metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1239-m1240

Bis(3-methyl­phenolato-κO)(nitros­yl-κN)[tris­­(3,5-di­methyl­pyrazol-1-yl-κN2)hydridoborato]molybdenum(II)

aFaculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Kraków, Poland, and bFaculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
*Correspondence e-mail: nitek@chemia.uj.edu.pl, pr@chemia.pk.edu.pl

(Received 22 June 2010; accepted 20 August 2010; online 11 September 2010)

The title complex, [Mo(C15H22BN6)(C7H7O)2(NO)], contains an {MoNO}4 core stabilized by κ3­-hydrotris­(3,5-dimethyl­pyrazol-1-yl)borate, [TpMe2], and two anionic m-cresolate ligands, leading to a distorted octa­hedral geometry for the Mo atom. The short Mo—O bond lengths [1.935 (2) and 1.971 (2) Å], as well as large Mo—O—Csp2 angles [134.2 (2) and 143.54 (19)°], indicate dπMopπO inter­actions, which are clearly weaker when compared with {Mo(NO)(TpMe2)} alkoxides. The nitrosyl system is virtually linear [179.3 (3)°] with Mo—N and N—O bond lengths of 1.760 (2) and 1.205 (3) Å, respectively. Intra- and inter­molecular C—H(Ph or CH3)π(Ph) inter­actions between adjacent phenyl rings are found in the crystal structure (dH⋯Ph in the range 2.743–2.886 Å). One of the Ph rings shows disorder, i.e. swinging in the ring plane.

Related literature

The importance of this class of Mo complexes comes from the fact that some {MoNO}4 alkoxides are efficient catalysts in the cathodic reduction of CHCl3. For the synthesis, spectroscopic characterization and electrochemical properties of [tris­(3,5-dimethyl­pyrazol-1-yl)borato]nitro­sylmolybdenum(II) bis-cresolates, see: Włodarczyk et al. (2008a[Włodarczyk, A. J., Romańczyk, P. P. & Lubera, T. (2008a). Czasop. Techn. Polit. Krak. 1-Ch, pp. 165-170.]). For the spectroscopic characterization of the mono-cresolate analogue of the title compound, see: McCleverty et al. (1983[McCleverty, J. A., Denti, G., Reynolds, S. J., Drane, A. S., El Murr, N., Rae, A. E., Bailey, N. A., Adams, H. & Smith, J. M. A. (1983). J. Chem. Soc. Dalton Trans. pp. 81-89.]). For related structurally characterized {Mo(NO)(TpMe2)}-alkoxides, see: Romańczyk et al. (2007[Romańczyk, P. P., Guzik, M. N. & Włodarczyk, A. J. (2007). Polyhedron, 26, 1182-1190.]); Włodarczyk et al. (2008c[Włodarczyk, A. J., Romańczyk, P. P., Kurek, S. S., Nitek, W. & McCleverty, J. A. (2008c). Polyhedron, 27, 783-796.]). For the electrocatalytic activity of bis-alkoxide Mo nitro­syls in the reduction of CHCl3, see: Włodarczyk et al. (2008b[Włodarczyk, A. J., Romańczyk, P. P., Lubera, T. & Kurek, S. S. (2008b). Electrochem. Commun. 10, 1856-1859.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C15H22BN6)(C7H7O)2(NO)]

  • Mr = 637.40

  • Triclinic, [P \overline 1]

  • a = 8.041 (5) Å

  • b = 13.562 (5) Å

  • c = 14.591 (5) Å

  • α = 86.103 (5)°

  • β = 83.533 (5)°

  • γ = 74.597 (5)°

  • V = 1523.1 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 295 K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.903, Tmax = 0.954

  • 12695 measured reflections

  • 6901 independent reflections

  • 5801 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.08

  • 6901 reflections

  • 383 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The stable 16e complexes containing {MoNO}4 core stabilized by tripodal hydrotris(3,5-dimethylpyrazol-1-yl)borate and two anionic co-ligands undergo easily reversible 1e reduction at a potential, E1/2, which can be tuned in the huge range of 2200 mV by selecting suitable co-ligands (Włodarczyk et al., 2008c). The 17e species based on the {Mo(NO)(TpMe2)(O-)2} moiety very efficiently catalyse the dehalogenation of CHCl3; their activity is strictly associated with the E1/2 value (Włodarczyk et al., 2008b). The structural study of title complex is a part of a larger project concerning examination of molecules which may be potentially applied as electrocatalysts.

The title complex (Fig. 1) contains a pseudo-mirror plane of symmetry passing through Mo, NO, B and the N31/N32/C33/C34/C35 pyrazolyl ring (approximate Cs symmetry which is reflected in 1H NMR spectrum). The longer Mo–O distances, i.e. weaker π-donation from O to Mo, in the bis-cresolato complex, than compared with those found for {Mo(NO)(TpMe2)}-alkoxides, certainly result from additional electron delocalization to sp2-hybridized carbon (which is precluded in the case of the latter complexes, hence Mo–Oalkoxide av. distance is 1.88Å, see: Romańczyk et al., 2007; Włodarczyk et al., 2008c) and is reflected in hypsochromically shifted νNO band in the title complex (McCleverty et al., 1983). The lengthening of the Mo1–N31 bond is attributed to the trans-influence of the NO group. Intermolecular Ph···Ph interactions between adjacent nearly perpendicular rings (C46B···H54i distance is 2.873Å) and also between rings and methyl groups (C44···H48Bii distance is 2.886Å), stabilize the crystal structure (Fig. 2), symmetry codes: (i) 1+x, y, z; (ii) 1-x, -y, -z. As mentioned above one of the Ph rings (linked with O41) is disordered, i.e. it swings in the ring plane.

Related literature top

The importance of this class of Mo complexes comes from the fact that some {Mo(NO)}4 alkoxides are efficient catalysts in the cathodic reduction of CHCl3. For the synthesis, spectroscopic characterization and electrochemical properties of [tris(3,5-dimethylpyrazol-1-yl)borato]nitrosylmolybdenum(II) bis-cresolates, see: Włodarczyk et al. (2008a). For the spectroscopic characterization of the mono-cresolate analogue of the title compound, see: McCleverty et al. (1983). For related structurally characterized {Mo(NO)(TpMe2)}-alkoxides, see: Romańczyk et al. (2007); Włodarczyk et al. (2008c). For the electrocatalytic activity of bis-alkoxide Mo nitrosyls in the reduction of CHCl3, see: Włodarczyk et al. (2008b).

Experimental top

The complex was synthesized following the literature from the reaction of [Mo(NO)(TpMe)I2].C6H5CH3 and m-cresol in the presence of Et3N in boiling dichloromethane and characterized by mass spectrometry, IR, 1H NMR spectroscopy as well as cyclic voltammetry (Włodarczyk et al., 2008a). A dark brown crystals were grown by slow evaporation of solvent from a dichloromethane/n-hexane solution.

Refinement top

The shape of the displacement elipsoids of atoms C43, C44, C45, C46, C47 and C48 suggests some kind of swinging disorder of the aromatic ring, however attempts to modelling of this disorder hasn't gave satisfactory results. All hydrogen atoms joined to carbon atoms of the discussed compound were positioned with an idealized geometry and refined using a riding model with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. Hydrogen atom joined to boron atom was found from the difference Fourier map and fully refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Intermolecular interactions in the crystal structure of the title compound.
Bis(3-methylphenolato-κO)(nitrosyl-κN)[tris(3,5- dimethylpyrazol-1-yl-κN2)hydridoborato]molybdenum(II) top
Crystal data top
[Mo(C15H22BN6)(C7H7O)2(NO)]Z = 2
Mr = 637.40F(000) = 660
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.041 (5) ÅCell parameters from 6763 reflections
b = 13.562 (5) Åθ = 1.0–27.5°
c = 14.591 (5) ŵ = 0.47 mm1
α = 86.103 (5)°T = 295 K
β = 83.533 (5)°Prism, dark brown
γ = 74.597 (5)°0.22 × 0.15 × 0.1 mm
V = 1523.1 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer
5801 reflections with I > 2σ(I)
ω– and ϕ–scansRint = 0.024
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
θmax = 27.4°, θmin = 2.9°
Tmin = 0.903, Tmax = 0.954h = 1010
12695 measured reflectionsk = 1717
6901 independent reflectionsl = 1818
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0476P)2 + 0.7213P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max = 0.001
wR(F2) = 0.105Δρmax = 0.68 e Å3
S = 1.08Δρmin = 0.51 e Å3
6901 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
383 parametersExtinction coefficient: 0.0117 (12)
0 restraints
Crystal data top
[Mo(C15H22BN6)(C7H7O)2(NO)]γ = 74.597 (5)°
Mr = 637.40V = 1523.1 (12) Å3
Triclinic, P1Z = 2
a = 8.041 (5) ÅMo Kα radiation
b = 13.562 (5) ŵ = 0.47 mm1
c = 14.591 (5) ÅT = 295 K
α = 86.103 (5)°0.22 × 0.15 × 0.1 mm
β = 83.533 (5)°
Data collection top
Nonius KappaCCD
diffractometer
6901 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
5801 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.954Rint = 0.024
12695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.68 e Å3
6901 reflectionsΔρmin = 0.51 e Å3
383 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.0436 (4)0.5567 (2)0.2703 (2)0.0491 (7)
Mo10.07282 (3)0.315037 (17)0.229233 (15)0.04338 (10)
N110.1515 (3)0.43407 (18)0.13985 (15)0.0483 (5)
N120.1411 (3)0.52830 (17)0.17426 (15)0.0478 (5)
C130.2049 (4)0.5870 (2)0.1076 (2)0.0584 (7)
C140.2583 (4)0.5300 (3)0.0305 (2)0.0667 (9)
H140.30910.55040.02550.08*
C150.2223 (4)0.4361 (3)0.0517 (2)0.0579 (7)
C160.2551 (5)0.3471 (3)0.0090 (2)0.0787 (10)
H16A0.32450.28730.02060.118*
H16B0.31520.36170.06690.118*
H16C0.14660.33510.01970.118*
C170.2090 (6)0.6948 (3)0.1220 (3)0.0778 (10)
H17A0.09320.73860.12480.117*
H17B0.27910.71760.07170.117*
H17C0.25720.69720.17880.117*
N210.1565 (3)0.44545 (18)0.25060 (16)0.0484 (5)
N220.1381 (3)0.53995 (17)0.26969 (16)0.0491 (5)
C230.2964 (4)0.6069 (2)0.2796 (2)0.0596 (8)
C240.4160 (4)0.5555 (3)0.2679 (2)0.0655 (9)
H240.53550.58270.27150.079*
C250.3275 (4)0.4552 (3)0.2497 (2)0.0566 (7)
C260.4001 (4)0.3693 (3)0.2310 (3)0.0755 (10)
H26A0.33760.33570.17690.113*
H26B0.52020.39560.22120.113*
H26C0.38940.32130.28290.113*
C270.3215 (5)0.7166 (3)0.2991 (3)0.0823 (11)
H27A0.2680.72120.35360.123*
H27B0.44320.74950.30830.123*
H27C0.26940.74980.24780.123*
N310.1762 (3)0.38254 (16)0.33866 (15)0.0427 (5)
N320.1396 (3)0.48717 (16)0.34540 (15)0.0439 (5)
C330.2048 (4)0.5086 (2)0.42083 (19)0.0503 (6)
C340.2859 (4)0.4179 (2)0.4624 (2)0.0550 (7)
H340.34350.40950.51540.066*
C350.2656 (4)0.3409 (2)0.41023 (19)0.0478 (6)
C360.3312 (5)0.2281 (2)0.4255 (2)0.0651 (8)
H36A0.38510.19790.36840.098*
H36B0.23620.19970.44790.098*
H36C0.41440.2140.47010.098*
C370.1823 (5)0.6152 (3)0.4507 (2)0.0681 (9)
H37A0.24560.65050.40620.102*
H37B0.22540.61250.50980.102*
H37C0.06160.65080.45510.102*
O410.3084 (3)0.23057 (15)0.21148 (14)0.0557 (5)
C420.3831 (5)0.1373 (3)0.1751 (2)0.0686 (9)
C430.3018 (7)0.0590 (3)0.1884 (3)0.0873 (12)
H430.19040.07010.21830.105*
C440.3901 (10)0.0373 (4)0.1560 (4)0.123 (2)
H440.33710.09080.16440.148*
C450.5542 (10)0.0536 (5)0.1120 (4)0.136 (3)
H450.61190.11840.09160.164*
C460.6349 (7)0.0241 (5)0.0976 (3)0.1104 (19)
C470.5484 (5)0.1210 (3)0.1283 (3)0.0871 (13)
H470.60080.17470.11750.104*
C480.8087 (8)0.0018 (6)0.0543 (5)0.169 (3)
H48A0.88370.01680.09280.254*
H48B0.81290.03440.00440.254*
H48C0.8460.07420.04540.254*
O510.0196 (3)0.24020 (14)0.33482 (13)0.0528 (5)
C520.1014 (4)0.1689 (2)0.3574 (2)0.0585 (7)
C530.1504 (5)0.1115 (3)0.2944 (3)0.0760 (10)
H530.12720.12360.23140.091*
C540.2322 (6)0.0376 (3)0.3251 (3)0.0819 (11)
H540.26550.00040.28250.098*
C550.2668 (5)0.0168 (3)0.4192 (3)0.0785 (11)
H550.32080.03470.43880.094*
C560.2208 (4)0.0727 (2)0.4834 (3)0.0641 (8)
C570.1373 (4)0.1480 (2)0.4516 (2)0.0586 (7)
H570.10450.18550.49420.07*
C580.2607 (6)0.0553 (3)0.5851 (3)0.0866 (12)
H58A0.27170.01330.59730.13*
H58B0.36740.1030.6060.13*
H58C0.16860.06490.61710.13*
N610.0075 (3)0.26435 (19)0.14084 (17)0.0542 (6)
O620.0606 (4)0.2291 (2)0.07993 (17)0.0799 (7)
H10.035 (4)0.641 (2)0.283 (2)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0534 (18)0.0410 (15)0.0496 (17)0.0084 (13)0.0011 (13)0.0013 (12)
Mo10.04415 (14)0.04337 (14)0.04167 (14)0.00827 (9)0.00681 (9)0.00342 (9)
N110.0433 (12)0.0542 (13)0.0430 (12)0.0067 (10)0.0002 (9)0.0021 (10)
N120.0471 (12)0.0482 (12)0.0464 (12)0.0117 (10)0.0030 (9)0.0055 (9)
C130.0569 (17)0.0637 (18)0.0535 (17)0.0177 (14)0.0071 (13)0.0157 (14)
C140.0624 (19)0.087 (2)0.0480 (16)0.0212 (17)0.0012 (14)0.0160 (16)
C150.0498 (16)0.077 (2)0.0420 (14)0.0106 (14)0.0006 (12)0.0019 (13)
C160.084 (2)0.096 (3)0.0488 (18)0.013 (2)0.0071 (16)0.0143 (17)
C170.094 (3)0.070 (2)0.075 (2)0.034 (2)0.017 (2)0.0232 (18)
N210.0401 (11)0.0553 (13)0.0472 (12)0.0094 (10)0.0024 (9)0.0010 (10)
N220.0443 (12)0.0478 (12)0.0483 (12)0.0014 (10)0.0022 (9)0.0001 (10)
C230.0516 (16)0.0640 (18)0.0469 (15)0.0106 (14)0.0009 (12)0.0037 (13)
C240.0375 (14)0.085 (2)0.0600 (18)0.0053 (15)0.0010 (13)0.0065 (16)
C250.0395 (14)0.078 (2)0.0488 (15)0.0120 (14)0.0020 (11)0.0077 (14)
C260.0498 (18)0.094 (3)0.087 (3)0.0272 (18)0.0093 (16)0.010 (2)
C270.081 (3)0.060 (2)0.086 (3)0.0149 (18)0.003 (2)0.0023 (18)
N310.0437 (11)0.0393 (10)0.0436 (11)0.0082 (9)0.0043 (9)0.0009 (9)
N320.0458 (12)0.0412 (11)0.0439 (11)0.0102 (9)0.0023 (9)0.0049 (9)
C330.0558 (16)0.0546 (15)0.0429 (14)0.0191 (13)0.0003 (12)0.0080 (12)
C340.0639 (18)0.0622 (17)0.0422 (14)0.0191 (14)0.0125 (13)0.0028 (12)
C350.0481 (14)0.0521 (15)0.0432 (14)0.0125 (12)0.0076 (11)0.0006 (11)
C360.079 (2)0.0523 (16)0.0625 (19)0.0095 (15)0.0258 (16)0.0074 (14)
C370.082 (2)0.0601 (18)0.066 (2)0.0222 (17)0.0030 (17)0.0216 (15)
O410.0541 (11)0.0497 (11)0.0579 (12)0.0004 (9)0.0110 (9)0.0110 (9)
C420.075 (2)0.067 (2)0.0519 (17)0.0139 (17)0.0235 (15)0.0163 (15)
C430.125 (4)0.0540 (19)0.078 (3)0.009 (2)0.022 (2)0.0086 (18)
C440.195 (7)0.059 (2)0.111 (4)0.001 (3)0.059 (4)0.017 (2)
C450.175 (6)0.094 (4)0.108 (4)0.057 (4)0.065 (4)0.056 (3)
C460.098 (3)0.115 (4)0.090 (3)0.045 (3)0.036 (3)0.051 (3)
C470.070 (2)0.097 (3)0.078 (2)0.021 (2)0.0231 (19)0.039 (2)
C480.122 (5)0.201 (7)0.151 (6)0.043 (5)0.025 (4)0.094 (6)
O510.0647 (12)0.0466 (10)0.0489 (11)0.0155 (9)0.0124 (9)0.0007 (8)
C520.0586 (17)0.0537 (16)0.0634 (18)0.0119 (14)0.0161 (14)0.0024 (14)
C530.100 (3)0.073 (2)0.068 (2)0.037 (2)0.030 (2)0.0079 (17)
C540.105 (3)0.069 (2)0.088 (3)0.039 (2)0.042 (2)0.0056 (19)
C550.081 (2)0.060 (2)0.103 (3)0.0299 (18)0.030 (2)0.0211 (19)
C560.0578 (18)0.0530 (17)0.076 (2)0.0084 (14)0.0079 (15)0.0113 (15)
C570.0628 (18)0.0496 (16)0.0618 (18)0.0116 (14)0.0101 (14)0.0040 (13)
C580.090 (3)0.073 (2)0.087 (3)0.015 (2)0.009 (2)0.013 (2)
N610.0602 (15)0.0551 (14)0.0491 (13)0.0144 (11)0.0125 (11)0.0046 (11)
O620.102 (2)0.0904 (18)0.0586 (14)0.0349 (15)0.0271 (13)0.0076 (13)
Geometric parameters (Å, º) top
B1—N321.533 (4)C33—C371.497 (4)
B1—N221.539 (4)C34—C351.387 (4)
B1—N121.546 (4)C34—H340.93
B1—H11.15 (3)C35—C361.490 (4)
Mo1—N112.186 (2)C36—H36A0.96
Mo1—N212.200 (2)C36—H36B0.96
Mo1—N312.232 (2)C36—H36C0.96
Mo1—O411.935 (2)C37—H37A0.96
Mo1—O511.971 (2)C37—H37B0.96
Mo1—N611.760 (2)C37—H37C0.96
N11—C151.349 (4)O41—C421.362 (4)
N11—N121.383 (3)C42—C431.380 (6)
N12—C131.357 (4)C42—C471.395 (6)
C13—C141.373 (5)C43—C441.395 (6)
C13—C171.501 (5)C43—H430.93
C14—C151.386 (5)C44—C451.370 (10)
C14—H140.93C44—H440.93
C15—C161.495 (5)C45—C461.370 (9)
C16—H16A0.96C45—H450.93
C16—H16B0.96C46—C471.391 (6)
C16—H16C0.96C46—C481.430 (8)
C17—H17A0.96C47—H470.93
C17—H17B0.96C48—H48A0.96
C17—H17C0.96C48—H48B0.96
N21—C251.347 (4)C48—H48C0.96
N21—N221.379 (3)O51—C521.311 (4)
N22—C231.352 (4)C52—C531.396 (5)
C23—C241.360 (5)C52—C571.397 (5)
C23—C271.490 (5)C53—C541.364 (5)
C24—C251.385 (5)C53—H530.93
C24—H240.93C54—C551.394 (6)
C25—C261.488 (5)C54—H540.93
C26—H26A0.96C55—C561.383 (5)
C26—H26B0.96C55—H550.93
C26—H26C0.96C56—C571.393 (4)
C27—H27A0.96C56—C581.499 (5)
C27—H27B0.96C57—H570.93
C27—H27C0.96C58—H58A0.96
N31—C351.342 (3)C58—H58B0.96
N31—N321.378 (3)C58—H58C0.96
N32—C331.351 (3)N61—O621.205 (3)
C33—C341.367 (4)
N32—B1—N22109.8 (2)N32—N31—Mo1120.68 (15)
N32—B1—N12109.9 (2)C33—N32—N31109.4 (2)
N22—B1—N12106.9 (2)C33—N32—B1131.7 (2)
N32—B1—H1109.4 (15)N31—N32—B1118.9 (2)
N22—B1—H1111.0 (15)N32—C33—C34107.9 (2)
N12—B1—H1109.7 (15)N32—C33—C37123.3 (3)
N11—Mo1—N2178.50 (9)C34—C33—C37128.7 (3)
N11—Mo1—N3183.91 (8)C33—C34—C35106.6 (2)
N11—Mo1—O4188.87 (9)C33—C34—H34126.7
N11—Mo1—O51163.39 (8)C35—C34—H34126.7
N21—Mo1—N3184.92 (9)N31—C35—C34109.6 (2)
N21—Mo1—O5189.71 (9)N31—C35—C36122.3 (2)
N21—Mo1—O41163.62 (9)C34—C35—C36128.1 (3)
N31—Mo1—N61178.48 (10)C35—C36—H36A109.5
O41—Mo1—O51100.29 (9)C35—C36—H36B109.5
N61—Mo1—O4196.67 (11)H36A—C36—H36B109.5
N61—Mo1—O5198.05 (10)C35—C36—H36C109.5
N61—Mo1—N1194.57 (10)H36A—C36—H36C109.5
N61—Mo1—N2194.71 (11)H36B—C36—H36C109.5
O41—Mo1—N3183.40 (9)C33—C37—H37A109.5
O51—Mo1—N3183.43 (8)C33—C37—H37B109.5
C15—N11—N12106.6 (2)H37A—C37—H37B109.5
C15—N11—Mo1133.1 (2)C33—C37—H37C109.5
N12—N11—Mo1120.27 (16)H37A—C37—H37C109.5
C13—N12—N11109.4 (2)H37B—C37—H37C109.5
C13—N12—B1130.2 (3)Mo1—O41—C42134.2 (2)
N11—N12—B1119.9 (2)O41—C42—C43121.2 (4)
N12—C13—C14107.6 (3)O41—C42—C47118.3 (4)
N12—C13—C17122.9 (3)C43—C42—C47120.5 (4)
C14—C13—C17129.5 (3)C42—C43—C44118.7 (5)
C13—C14—C15107.1 (3)C42—C43—H43120.6
C13—C14—H14126.5C44—C43—H43120.6
C15—C14—H14126.5C45—C44—C43120.6 (6)
N11—C15—C14109.4 (3)C45—C44—H44119.7
N11—C15—C16122.5 (3)C43—C44—H44119.7
C14—C15—C16128.1 (3)C44—C45—C46121.1 (5)
C15—C16—H16A109.5C44—C45—H45119.5
C15—C16—H16B109.5C46—C45—H45119.5
H16A—C16—H16B109.5C45—C46—C47119.4 (5)
C15—C16—H16C109.5C45—C46—C48116.7 (6)
H16A—C16—H16C109.5C47—C46—C48123.9 (7)
H16B—C16—H16C109.5C46—C47—C42119.8 (5)
C13—C17—H17A109.5C46—C47—H47120.1
C13—C17—H17B109.5C42—C47—H47120.1
H17A—C17—H17B109.5C46—C48—H48A109.5
C13—C17—H17C109.5C46—C48—H48B109.5
H17A—C17—H17C109.5H48A—C48—H48B109.5
H17B—C17—H17C109.5C46—C48—H48C109.5
C25—N21—N22107.0 (2)H48A—C48—H48C109.5
C25—N21—Mo1132.7 (2)H48B—C48—H48C109.5
N22—N21—Mo1120.31 (16)Mo1—O51—C52143.54 (19)
C23—N22—N21109.1 (2)O51—C52—C53124.7 (3)
C23—N22—B1130.5 (3)O51—C52—C57117.0 (3)
N21—N22—B1120.2 (2)C53—C52—C57118.3 (3)
N22—C23—C24107.8 (3)C54—C53—C52120.2 (4)
N22—C23—C27122.6 (3)C54—C53—H53119.9
C24—C23—C27129.6 (3)C52—C53—H53119.9
C23—C24—C25107.5 (3)C53—C54—C55121.2 (3)
C23—C24—H24126.2C53—C54—H54119.4
C25—C24—H24126.2C55—C54—H54119.4
N21—C25—C24108.6 (3)C56—C55—C54120.1 (3)
N21—C25—C26123.3 (3)C56—C55—H55120
C24—C25—C26128.1 (3)C54—C55—H55120
C25—C26—H26A109.5C55—C56—C57118.4 (3)
C25—C26—H26B109.5C55—C56—C58121.8 (3)
H26A—C26—H26B109.5C57—C56—C58119.7 (3)
C25—C26—H26C109.5C56—C57—C52121.8 (3)
H26A—C26—H26C109.5C56—C57—H57119.1
H26B—C26—H26C109.5C52—C57—H57119.1
C23—C27—H27A109.5C56—C58—H58A109.5
C23—C27—H27B109.5C56—C58—H58B109.5
H27A—C27—H27B109.5H58A—C58—H58B109.5
C23—C27—H27C109.5C56—C58—H58C109.5
H27A—C27—H27C109.5H58A—C58—H58C109.5
H27B—C27—H27C109.5H58B—C58—H58C109.5
C35—N31—N32106.5 (2)Mo1—N61—O62179.3 (3)
C35—N31—Mo1132.66 (18)
N61—Mo1—N11—C1538.0 (3)O51—Mo1—N31—C3549.1 (2)
O41—Mo1—N11—C1558.6 (3)N11—Mo1—N31—C35141.7 (2)
O51—Mo1—N11—C15177.5 (3)N21—Mo1—N31—C35139.4 (2)
N21—Mo1—N11—C15131.9 (3)O41—Mo1—N31—N32133.34 (19)
N31—Mo1—N11—C15142.0 (3)O51—Mo1—N31—N32125.45 (19)
N61—Mo1—N11—N12146.0 (2)N11—Mo1—N31—N3243.78 (18)
O41—Mo1—N11—N12117.38 (19)N21—Mo1—N31—N3235.16 (18)
O51—Mo1—N11—N126.6 (4)C35—N31—N32—C330.6 (3)
N21—Mo1—N11—N1252.13 (19)Mo1—N31—N32—C33175.22 (17)
N31—Mo1—N11—N1233.90 (19)C35—N31—N32—B1177.5 (2)
C15—N11—N12—C130.0 (3)Mo1—N31—N32—B16.7 (3)
Mo1—N11—N12—C13176.92 (18)N22—B1—N32—C33119.4 (3)
C15—N11—N12—B1172.1 (2)N12—B1—N32—C33123.3 (3)
Mo1—N11—N12—B111.0 (3)N22—B1—N32—N3163.0 (3)
N32—B1—N12—C13123.7 (3)N12—B1—N32—N3154.3 (3)
N22—B1—N12—C13117.2 (3)N31—N32—C33—C340.8 (3)
N32—B1—N12—N1166.1 (3)B1—N32—C33—C34177.0 (3)
N22—B1—N12—N1153.0 (3)N31—N32—C33—C37177.6 (3)
N11—N12—C13—C140.7 (3)B1—N32—C33—C374.6 (5)
B1—N12—C13—C14171.7 (3)N32—C33—C34—C350.7 (3)
N11—N12—C13—C17178.7 (3)C37—C33—C34—C35177.6 (3)
B1—N12—C13—C177.7 (5)N32—N31—C35—C340.1 (3)
N12—C13—C14—C151.0 (4)Mo1—N31—C35—C34174.97 (19)
C17—C13—C14—C15178.3 (3)N32—N31—C35—C36179.0 (3)
N12—N11—C15—C140.6 (3)Mo1—N31—C35—C365.9 (4)
Mo1—N11—C15—C14175.7 (2)C33—C34—C35—N310.4 (3)
N12—N11—C15—C16179.9 (3)C33—C34—C35—C36179.4 (3)
Mo1—N11—C15—C163.6 (5)N61—Mo1—O41—C4224.6 (3)
C13—C14—C15—N111.0 (4)O51—Mo1—O41—C4274.9 (3)
C13—C14—C15—C16179.8 (3)N11—Mo1—O41—C42119.1 (3)
N61—Mo1—N21—C2538.2 (3)N21—Mo1—O41—C42158.3 (3)
O41—Mo1—N21—C25172.2 (3)N31—Mo1—O41—C42156.9 (3)
O51—Mo1—N21—C2559.8 (3)Mo1—O41—C42—C4337.3 (5)
N11—Mo1—N21—C25132.0 (3)Mo1—O41—C42—C47146.1 (3)
N31—Mo1—N21—C25143.2 (3)O41—C42—C43—C44174.9 (4)
N61—Mo1—N21—N22142.2 (2)C47—C42—C43—C441.6 (6)
O41—Mo1—N21—N228.3 (4)C42—C43—C44—C450.0 (7)
O51—Mo1—N21—N22119.75 (19)C43—C44—C45—C460.8 (8)
N11—Mo1—N21—N2248.47 (19)C44—C45—C46—C470.0 (8)
N31—Mo1—N21—N2236.33 (19)C44—C45—C46—C48177.6 (5)
C25—N21—N22—C230.5 (3)C45—C46—C47—C421.6 (6)
Mo1—N21—N22—C23179.83 (18)C48—C46—C47—C42175.8 (5)
C25—N21—N22—B1176.5 (2)O41—C42—C47—C46174.2 (3)
Mo1—N21—N22—B13.8 (3)C43—C42—C47—C462.4 (6)
N32—B1—N22—C23122.9 (3)N61—Mo1—O51—C525.9 (3)
N12—B1—N22—C23117.9 (3)O41—Mo1—O51—C5292.5 (3)
N32—B1—N22—N2162.1 (3)N11—Mo1—O51—C52145.0 (3)
N12—B1—N22—N2157.1 (3)N21—Mo1—O51—C52100.6 (3)
N21—N22—C23—C240.6 (3)N31—Mo1—O51—C52174.5 (3)
B1—N22—C23—C24176.1 (3)Mo1—O51—C52—C532.9 (6)
N21—N22—C23—C27178.9 (3)Mo1—O51—C52—C57178.7 (2)
B1—N22—C23—C273.4 (5)O51—C52—C53—C54178.7 (4)
N22—C23—C24—C250.5 (4)C57—C52—C53—C540.4 (6)
C27—C23—C24—C25179.0 (3)C52—C53—C54—C550.8 (6)
N22—N21—C25—C240.2 (3)C53—C54—C55—C561.2 (6)
Mo1—N21—C25—C24179.8 (2)C54—C55—C56—C571.2 (5)
N22—N21—C25—C26179.7 (3)C54—C55—C56—C58178.0 (4)
Mo1—N21—C25—C260.7 (4)C55—C56—C57—C520.8 (5)
C23—C24—C25—N210.2 (4)C58—C56—C57—C52178.3 (3)
C23—C24—C25—C26179.3 (3)O51—C52—C57—C56178.9 (3)
O41—Mo1—N31—C3552.1 (2)C53—C52—C57—C560.4 (5)

Experimental details

Crystal data
Chemical formula[Mo(C15H22BN6)(C7H7O)2(NO)]
Mr637.40
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.041 (5), 13.562 (5), 14.591 (5)
α, β, γ (°)86.103 (5), 83.533 (5), 74.597 (5)
V3)1523.1 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.22 × 0.15 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.903, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
12695, 6901, 5801
Rint0.024
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.08
No. of reflections6901
No. of parameters383
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.51

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMcCleverty, J. A., Denti, G., Reynolds, S. J., Drane, A. S., El Murr, N., Rae, A. E., Bailey, N. A., Adams, H. & Smith, J. M. A. (1983). J. Chem. Soc. Dalton Trans. pp. 81–89.  CSD CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRomańczyk, P. P., Guzik, M. N. & Włodarczyk, A. J. (2007). Polyhedron, 26, 1182–1190.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWłodarczyk, A. J., Romańczyk, P. P., Kurek, S. S., Nitek, W. & McCleverty, J. A. (2008c). Polyhedron, 27, 783–796.  Google Scholar
First citationWłodarczyk, A. J., Romańczyk, P. P. & Lubera, T. (2008a). Czasop. Techn. Polit. Krak. 1-Ch, pp. 165–170.  Google Scholar
First citationWłodarczyk, A. J., Romańczyk, P. P., Lubera, T. & Kurek, S. S. (2008b). Electrochem. Commun. 10, 1856–1859.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1239-m1240
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds