metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium (2,2′-bi­pyridine-κ2N,N′)bis­­(carbonato-κ2O,O′)cobaltate(III) dihydrate

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 14 August 2010; accepted 18 September 2010; online 30 September 2010)

In the title compound, K[Co(CO3)2(C10H8N2)]·2H2O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa­hedral N2O4 environment. The [Co(bipy)(CO3)2] (bipy is 2,2′-bipyridine) ­units are stacked along [100] via ππ stacking inter­actions, with inter­planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O—H⋯O hydrogen-bonding inter­actions link the chains, forming channels along (100) in which the K+ ions reside and leading to a three-dimensional supra­molecular architecture.

Related literature

For general background to Co(III) complexes, see: Baca et al. (2005[Baca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Yu. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118-3130.]); Niederhoffer et al. (1982[Niederhoffer, E. C., Martell, A. E., Rudolf, P. & Clearfield, A. (1982). Inorg. Chem. pp. 3734-3741.]); Ma et al. (2008[Ma, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14.]). For a related structure, see: Lv et al. (2007[Lv, Y.-X., Ling, Y., Li, H. & Zhang, L. (2007). Acta Cryst. E63, m1906-m1907.]).

[Scheme 1]

Experimental

Crystal data
  • K[Co(CO3)2(C10H8N2)]·2H2O

  • Mr = 410.27

  • Monoclinic, P 21 /c

  • a = 7.4138 (15) Å

  • b = 14.064 (3) Å

  • c = 15.392 (4) Å

  • β = 113.80 (3)°

  • V = 1468.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 295 K

  • 0.58 × 0.18 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.731, Tmax = 0.775

  • 13677 measured reflections

  • 3249 independent reflections

  • 2792 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.04

  • 3249 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O8i 0.86 2.11 2.934 (3) 161
O7—H7B⋯O3ii 0.85 2.06 2.903 (3) 170
O8—H8A⋯O4iii 0.85 2.06 2.885 (3) 162
O8—H8B⋯O1iv 0.85 2.17 2.988 (3) 162
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past dacades, the Co(III) complexes with carbonate anions and 2,2'-bipyridine (bipy) have done vast efforts due to their interesting coordination, potential applications in magnetism, electronics, etc. (Baca et al., 2005). Many this kind of complexes which have been reported are coordinated by two bipy molecules and one carbonate anion, leading to [Co(bipy)2(CO3)]+ ion (Niederhoffer et al., 1982; Ma et al., 2008). In this contribution, we report the title compound with [Co(bipy)(CO3)2]- anion which coordinated by one bipy molecule and two carbonate anions.

The asymmetric unit of this title compound, K[Co(bipy)(CO3)2].2H2O, contains one Co(III) ion, one K(I) ion, one bipy, two carbonate anions and two lattice water molecules (Fig. 1). The Co(III) atoms are each coordinated by two bipyridine nitrogen atoms and four oxygen atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octahedral N2O4 environment. The equatorial plane is defined by two nitrogen atoms from one bipy ligand and two chelated oxygen atoms from a carbonate ion, while the other two oxygen atoms of the second carbonate ion occupy the axial positions. The Co–O distance of 1.8950 (14)–1.9170 (15)Å, are shorter than those to the nitrogen atoms (Co–N = 1.9219 (17)–1.9325 (19)Å) which are similar to the literatures (Lv et al., 2007). The trans– and cisoid angles fall in the regions 68.98 (6)–101.89 (7)° and 162.02 (6)–169.86 (7)°, respectively, exhibiting small deviation from the corresponding values for a regular geometry and the above bonding values about the Co atoms are all within the normal ranges. The K+ cations are each surrounded by seven O atoms belonging to three water molecules and four carboxylate groups with usual K–O contact distances.

Along [1 0 0] direction, the [Co(bipy)(CO3)2]- unit are stacked through π···π stacking interactions (interplanar distances between bipy rings 3.36 (4) and 3.44 (6) Å) to form the one–dimensional chain metallacycle (Fig. 2). The hydrogen bonding O—H···O interactions interlink the chains to form the long–tunnel channels in (1 0 0), which accommodate the K+ ions, and thus lead into three–dimensional supramolecular architecture (Fig. 3).

Related literature top

For general background to Co(III) complexes, see: Baca et al. (2005); Niederhoffer et al. (1982); Ma et al. (2008). For a related structure, see: Lv et al. (2007).

Experimental top

Addition of 5 drops 1.0 M NaOH to an aqueous solution of CoCl2.6H2O (0.238 g, 1.0 mmol) in 5.0 ml H2O produced a wine red precipitate, which was separated by centrifugation and washed with distilled water for 5 times. The precipitate was then transferred into an aqueous solution of bipy (2,2'–bipyridine) (0.156 g, 1.0 mmol) in 10.0 ml CH3OH, and dropped 1M K2CO3 to form a clear brownish red solution (pH = 12.6) under stirring. After slow evaporation of the solution black crystals afforded after several weeks at room temperature.

Refinement top

The H atoms bonded to C atoms were placed in geometrically calculated positions with C—H distances 0.93Å and were refined using a riding model with Uiso(H) = 1.2Ueq(C). The H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model with the O—H distances fixed as initially found and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit showing the atomic numbering scheme. The displacement ellipsoids are presented at 45% probability level. The H atoms are drawn as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along axis a and showing the polymeric chains composed from the Co3+ ions and 2,2'–bipy ligands. The π···π stacking interactions are indicated by dashed lines. K+ ions and lattice water molecules were omitted for clarity.
[Figure 3] Fig. 3. A portion of the crystal packing and showing O—H···O hydrogen bonds as dashed lines.
Potassium (2,2'-bipyridine-κ2N,N')bis(carbonato- κ2O,O')cobaltate(III) dihydrate top
Crystal data top
K[Co(CO3)2(C10H8N2)]·2H2OF(000) = 832
Mr = 410.27Dx = 1.856 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11721 reflections
a = 7.4138 (15) Åθ = 3.0–27.5°
b = 14.064 (3) ŵ = 1.50 mm1
c = 15.392 (4) ÅT = 295 K
β = 113.80 (3)°Chip, black
V = 1468.4 (7) Å30.58 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3249 independent reflections
Radiation source: fine-focus sealed tube2792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω–scanh = 89
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.731, Tmax = 0.775l = 1919
13677 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.8088P]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
K[Co(CO3)2(C10H8N2)]·2H2OV = 1468.4 (7) Å3
Mr = 410.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4138 (15) ŵ = 1.50 mm1
b = 14.064 (3) ÅT = 295 K
c = 15.392 (4) Å0.58 × 0.18 × 0.17 mm
β = 113.80 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2792 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.775Rint = 0.023
13677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
3249 reflectionsΔρmin = 0.39 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.15263 (4)0.183676 (18)0.376007 (18)0.02336 (9)
K0.17639 (8)0.06463 (4)0.05791 (4)0.04510 (15)
O10.3391 (2)0.15333 (10)0.32390 (10)0.0307 (3)
O20.0295 (2)0.17746 (10)0.24051 (10)0.0297 (3)
O30.2175 (3)0.13028 (13)0.16521 (12)0.0458 (4)
O40.0521 (2)0.24608 (10)0.40039 (11)0.0301 (3)
O50.1835 (2)0.31752 (10)0.37814 (10)0.0300 (3)
O60.0328 (2)0.40547 (11)0.41275 (12)0.0412 (4)
O70.4913 (3)0.02509 (15)0.12247 (15)0.0601 (5)
H7A0.50110.03520.12760.090*
H7B0.56480.05740.14200.090*
O80.4066 (3)0.17732 (14)0.09211 (15)0.0536 (5)
H8A0.31770.20110.10730.080*
H8B0.50080.21660.11800.080*
N10.3278 (2)0.16972 (11)0.50825 (12)0.0262 (3)
N20.0978 (2)0.05200 (11)0.38840 (12)0.0256 (3)
C10.4355 (3)0.23832 (15)0.56647 (16)0.0333 (5)
H10.41970.30080.54480.040*
C20.5694 (3)0.21909 (18)0.65784 (17)0.0405 (5)
H20.64250.26790.69700.049*
C30.5931 (3)0.12702 (18)0.68993 (16)0.0391 (5)
H30.68470.11260.75070.047*
C40.4802 (3)0.05601 (16)0.63147 (15)0.0338 (5)
H40.49290.00660.65260.041*
C50.3477 (3)0.07938 (14)0.54072 (14)0.0257 (4)
C60.2142 (3)0.01164 (14)0.47241 (14)0.0253 (4)
C70.1996 (3)0.08361 (15)0.48953 (16)0.0333 (5)
H70.28090.11030.54740.040*
C80.0630 (4)0.13897 (15)0.41985 (17)0.0375 (5)
H80.05210.20350.42990.045*
C90.0568 (3)0.09727 (16)0.33514 (16)0.0361 (5)
H90.15030.13320.28740.043*
C100.0361 (3)0.00167 (15)0.32208 (15)0.0324 (5)
H100.11840.02640.26510.039*
C110.1975 (3)0.15262 (14)0.23757 (15)0.0295 (4)
C120.0283 (3)0.32881 (14)0.39785 (14)0.0283 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02390 (15)0.02063 (14)0.02346 (14)0.00084 (9)0.00739 (11)0.00296 (10)
K0.0431 (3)0.0460 (3)0.0428 (3)0.0059 (2)0.0137 (2)0.0018 (2)
O10.0291 (8)0.0311 (7)0.0311 (7)0.0021 (6)0.0113 (7)0.0006 (6)
O20.0290 (8)0.0323 (8)0.0245 (7)0.0021 (5)0.0073 (6)0.0051 (6)
O30.0531 (10)0.0532 (11)0.0372 (9)0.0079 (8)0.0246 (8)0.0093 (8)
O40.0288 (7)0.0273 (7)0.0347 (8)0.0002 (5)0.0135 (7)0.0026 (6)
O50.0303 (8)0.0244 (7)0.0346 (8)0.0014 (5)0.0123 (7)0.0045 (6)
O60.0435 (9)0.0286 (8)0.0488 (9)0.0056 (7)0.0157 (8)0.0044 (7)
O70.0633 (13)0.0528 (12)0.0708 (13)0.0002 (9)0.0338 (11)0.0044 (10)
O80.0389 (10)0.0588 (12)0.0660 (13)0.0165 (8)0.0242 (10)0.0103 (9)
N10.0266 (9)0.0253 (8)0.0257 (8)0.0019 (6)0.0094 (7)0.0001 (6)
N20.0277 (8)0.0230 (8)0.0261 (8)0.0002 (6)0.0108 (7)0.0011 (6)
C10.0328 (11)0.0293 (11)0.0337 (11)0.0019 (8)0.0091 (10)0.0031 (8)
C20.0347 (12)0.0458 (13)0.0343 (11)0.0046 (10)0.0068 (10)0.0098 (10)
C30.0293 (11)0.0542 (15)0.0262 (10)0.0076 (10)0.0034 (9)0.0017 (10)
C40.0348 (12)0.0380 (12)0.0276 (10)0.0095 (9)0.0117 (9)0.0075 (8)
C50.0254 (10)0.0283 (10)0.0237 (9)0.0058 (7)0.0103 (8)0.0031 (7)
C60.0265 (10)0.0258 (9)0.0266 (9)0.0039 (7)0.0137 (8)0.0021 (7)
C70.0415 (12)0.0268 (10)0.0343 (11)0.0052 (8)0.0183 (10)0.0065 (8)
C80.0525 (14)0.0224 (10)0.0451 (13)0.0022 (9)0.0275 (11)0.0007 (9)
C90.0464 (13)0.0306 (11)0.0363 (11)0.0102 (9)0.0218 (11)0.0086 (9)
C100.0369 (12)0.0322 (11)0.0273 (10)0.0041 (8)0.0120 (9)0.0011 (8)
C110.0342 (11)0.0238 (9)0.0309 (10)0.0042 (8)0.0135 (9)0.0009 (8)
C120.0279 (10)0.0265 (10)0.0253 (10)0.0024 (7)0.0055 (9)0.0020 (7)
Geometric parameters (Å, º) top
Co—O51.8950 (14)N2—C101.334 (3)
Co—O11.9058 (15)N2—C61.356 (3)
Co—O21.9115 (16)C1—C21.382 (3)
Co—O41.9170 (15)C1—H10.9300
Co—N21.9219 (17)C2—C31.372 (4)
Co—N11.9325 (19)C2—H20.9300
Co—C122.319 (2)C3—C41.378 (3)
Co—C112.327 (2)C3—H30.9300
O1—C111.320 (3)C4—C51.385 (3)
O2—C111.312 (3)C4—H40.9300
O3—C111.222 (3)C5—C61.467 (3)
O4—C121.315 (2)C6—C71.378 (3)
O5—C121.312 (3)C7—C81.380 (3)
O6—C121.226 (3)C7—H70.9300
O7—H7A0.8570C8—C91.378 (3)
O7—H7B0.8517C8—H80.9300
O8—H8A0.8513C9—C101.377 (3)
O8—H8B0.8529C9—H90.9300
N1—C11.339 (3)C10—H100.9300
N1—C51.351 (3)
O5—Co—O197.29 (6)N1—C1—H1119.0
O5—Co—O293.75 (6)C2—C1—H1119.0
O1—Co—O268.83 (7)C3—C2—C1119.1 (2)
O5—Co—O468.98 (6)C3—C2—H2120.5
O1—Co—O4162.02 (6)C1—C2—H2120.5
O2—Co—O499.62 (7)C2—C3—C4119.6 (2)
O5—Co—N2169.86 (7)C2—C3—H3120.2
O1—Co—N292.53 (7)C4—C3—H3120.2
O2—Co—N292.13 (7)C3—C4—C5118.9 (2)
O4—Co—N2101.89 (7)C3—C4—H4120.5
O5—Co—N193.30 (6)C5—C4—H4120.5
O1—Co—N197.31 (7)N1—C5—C4121.56 (19)
O2—Co—N1165.15 (7)N1—C5—C6113.83 (17)
O4—Co—N195.10 (7)C4—C5—C6124.59 (19)
N2—Co—N182.92 (7)N2—C6—C7121.37 (19)
O5—Co—C1234.46 (7)N2—C6—C5113.41 (17)
O1—Co—C12131.03 (7)C7—C6—C5125.21 (18)
O2—Co—C1298.95 (7)C6—C7—C8119.3 (2)
O4—Co—C1234.54 (7)C6—C7—H7120.3
N2—Co—C12136.17 (8)C8—C7—H7120.3
N1—Co—C1294.25 (7)C9—C8—C7119.1 (2)
O5—Co—C1198.13 (7)C9—C8—H8120.5
O1—Co—C1134.56 (7)C7—C8—H8120.5
O2—Co—C1134.32 (7)C10—C9—C8119.1 (2)
O4—Co—C11133.02 (7)C10—C9—H9120.4
N2—Co—C1191.38 (7)C8—C9—H9120.4
N1—Co—C11131.44 (8)N2—C10—C9122.2 (2)
C12—Co—C11120.66 (7)N2—C10—H10118.9
C11—O1—Co90.44 (12)C9—C10—H10118.9
C11—O2—Co90.44 (12)O3—C11—O2124.5 (2)
C12—O4—Co89.72 (12)O3—C11—O1125.4 (2)
C12—O5—Co90.76 (11)O2—C11—O1110.12 (18)
H7A—O7—H7B113.9O3—C11—Co175.80 (17)
H8A—O8—H8B101.3O2—C11—Co55.24 (10)
C1—N1—C5118.89 (18)O1—C11—Co54.99 (10)
C1—N1—Co126.68 (14)O6—C12—O5125.04 (19)
C5—N1—Co114.31 (13)O6—C12—O4124.5 (2)
C10—N2—C6118.92 (18)O5—C12—O4110.48 (17)
C10—N2—Co126.24 (14)O6—C12—Co177.71 (17)
C6—N2—Co114.80 (13)O5—C12—Co54.78 (9)
N1—C1—C2122.0 (2)O4—C12—Co55.74 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O8i0.862.112.934 (3)161
O7—H7B···O3ii0.852.062.903 (3)170
O8—H8A···O4iii0.852.062.885 (3)162
O8—H8B···O1iv0.852.172.988 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK[Co(CO3)2(C10H8N2)]·2H2O
Mr410.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.4138 (15), 14.064 (3), 15.392 (4)
β (°) 113.80 (3)
V3)1468.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.58 × 0.18 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.731, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
13677, 3249, 2792
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.04
No. of reflections3249
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O8i0.862.112.934 (3)161
O7—H7B···O3ii0.852.062.903 (3)170
O8—H8A···O4iii0.852.062.885 (3)162
O8—H8B···O1iv0.852.172.988 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105), the Scientific Research Fund of Ningbo University (grant No. XYL09078) and the Education Department of Zhejiang Province. Thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationBaca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Yu. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118–3130.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLv, Y.-X., Ling, Y., Li, H. & Zhang, L. (2007). Acta Cryst. E63, m1906–m1907.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiederhoffer, E. C., Martell, A. E., Rudolf, P. & Clearfield, A. (1982). Inorg. Chem. pp. 3734–3741.  CSD CrossRef Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds