organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2616-o2617

2-Amino-7-oxo-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carbo­nitrile

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India, and bDepartment of Chemistry, Karnatak University, Dharwad 580 003, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 27 August 2010; accepted 17 September 2010; online 25 September 2010)

In the title compound, C9H8N2OS, the benzothio­phene ring is substituted with amino, oxo and carbonitrile groups. The thio­phene ring is essentially planar (r.m.s. deviation = 0.0003 Å), while the cyclo­hexene ring is in a half-chair conformation. In the crystal, N—H⋯O hydrogen bonds generate chains of mol­ecules in a zigzag pattern along the b axis. Pairs of N—H⋯N hydrogen bonds form centrosymmetric head-to-head dimers about inversion centres, corresponding to an R22(12) graph-set motif. In addition, rather weak N—H⋯S inter­actions are also present in the structure and the supra­molecular assembly is further consolidated by ππ stacking inter­actions between the benzothio­phene rings, disposed at a distance of 3.742 (3) Å.

Related literature

For the preparation of the title compound, see: Shetty et al. (2009[Shetty, N. S., Lamani, R. S. & Khazi, I. A. M. (2009). J. Chem. Sci. 121, 301-307.]). For general background, see: Jordan (2003[Jordan, V. C. (2003). J. Med. Chem. 46, 1081-1111.]); Russell & Press (1996[Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679-729. Oxford: Pergamon Press.]); Mery et al. (2002[Mery, S., Haristory, D., Nicoud, J.-F., Guillon, D., Diele, S., Monobe, H. & Shimizu, Y. (2002). J. Mater. Chem. 12, 37-41.]). For related structures, see: Akkurt et al. (2008[Akkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732-o3734.]); Vasu et al. (2004[Vasu, Nirmala, K. A., Chopra, D., Mohan, S. & Saravanan, J. (2004). Acta Cryst. E60, o1654-o1655.]). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2OS

  • Mr = 192.24

  • Monoclinic, P 21 /n

  • a = 7.2986 (3) Å

  • b = 8.7555 (3) Å

  • c = 14.7307 (6) Å

  • β = 94.151 (1)°

  • V = 938.87 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.947

  • 6202 measured reflections

  • 2058 independent reflections

  • 1671 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.126

  • S = 1.02

  • 2058 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.19 3.038 (3) 169
N1—H1B⋯O1ii 0.86 2.10 2.903 (3) 156
N1—H1B⋯S1ii 0.86 3.02 3.482 (2) 116
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PARST (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzothiophenes are important biologically active molecules. One of the most important drugs based on the benzothiophene system is Raloxifene, used for the prevention and treatment of osteoporosis in postmenopausal women (Jordan, 2003). Benzothiophenes are also luminescent components used in organic materials (Russell & Press, 1996). In addition, they are regarded as important units in liquid crystal research (Mery et al., 2002). In this article, we report the structure of the title compound which has been synthesized in our laboratory.

In the title compound (Fig. 1), the thiophene ring is essentially planar while the cyclohexene ring is in a half-chair conformation; the atoms C5 and C6 deviate from the mean plane C1/C7/C4/C8 by 0.341 (3)and -0.233 (2) Å, respectively. The puckering parameters (Cremer & Pople, 1975) for the cyclohexene ring are: Q(2) = 0.3175 (3) Å, ϕ(2) = -17.96 (8)° and θ = 129.68 (7)°. In several benzothiophene derivatives the cyclohexyl ring adopts half-chair conformation, e.g., (Akkurt et al., 2008; Harrison et al., 2006; Vasu et al., 2004).

The N—H···O hydrogen bonds generate chains of molecules in a zigzag pattern along the b-axis. While the N—H···N hydrogen bonds form centrosymmetric, head-to-head dimers about inversion centers corresponding to graph set R22(12) motif. In addition, rather weak N—H···S interactions are also present in the structure and the supramolecular assembly is further consolidated by ππ-stacking interactions between the benzothiophene rings; C—C disposed at a distance of 3.742 (3) Å.

The intermolecular interactions of the type N—H···O, N—H···N and N—H···S stabilize the crystal structure (Table 1). The N1—H1A···O1 hydrogen bonds generate chains of molecules in a zigzag pattern along the b-axis (Fig. 2). The N1—H1B···N2 hydrogen bonds on the other hand, form centrosymmetric, head-to-head dimers about inversion centers corresponding to graph set R22(12) motif (Bernstein et al., 1995) (Fig. 2). In addition, rather weak N1—H1B···S1 interactions are also present in the structure and the supramolecular assembly is further consolidated by ππ-stacking interactions between the benzothiophene rings; C—C disposed at a distance of 3.742 (3) Å.

Related literature top

For the preparation of the title compound, see: Shetty et al. (2009). For general background, see: Jordan (2003); Russell & Press (1996); Mery et al. (2002). For related structures, see: Akkurt et al. (2008); Harrison et al. (2006); Vasu et al. (2004). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by following the procedure reported earlier (Shetty et al., 2009).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.86 and C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(N/C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular hydrogen bonds with dotted lines. H atoms not involved in hydrogen bonding have been excluded.
2-Amino-7-oxo-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile top
Crystal data top
C9H8N2OSF(000) = 400
Mr = 192.24Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2058 reflections
a = 7.2986 (3) Åθ = 2.7–27.0°
b = 8.7555 (3) ŵ = 0.30 mm1
c = 14.7307 (6) ÅT = 296 K
β = 94.151 (1)°Block, yellow
V = 938.87 (6) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2058 independent reflections
Radiation source: Enhance (Mo) X-ray Source1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 95
Tmin = 0.942, Tmax = 0.947k = 1110
6202 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.447P]
where P = (Fo2 + 2Fc2)/3
2058 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C9H8N2OSV = 938.87 (6) Å3
Mr = 192.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2986 (3) ŵ = 0.30 mm1
b = 8.7555 (3) ÅT = 296 K
c = 14.7307 (6) Å0.20 × 0.18 × 0.18 mm
β = 94.151 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2058 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1671 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.947Rint = 0.020
6202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.70 e Å3
2058 reflectionsΔρmin = 0.34 e Å3
118 parameters
Special details top

Experimental. The compound was synthesized by following the procedure given in Shetty et al., (2009)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0414 (3)1.0457 (2)0.33340 (13)0.0378 (4)
C20.1087 (3)0.7962 (2)0.37011 (13)0.0386 (4)
C30.0580 (3)0.8166 (2)0.41027 (13)0.0391 (4)
C40.3211 (3)1.0145 (3)0.42024 (14)0.0430 (5)
H4A0.30361.04830.48300.052*
H4B0.40870.93100.41760.052*
C50.3979 (3)1.1460 (3)0.3610 (2)0.0664 (7)
H5A0.45331.10440.30450.080*
H5B0.49421.19600.39210.080*
C60.2579 (3)1.2634 (3)0.33910 (19)0.0588 (6)
H6A0.21791.31810.39430.071*
H6B0.31471.33660.29640.071*
C70.0921 (3)1.1943 (2)0.29875 (14)0.0444 (5)
C80.1417 (3)0.9590 (2)0.38916 (13)0.0371 (4)
C90.1327 (3)0.7027 (3)0.46592 (16)0.0494 (5)
N10.2242 (3)0.6773 (2)0.37766 (13)0.0539 (5)
H1A0.19940.60020.41080.065*
H1B0.32330.67810.34940.065*
N20.1907 (3)0.6114 (3)0.51076 (18)0.0781 (7)
O10.0078 (2)1.2613 (2)0.24138 (12)0.0622 (5)
S10.15957 (6)0.95344 (6)0.30522 (3)0.04133 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0312 (9)0.0402 (10)0.0431 (10)0.0005 (8)0.0107 (8)0.0018 (8)
C20.0401 (10)0.0374 (10)0.0395 (10)0.0024 (8)0.0107 (8)0.0004 (8)
C30.0396 (10)0.0402 (10)0.0391 (10)0.0035 (8)0.0126 (8)0.0025 (8)
C40.0363 (10)0.0507 (12)0.0437 (10)0.0021 (9)0.0147 (8)0.0008 (9)
C50.0440 (12)0.0647 (16)0.0931 (19)0.0074 (12)0.0246 (12)0.0112 (14)
C60.0500 (13)0.0545 (13)0.0741 (16)0.0128 (11)0.0200 (12)0.0146 (12)
C70.0387 (10)0.0458 (12)0.0499 (11)0.0007 (9)0.0107 (9)0.0069 (9)
C80.0340 (9)0.0421 (11)0.0359 (9)0.0037 (8)0.0080 (7)0.0024 (8)
C90.0490 (12)0.0433 (12)0.0585 (13)0.0020 (9)0.0211 (10)0.0079 (10)
N10.0563 (11)0.0431 (10)0.0659 (12)0.0097 (8)0.0285 (9)0.0104 (9)
N20.0778 (16)0.0632 (14)0.0985 (18)0.0055 (13)0.0416 (14)0.0298 (14)
O10.0572 (10)0.0555 (10)0.0773 (11)0.0072 (8)0.0295 (8)0.0249 (8)
S10.0344 (3)0.0419 (3)0.0496 (3)0.0004 (2)0.0160 (2)0.0072 (2)
Geometric parameters (Å, º) top
C1—C81.368 (3)C4—H4B0.9700
C1—C71.437 (3)C5—C61.501 (3)
C1—S11.7504 (19)C5—H5A0.9700
C2—N11.339 (3)C5—H5B0.9700
C2—C31.402 (3)C6—C71.512 (3)
C2—S11.732 (2)C6—H6A0.9700
C3—C81.414 (3)C6—H6B0.9700
C3—C91.424 (3)C7—O11.230 (2)
C4—C81.499 (3)C9—N21.138 (3)
C4—C51.526 (3)N1—H1A0.8600
C4—H4A0.9700N1—H1B0.8600
C8—C1—C7125.45 (18)C4—C5—H5B108.7
C8—C1—S1112.37 (15)H5A—C5—H5B107.6
C7—C1—S1122.18 (15)C5—C6—C7112.8 (2)
N1—C2—C3128.63 (18)C5—C6—H6A109.0
N1—C2—S1120.34 (15)C7—C6—H6A109.0
C3—C2—S1111.02 (15)C5—C6—H6B109.0
C2—C3—C8113.20 (17)C7—C6—H6B109.0
C2—C3—C9122.26 (19)H6A—C6—H6B107.8
C8—C3—C9124.54 (18)O1—C7—C1123.17 (19)
C8—C4—C5111.26 (17)O1—C7—C6122.3 (2)
C8—C4—H4A109.4C1—C7—C6114.57 (18)
C5—C4—H4A109.4C1—C8—C3112.31 (17)
C8—C4—H4B109.4C1—C8—C4121.39 (19)
C5—C4—H4B109.4C3—C8—C4126.28 (17)
H4A—C4—H4B108.0N2—C9—C3179.3 (3)
C6—C5—C4114.3 (2)C2—N1—H1A120.0
C6—C5—H5A108.7C2—N1—H1B120.0
C4—C5—H5A108.7H1A—N1—H1B120.0
C6—C5—H5B108.7C2—S1—C191.10 (9)
N1—C2—C3—C8178.3 (2)C7—C1—C8—C40.0 (3)
S1—C2—C3—C80.7 (2)S1—C1—C8—C4178.70 (14)
N1—C2—C3—C92.1 (4)C2—C3—C8—C10.4 (3)
S1—C2—C3—C9178.95 (17)C9—C3—C8—C1179.2 (2)
C8—C4—C5—C643.4 (3)C2—C3—C8—C4179.08 (18)
C4—C5—C6—C752.8 (3)C9—C3—C8—C40.5 (3)
C8—C1—C7—O1172.2 (2)C5—C4—C8—C117.3 (3)
S1—C1—C7—O16.4 (3)C5—C4—C8—C3161.3 (2)
C8—C1—C7—C68.3 (3)C2—C3—C9—N238 (24)
S1—C1—C7—C6173.14 (17)C8—C3—C9—N2142 (24)
C5—C6—C7—O1146.5 (2)N1—C2—S1—C1178.50 (18)
C5—C6—C7—C133.9 (3)C3—C2—S1—C10.57 (16)
C7—C1—C8—C3178.76 (19)C8—C1—S1—C20.37 (17)
S1—C1—C8—C30.1 (2)C7—C1—S1—C2179.11 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.193.038 (3)169
N1—H1B···O1ii0.862.102.903 (3)156
N1—H1B···S1ii0.863.023.482 (2)116
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8N2OS
Mr192.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.2986 (3), 8.7555 (3), 14.7307 (6)
β (°) 94.151 (1)
V3)938.87 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.942, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
6202, 2058, 1671
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.02
No. of reflections2058
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.34

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.193.038 (3)169
N1—H1B···O1ii0.862.102.903 (3)156
N1—H1B···S1ii0.863.023.482 (2)116
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

NSB is grateful to the University Grants Commission (UGC), India, for financial assistance, and the Department of Science and Technology (DST), India, for the data-collection facility under the IRHPA–DST programme.

References

First citationAkkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJordan, V. C. (2003). J. Med. Chem. 46, 1081–1111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMery, S., Haristory, D., Nicoud, J.-F., Guillon, D., Diele, S., Monobe, H. & Shimizu, Y. (2002). J. Mater. Chem. 12, 37–41.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRussell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, N. S., Lamani, R. S. & Khazi, I. A. M. (2009). J. Chem. Sci. 121, 301–307.  CrossRef CAS Google Scholar
First citationVasu, Nirmala, K. A., Chopra, D., Mohan, S. & Saravanan, J. (2004). Acta Cryst. E60, o1654–o1655.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2616-o2617
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds