metal-organic compounds
Potassium (2,2′-bipyridine-κ2N,N′)bis(carbonato-κ2O,O′)cobaltate(III) dihydrate
aState Key Lab. Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn
In the title compound, K[Co(CO3)2(C10H8N2)]·2H2O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octahedral N2O4 environment. The [Co(bipy)(CO3)2]− (bipy is 2,2′-bipyridine) units are stacked along [100] via π–π stacking interactions, with interplanar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O—H⋯O hydrogen-bonding interactions link the chains, forming channels along (100) in which the K+ ions reside and leading to a three-dimensional supramolecular architecture.
Related literature
For general background to Co(III) complexes, see: Baca et al. (2005); Niederhoffer et al. (1982); Ma et al. (2008). For a related structure, see: Lv et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810037463/rk2228sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037463/rk2228Isup2.hkl
Addition of 5 drops 1.0 M NaOH to an aqueous solution of CoCl2.6H2O (0.238 g, 1.0 mmol) in 5.0 ml H2O produced a wine red precipitate, which was separated by centrifugation and washed with distilled water for 5 times. The precipitate was then transferred into an aqueous solution of bipy (2,2'–bipyridine) (0.156 g, 1.0 mmol) in 10.0 ml CH3OH, and dropped 1M K2CO3 to form a clear brownish red solution (pH = 12.6) under stirring. After slow evaporation of the solution black crystals afforded after several weeks at room temperature.
The H atoms bonded to C atoms were placed in geometrically calculated positions with C—H distances 0.93Å and were refined using a riding model with Uiso(H) = 1.2Ueq(C). The H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model with the O—H distances fixed as initially found and with Uiso(H) = 1.2Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).K[Co(CO3)2(C10H8N2)]·2H2O | F(000) = 832 |
Mr = 410.27 | Dx = 1.856 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 11721 reflections |
a = 7.4138 (15) Å | θ = 3.0–27.5° |
b = 14.064 (3) Å | µ = 1.50 mm−1 |
c = 15.392 (4) Å | T = 295 K |
β = 113.80 (3)° | Chip, black |
V = 1468.4 (7) Å3 | 0.58 × 0.18 × 0.17 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3249 independent reflections |
Radiation source: fine-focus sealed tube | 2792 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 0 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω–scan | h = −8→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −18→18 |
Tmin = 0.731, Tmax = 0.775 | l = −19→19 |
13677 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0412P)2 + 0.8088P] where P = (Fo2 + 2Fc2)/3 |
3249 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
K[Co(CO3)2(C10H8N2)]·2H2O | V = 1468.4 (7) Å3 |
