organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate

aKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: wywhy007@yahoo.com.cn

(Received 8 September 2010; accepted 16 September 2010; online 25 September 2010)

In the title compound, C8H11N3O4, the dihedral angle between the imidazole ring and the ethyl acetate plane is 103.1 (8)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For the possible use of nitro­imidazole derivatives as radio sensitizers, to enhance the lethal effect of ionizing radiation on hypoxic tissues, see: Brown (1989[Brown, J. M. (1989). Int. J. Radiat. Oncol. Biol. Phys. 16, 987-993.]); Chapman (1979[Chapman, J. D. (1979). N. Engl. J. Med. 301, 1429-1432.]); Chu et al. (2004[Chu, T. W., Hu, S. W., Wang, Y., Liu, X. Q. & Wang, X. Y. (2004). Bioorg. Med. Chem. Lett. 14, 747-749.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N3O4

  • Mr = 213.20

  • Orthorhombic, P 21 21 21

  • a = 4.416 (3) Å

  • b = 10.290 (6) Å

  • c = 20.769 (12) Å

  • V = 943.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 103 K

  • 0.53 × 0.53 × 0.18 mm

Data collection
  • Rigaku SPIDER diffractometer

  • 7883 measured reflections

  • 1306 independent reflections

  • 1161 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 1.00

  • 1306 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O4i 0.99 2.56 3.338 (3) 135
C5—H5A⋯N2i 0.99 2.56 3.509 (3) 160
C5—H5B⋯O2ii 0.99 2.39 3.175 (3) 136
C7—H7A⋯O2iii 0.99 2.46 3.362 (3) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitroimidazole derivatives have a tendency to be accumulated in the hypoxic regions leading to the possibility of envisaging these compounds as radio sensitizers, the agents which enhance the lethal effect of ionizing radiations on hypoxic tissues (Chapman, 1979; Brown, 1989; Chu et al., 2004). As a contribution to this field, we present here the title compound, (I), synthesized by a simple and efficient method.

In (I) (Fig. 1), the imidazole group is essentially planar and forms a dihedral angle of 103.1 (8)° with the ethyl acetate plane defined by atoms C5–C8/O1/O2. The nitro group lies in the plane of the imidazole group. In the cystal structure, the packing is stabilized by weak C—H···O and C—H···N interactions.

Related literature top

For the possible use of nitroimidazole derivatives as radio sensitizers, agents which enhance the lethal effect of ionizing radiation on hypoxic tissues, see: Brown (1989); Chapman (1979); Chu et al. (2004).

Experimental top

The title compound was prepared by the following procedure. To a solution of 2-methyl-4-nitroimidazole (2.11 g, 0.01 mol) in ethyl 2-chloroacetate (14.2 ml, 0.1 mol), propionic acid (6.66 ml) was added and refluxed for 16 h. The mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, ehtyl acetate/petroleum ether, 1:1). Single crystals were obtained by using ethanol/water (2:1) as solvents for recrystallization (m.p. 383–385 K).

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms at distances C—H 0.95, 0.98 or 0.99 Å for aryl, methyl and methylene H-atoms with Uiso(H) 1.2 Ueq (parent atom). An absolute structure could not be established by anomalous dispersion effects in diffraction measurements on the crystal. Therefore, 858 Friedel pairs were merged.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Ethyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate top
Crystal data top
C8H11N3O4F(000) = 448
Mr = 213.20Dx = 1.501 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2529 reflections
a = 4.416 (3) Åθ = 3.6–27.6°
b = 10.290 (6) ŵ = 0.12 mm1
c = 20.769 (12) ÅT = 103 K
V = 943.7 (10) Å3Chunk, colorless
Z = 40.53 × 0.53 × 0.18 mm
Data collection top
Rigaku SPIDER
diffractometer
1161 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.037
Graphite monochromatorθmax = 27.6°, θmin = 3.6°
ω scansh = 55
7883 measured reflectionsk = 1313
1306 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.16P]
where P = (Fo2 + 2Fc2)/3
1306 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H11N3O4V = 943.7 (10) Å3
Mr = 213.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.416 (3) ŵ = 0.12 mm1
b = 10.290 (6) ÅT = 103 K
c = 20.769 (12) Å0.53 × 0.53 × 0.18 mm
Data collection top
Rigaku SPIDER
diffractometer
1161 reflections with I > 2σ(I)
7883 measured reflectionsRint = 0.037
1306 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
1306 reflectionsΔρmin = 0.20 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3643 (3)0.58804 (13)0.42377 (6)0.0166 (3)
O20.7058 (4)0.74979 (13)0.42394 (6)0.0192 (3)
O31.0605 (4)0.80751 (14)0.14662 (6)0.0249 (4)
O41.1820 (4)1.00386 (14)0.17463 (7)0.0232 (4)
N10.5079 (4)0.82884 (15)0.30422 (7)0.0138 (3)
N20.7748 (4)1.00021 (15)0.27284 (7)0.0153 (4)
N31.0373 (4)0.90341 (16)0.18170 (7)0.0177 (4)
C10.6719 (5)0.78850 (18)0.25230 (8)0.0158 (4)
H10.67540.70460.23320.019*
C20.8285 (5)0.89536 (18)0.23422 (8)0.0146 (4)
C30.5780 (5)0.95693 (18)0.31538 (9)0.0154 (4)
C40.4430 (5)1.03335 (19)0.36860 (9)0.0188 (4)
H4A0.54251.11830.37110.023*
H4B0.47120.98680.40930.023*
H4C0.22621.04550.36060.023*
C50.3162 (5)0.74537 (19)0.34314 (8)0.0163 (4)
H5A0.24620.67080.31700.020*
H5B0.13570.79450.35760.020*
C60.4893 (5)0.69604 (18)0.40139 (8)0.0155 (4)
C70.5214 (5)0.52893 (19)0.47784 (9)0.0200 (4)
H7A0.47830.57750.51800.024*
H7B0.74280.52950.47040.024*
C80.4071 (6)0.39131 (19)0.48318 (10)0.0237 (5)
H8A0.18680.39210.48890.028*
H8B0.50210.34890.52030.028*
H8C0.45820.34350.44380.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (8)0.0124 (6)0.0210 (6)0.0005 (6)0.0002 (6)0.0040 (5)
O20.0182 (8)0.0166 (7)0.0228 (7)0.0028 (7)0.0031 (6)0.0004 (5)
O30.0315 (9)0.0198 (7)0.0233 (7)0.0025 (8)0.0062 (6)0.0028 (6)
O40.0218 (9)0.0181 (7)0.0298 (7)0.0029 (8)0.0051 (6)0.0062 (6)
N10.0141 (9)0.0111 (7)0.0161 (7)0.0023 (7)0.0004 (6)0.0009 (6)
N20.0175 (9)0.0113 (7)0.0171 (7)0.0002 (7)0.0004 (6)0.0006 (6)
N30.0188 (10)0.0151 (8)0.0191 (7)0.0027 (8)0.0007 (7)0.0041 (6)
C10.0193 (11)0.0118 (9)0.0164 (8)0.0006 (9)0.0007 (8)0.0003 (7)
C20.0159 (10)0.0128 (9)0.0151 (8)0.0010 (9)0.0004 (7)0.0012 (7)
C30.0177 (11)0.0093 (8)0.0193 (8)0.0015 (8)0.0029 (8)0.0004 (7)
C40.0225 (12)0.0147 (9)0.0193 (8)0.0001 (9)0.0018 (8)0.0004 (7)
C50.0144 (10)0.0137 (9)0.0207 (9)0.0033 (9)0.0008 (7)0.0029 (7)
C60.0163 (10)0.0117 (8)0.0184 (8)0.0016 (9)0.0042 (8)0.0009 (7)
C70.0219 (12)0.0187 (10)0.0193 (9)0.0028 (9)0.0005 (8)0.0058 (7)
C80.0308 (13)0.0164 (10)0.0239 (10)0.0040 (10)0.0011 (9)0.0039 (8)
Geometric parameters (Å, º) top
O1—C61.325 (2)C3—C41.482 (3)
O1—C71.453 (2)C4—H4A0.9800
O2—C61.199 (2)C4—H4B0.9800
O3—N31.231 (2)C4—H4C0.9800
O4—N31.224 (2)C5—C61.518 (3)
N1—C11.364 (2)C5—H5A0.9900
N1—C31.374 (2)C5—H5B0.9900
N1—C51.452 (2)C7—C81.507 (3)
N2—C31.317 (3)C7—H7A0.9900
N2—C21.365 (2)C7—H7B0.9900
N3—C21.431 (2)C8—H8A0.9800
C1—C21.352 (3)C8—H8B0.9800
C1—H10.9500C8—H8C0.9800
C6—O1—C7115.04 (16)H4B—C4—H4C109.5
C1—N1—C3107.79 (17)N1—C5—C6110.35 (17)
C1—N1—C5124.75 (16)N1—C5—H5A109.6
C3—N1—C5127.24 (17)C6—C5—H5A109.6
C3—N2—C2103.97 (16)N1—C5—H5B109.6
O4—N3—O3124.24 (17)C6—C5—H5B109.6
O4—N3—C2118.48 (16)H5A—C5—H5B108.1
O3—N3—C2117.28 (17)O2—C6—O1125.57 (18)
C2—C1—N1104.11 (16)O2—C6—C5123.93 (18)
C2—C1—H1127.9O1—C6—C5110.49 (17)
N1—C1—H1127.9O1—C7—C8106.88 (17)
C1—C2—N2112.99 (17)O1—C7—H7A110.3
C1—C2—N3126.05 (17)C8—C7—H7A110.3
N2—C2—N3120.94 (17)O1—C7—H7B110.3
N2—C3—N1111.11 (17)C8—C7—H7B110.3
N2—C3—C4125.90 (17)H7A—C7—H7B108.6
N1—C3—C4122.98 (18)C7—C8—H8A109.5
C3—C4—H4A109.5C7—C8—H8B109.5
C3—C4—H4B109.5H8A—C8—H8B109.5
H4A—C4—H4B109.5C7—C8—H8C109.5
C3—C4—H4C109.5H8A—C8—H8C109.5
H4A—C4—H4C109.5H8B—C8—H8C109.5
C3—N1—C1—C21.0 (2)C1—N1—C3—N20.8 (2)
C5—N1—C1—C2176.05 (18)C5—N1—C3—N2175.61 (18)
N1—C1—C2—N21.0 (2)C1—N1—C3—C4179.65 (18)
N1—C1—C2—N3179.56 (18)C5—N1—C3—C44.8 (3)
C3—N2—C2—C10.6 (2)C1—N1—C5—C694.6 (2)
C3—N2—C2—N3179.20 (17)C3—N1—C5—C679.4 (2)
O4—N3—C2—C1173.7 (2)C7—O1—C6—O23.9 (3)
O3—N3—C2—C15.9 (3)C7—O1—C6—C5177.17 (16)
O4—N3—C2—N24.7 (3)N1—C5—C6—O223.4 (3)
O3—N3—C2—N2175.69 (18)N1—C5—C6—O1157.72 (16)
C2—N2—C3—N10.1 (2)C6—O1—C7—C8163.26 (16)
C2—N2—C3—C4179.70 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i0.992.563.338 (3)135
C5—H5A···N2i0.992.563.509 (3)160
C5—H5B···O2ii0.992.393.175 (3)136
C7—H7A···O2iii0.992.463.362 (3)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H11N3O4
Mr213.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)103
a, b, c (Å)4.416 (3), 10.290 (6), 20.769 (12)
V3)943.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.53 × 0.53 × 0.18
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7883, 1306, 1161
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.00
No. of reflections1306
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i0.992.563.338 (3)135.4
C5—H5A···N2i0.992.563.509 (3)160.4
C5—H5B···O2ii0.992.393.175 (3)135.6
C7—H7A···O2iii0.992.463.362 (3)150.5
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z; (iii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationBrown, J. M. (1989). Int. J. Radiat. Oncol. Biol. Phys. 16, 987–993.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChapman, J. D. (1979). N. Engl. J. Med. 301, 1429–1432.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChu, T. W., Hu, S. W., Wang, Y., Liu, X. Q. & Wang, X. Y. (2004). Bioorg. Med. Chem. Lett. 14, 747–749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds