Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Schmid, A., Holger, P. & Lindel, T. (2003). Eur. J. Inorg. Chem. pp. 2255–2263. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The heterolytic splitting of dihydrogen across a transition metal-amido bond provides an important metal-hydride and a protic amine group for the efficient catalytic homogenous hydrogenation of polar bonds to produce valuable alcohols and amines (Clapham et al., 2004). We are interested in the use of chelating primary amine and N-heterocyclic carbene ligands (C—NH2) that resemble those of the phosphine-amine analogues. Thus, the transmetalation reaction of 1.5 equiv of RuCp*(cod)Cl (cod = 1,5-cyclooctadiene) and [Ni(C—NH2)2] (PF6)2 in acetonitrile, and subsequent workup in tetrahydrofuran and excess pyridine afforded the active catalyst, [RuCp*(C—NH2)(py)]PF6 (Fig. 2), for the hydrogenation of polar bonds in basic solution (O et al., 2010). The use of 2 equiv. of RuCp*(cod)Cl and 1 equiv of [Ni(C—NH2)2] (PF6)2, with subsequent workup in tetrahydrofuran, toluene and pyridine mixtures, however, afforded selective crystallization of small amounts of title molecule, [Cp*Ru(η6-toluene)]PF6, as a side product. We report here the crystal structure of the title molecule. The synthesis of such compounds have been reported elsewhere (Fagan et al., 1989; Schmid et al., 2003; Loughrey et al., 2008). The spectroscopic data for the reaction mixture containing the title molecule matches those reported in the literature (Arliguie et al., 1988; Loughrey et al., 2008).
The molecular structure of the title complex is shown in Fig. 1. The title sandwich complex consists of a coordinated planar arene ring and a pentamethylcyclopentadienyl ring in η6– and η5– hapticities, respectively. The bond distances are in reasonable agreement for analogous complexes with, for example, coordinated hexamethylbenzene and anisole in η6– hapticities (Fagan et al., 1989, 1990; He et al., 1991; Nolan et al., 1993). The distance between the Ru atom and the centroid of the benzene ring is 1.706 (5) Å and the distance between the Ru atom and the cyclopentadienyl ring is 1.811 (5) Å. The angle formed with the centroids of the coordinated rings and the RuII ion is 179.49 (15)°. The crystal structure is stabilized by weak C—H···F hydrogen bonds.