Mr = 410.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.4138 (15) Å | µ = 1.50 mm−1 |
b = 14.064 (3) Å | T = 295 K |
c = 15.392 (4) Å | 0.58 × 0.18 × 0.17 mm |
β = 113.80 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3249 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2792 reflections with I > 2σ(I) |
Tmin = 0.731, Tmax = 0.775 | Rint = 0.023 |
13677 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.36 e Å−3 |
3249 reflections | Δρmin = −0.39 e Å−3 |
217 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co | −0.15263 (4) | −0.183676 (18) | −0.376007 (18) | 0.02336 (9) | |
K | 0.17639 (8) | −0.06463 (4) | −0.05791 (4) | 0.04510 (15) | |
O1 | −0.3391 (2) | −0.15333 (10) | −0.32390 (10) | 0.0307 (3) | |
O2 | −0.0295 (2) | −0.17746 (10) | −0.24051 (10) | 0.0297 (3) | |
O3 | −0.2175 (3) | −0.13028 (13) | −0.16521 (12) | 0.0458 (4) | |
O4 | 0.0521 (2) | −0.24608 (10) | −0.40039 (11) | 0.0301 (3) | |
O5 | −0.1835 (2) | −0.31752 (10) | −0.37814 (10) | 0.0300 (3) | |
O6 | 0.0328 (2) | −0.40547 (11) | −0.41275 (12) | 0.0412 (4) | |
O7 | 0.4913 (3) | −0.02509 (15) | −0.12247 (15) | 0.0601 (5) | |
H7A | 0.5011 | 0.0352 | −0.1276 | 0.090* | |
H7B | 0.5648 | −0.0574 | −0.1420 | 0.090* | |
O8 | 0.4066 (3) | −0.17732 (14) | 0.09211 (15) | 0.0536 (5) | |
H8A | 0.3177 | −0.2011 | 0.1073 | 0.080* | |
H8B | 0.5008 | −0.2166 | 0.1180 | 0.080* | |
N1 | −0.3278 (2) | −0.16972 (11) | −0.50825 (12) | 0.0262 (3) | |
N2 | −0.0978 (2) | −0.05200 (11) | −0.38840 (12) | 0.0256 (3) | |
C1 | −0.4355 (3) | −0.23832 (15) | −0.56647 (16) | 0.0333 (5) | |
H1 | −0.4197 | −0.3008 | −0.5448 | 0.040* | |
C2 | −0.5694 (3) | −0.21909 (18) | −0.65784 (17) | 0.0405 (5) | |
H2 | −0.6425 | −0.2679 | −0.6970 | 0.049* | |
C3 | −0.5931 (3) | −0.12702 (18) | −0.68993 (16) | 0.0391 (5) | |
H3 | −0.6847 | −0.1126 | −0.7507 | 0.047* | |
C4 | −0.4802 (3) | −0.05601 (16) | −0.63147 (15) | 0.0338 (5) | |
H4 | −0.4929 | 0.0066 | −0.6526 | 0.041* | |
C5 | −0.3477 (3) | −0.07938 (14) | −0.54072 (14) | 0.0257 (4) | |
C6 | −0.2142 (3) | −0.01164 (14) | −0.47241 (14) | 0.0253 (4) | |
C7 | −0.1996 (3) | 0.08361 (15) | −0.48953 (16) | 0.0333 (5) | |
H7 | −0.2809 | 0.1103 | −0.5474 | 0.040* | |
C8 | −0.0630 (4) | 0.13897 (15) | −0.41985 (17) | 0.0375 (5) | |
H8 | −0.0521 | 0.2035 | −0.4299 | 0.045* | |
C9 | 0.0568 (3) | 0.09727 (16) | −0.33514 (16) | 0.0361 (5) | |
H9 | 0.1503 | 0.1332 | −0.2874 | 0.043* | |
C10 | 0.0361 (3) | 0.00167 (15) | −0.32208 (15) | 0.0324 (5) | |
H10 | 0.1184 | −0.0264 | −0.2651 | 0.039* | |
C11 | −0.1975 (3) | −0.15262 (14) | −0.23757 (15) | 0.0295 (4) | |
C12 | −0.0283 (3) | −0.32881 (14) | −0.39785 (14) | 0.0283 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.02390 (15) | 0.02063 (14) | 0.02346 (14) | 0.00084 (9) | 0.00739 (11) | 0.00296 (10) |
K | 0.0431 (3) | 0.0460 (3) | 0.0428 (3) | 0.0059 (2) | 0.0137 (2) | 0.0018 (2) |
O1 | 0.0291 (8) | 0.0311 (7) | 0.0311 (7) | 0.0021 (6) | 0.0113 (7) | 0.0006 (6) |
O2 | 0.0290 (8) | 0.0323 (8) | 0.0245 (7) | 0.0021 (5) | 0.0073 (6) | 0.0051 (6) |
O3 | 0.0531 (10) | 0.0532 (11) | 0.0372 (9) | −0.0079 (8) | 0.0246 (8) | −0.0093 (8) |
O4 | 0.0288 (7) | 0.0273 (7) | 0.0347 (8) | 0.0002 (5) | 0.0135 (7) | 0.0026 (6) |
O5 | 0.0303 (8) | 0.0244 (7) | 0.0346 (8) | −0.0014 (5) | 0.0123 (7) | 0.0045 (6) |
O6 | 0.0435 (9) | 0.0286 (8) | 0.0488 (9) | 0.0056 (7) | 0.0157 (8) | −0.0044 (7) |
O7 | 0.0633 (13) | 0.0528 (12) | 0.0708 (13) | 0.0002 (9) | 0.0338 (11) | 0.0044 (10) |
O8 | 0.0389 (10) | 0.0588 (12) | 0.0660 (13) | 0.0165 (8) | 0.0242 (10) | 0.0103 (9) |
N1 | 0.0266 (9) | 0.0253 (8) | 0.0257 (8) | 0.0019 (6) | 0.0094 (7) | −0.0001 (6) |
N2 | 0.0277 (8) | 0.0230 (8) | 0.0261 (8) | −0.0002 (6) | 0.0108 (7) | 0.0011 (6) |
C1 | 0.0328 (11) | 0.0293 (11) | 0.0337 (11) | −0.0019 (8) | 0.0091 (10) | −0.0031 (8) |
C2 | 0.0347 (12) | 0.0458 (13) | 0.0343 (11) | −0.0046 (10) | 0.0068 (10) | −0.0098 (10) |
C3 | 0.0293 (11) | 0.0542 (15) | 0.0262 (10) | 0.0076 (10) | 0.0034 (9) | 0.0017 (10) |
C4 | 0.0348 (12) | 0.0380 (12) | 0.0276 (10) | 0.0095 (9) | 0.0117 (9) | 0.0075 (8) |
C5 | 0.0254 (10) | 0.0283 (10) | 0.0237 (9) | 0.0058 (7) | 0.0103 (8) | 0.0031 (7) |
C6 | 0.0265 (10) | 0.0258 (9) | 0.0266 (9) | 0.0039 (7) | 0.0137 (8) | 0.0021 (7) |
C7 | 0.0415 (12) | 0.0268 (10) | 0.0343 (11) | 0.0052 (8) | 0.0183 (10) | 0.0065 (8) |
C8 | 0.0525 (14) | 0.0224 (10) | 0.0451 (13) | −0.0022 (9) | 0.0275 (11) | 0.0007 (9) |
C9 | 0.0464 (13) | 0.0306 (11) | 0.0363 (11) | −0.0102 (9) | 0.0218 (11) | −0.0086 (9) |
C10 | 0.0369 (12) | 0.0322 (11) | 0.0273 (10) | −0.0041 (8) | 0.0120 (9) | −0.0011 (8) |
C11 | 0.0342 (11) | 0.0238 (9) | 0.0309 (10) | −0.0042 (8) | 0.0135 (9) | 0.0009 (8) |
C12 | 0.0279 (10) | 0.0265 (10) | 0.0253 (10) | 0.0024 (7) | 0.0055 (9) | 0.0020 (7) |
Co—O5 | 1.8950 (14) | N2—C10 | 1.334 (3) |
Co—O1 | 1.9058 (15) | N2—C6 | 1.356 (3) |
Co—O2 | 1.9115 (16) | C1—C2 | 1.382 (3) |
Co—O4 | 1.9170 (15) | C1—H1 | 0.9300 |
Co—N2 | 1.9219 (17) | C2—C3 | 1.372 (4) |
Co—N1 | 1.9325 (19) | C2—H2 | 0.9300 |
Co—C12 | 2.319 (2) | C3—C4 | 1.378 (3) |
Co—C11 | 2.327 (2) | C3—H3 | 0.9300 |
O1—C11 | 1.320 (3) | C4—C5 | 1.385 (3) |
O2—C11 | 1.312 (3) | C4—H4 | 0.9300 |
O3—C11 | 1.222 (3) | C5—C6 | 1.467 (3) |
O4—C12 | 1.315 (2) | C6—C7 | 1.378 (3) |
O5—C12 | 1.312 (3) | C7—C8 | 1.380 (3) |
O6—C12 | 1.226 (3) | C7—H7 | 0.9300 |
O7—H7A | 0.8570 | C8—C9 | 1.378 (3) |
O7—H7B | 0.8517 | C8—H8 | 0.9300 |
O8—H8A | 0.8513 | C9—C10 | 1.377 (3) |
O8—H8B | 0.8529 | C9—H9 | 0.9300 |
N1—C1 | 1.339 (3) | C10—H10 | 0.9300 |
N1—C5 | 1.351 (3) | ||
O5—Co—O1 | 97.29 (6) | N1—C1—H1 | 119.0 |
O5—Co—O2 | 93.75 (6) | C2—C1—H1 | 119.0 |
O1—Co—O2 | 68.83 (7) | C3—C2—C1 | 119.1 (2) |
O5—Co—O4 | 68.98 (6) | C3—C2—H2 | 120.5 |
O1—Co—O4 | 162.02 (6) | C1—C2—H2 | 120.5 |
O2—Co—O4 | 99.62 (7) | C2—C3—C4 | 119.6 (2) |
O5—Co—N2 | 169.86 (7) | C2—C3—H3 | 120.2 |
O1—Co—N2 | 92.53 (7) | C4—C3—H3 | 120.2 |
O2—Co—N2 | 92.13 (7) | C3—C4—C5 | 118.9 (2) |
O4—Co—N2 | 101.89 (7) | C3—C4—H4 | 120.5 |
O5—Co—N1 | 93.30 (6) | C5—C4—H4 | 120.5 |
O1—Co—N1 | 97.31 (7) | N1—C5—C4 | 121.56 (19) |
O2—Co—N1 | 165.15 (7) | N1—C5—C6 | 113.83 (17) |
O4—Co—N1 | 95.10 (7) | C4—C5—C6 | 124.59 (19) |
N2—Co—N1 | 82.92 (7) | N2—C6—C7 | 121.37 (19) |
O5—Co—C12 | 34.46 (7) | N2—C6—C5 | 113.41 (17) |
O1—Co—C12 | 131.03 (7) | C7—C6—C5 | 125.21 (18) |
O2—Co—C12 | 98.95 (7) | C6—C7—C8 | 119.3 (2) |
O4—Co—C12 | 34.54 (7) | C6—C7—H7 | 120.3 |
N2—Co—C12 | 136.17 (8) | C8—C7—H7 | 120.3 |
N1—Co—C12 | 94.25 (7) | C9—C8—C7 | 119.1 (2) |
O5—Co—C11 | 98.13 (7) | C9—C8—H8 | 120.5 |
O1—Co—C11 | 34.56 (7) | C7—C8—H8 | 120.5 |
O2—Co—C11 | 34.32 (7) | C10—C9—C8 | 119.1 (2) |
O4—Co—C11 | 133.02 (7) | C10—C9—H9 | 120.4 |
N2—Co—C11 | 91.38 (7) | C8—C9—H9 | 120.4 |
N1—Co—C11 | 131.44 (8) | N2—C10—C9 | 122.2 (2) |
C12—Co—C11 | 120.66 (7) | N2—C10—H10 | 118.9 |
C11—O1—Co | 90.44 (12) | C9—C10—H10 | 118.9 |
C11—O2—Co | 90.44 (12) | O3—C11—O2 | 124.5 (2) |
C12—O4—Co | 89.72 (12) | O3—C11—O1 | 125.4 (2) |
C12—O5—Co | 90.76 (11) | O2—C11—O1 | 110.12 (18) |
H7A—O7—H7B | 113.9 | O3—C11—Co | 175.80 (17) |
H8A—O8—H8B | 101.3 | O2—C11—Co | 55.24 (10) |
C1—N1—C5 | 118.89 (18) | O1—C11—Co | 54.99 (10) |
C1—N1—Co | 126.68 (14) | O6—C12—O5 | 125.04 (19) |
C5—N1—Co | 114.31 (13) | O6—C12—O4 | 124.5 (2) |
C10—N2—C6 | 118.92 (18) | O5—C12—O4 | 110.48 (17) |
C10—N2—Co | 126.24 (14) | O6—C12—Co | 177.71 (17) |
C6—N2—Co | 114.80 (13) | O5—C12—Co | 54.78 (9) |
N1—C1—C2 | 122.0 (2) | O4—C12—Co | 55.74 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O8i | 0.86 | 2.11 | 2.934 (3) | 161 |
O7—H7B···O3ii | 0.85 | 2.06 | 2.903 (3) | 170 |
O8—H8A···O4iii | 0.85 | 2.06 | 2.885 (3) | 162 |
O8—H8B···O1iv | 0.85 | 2.17 | 2.988 (3) | 162 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) x, −y−1/2, z+1/2; (iv) x+1, −y−1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | K[Co(CO3)2(C10H8N2)]·2H2O |
Mr | 410.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.4138 (15), 14.064 (3), 15.392 (4) |
β (°) | 113.80 (3) |
V (Å3) | 1468.4 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.50 |
Crystal size (mm) | 0.58 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.731, 0.775 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13677, 3249, 2792 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.078, 1.04 |
No. of reflections | 3249 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.39 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O8i | 0.86 | 2.11 | 2.934 (3) | 161 |
O7—H7B···O3ii | 0.85 | 2.06 | 2.903 (3) | 170 |
O8—H8A···O4iii | 0.85 | 2.06 | 2.885 (3) | 162 |
O8—H8B···O1iv | 0.85 | 2.17 | 2.988 (3) | 162 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) x, −y−1/2, z+1/2; (iv) x+1, −y−1/2, z+1/2. |
Acknowledgements
This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105), the Scientific Research Fund of Ningbo University (grant No. XYL09078) and the Education Department of Zhejiang Province. Thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.
References
Baca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Yu. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118–3130. Web of Science CSD CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Lv, Y.-X., Ling, Y., Li, H. & Zhang, L. (2007). Acta Cryst. E63, m1906–m1907. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ma, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14. Web of Science CSD CrossRef IUCr Journals Google Scholar
Niederhoffer, E. C., Martell, A. E., Rudolf, P. & Clearfield, A. (1982). Inorg. Chem. pp. 3734–3741. CSD CrossRef Web of Science Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Over the past dacades, the Co(III) complexes with carbonate anions and 2,2'-bipyridine (bipy) have done vast efforts due to their interesting coordination, potential applications in magnetism, electronics, etc. (Baca et al., 2005). Many this kind of complexes which have been reported are coordinated by two bipy molecules and one carbonate anion, leading to [Co(bipy)2(CO3)]+ ion (Niederhoffer et al., 1982; Ma et al., 2008). In this contribution, we report the title compound with [Co(bipy)(CO3)2]- anion which coordinated by one bipy molecule and two carbonate anions.
The asymmetric unit of this title compound, K[Co(bipy)(CO3)2].2H2O, contains one Co(III) ion, one K(I) ion, one bipy, two carbonate anions and two lattice water molecules (Fig. 1). The Co(III) atoms are each coordinated by two bipyridine nitrogen atoms and four oxygen atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octahedral N2O4 environment. The equatorial plane is defined by two nitrogen atoms from one bipy ligand and two chelated oxygen atoms from a carbonate ion, while the other two oxygen atoms of the second carbonate ion occupy the axial positions. The Co–O distance of 1.8950 (14)–1.9170 (15)Å, are shorter than those to the nitrogen atoms (Co–N = 1.9219 (17)–1.9325 (19)Å) which are similar to the literatures (Lv et al., 2007). The trans– and cisoid angles fall in the regions 68.98 (6)–101.89 (7)° and 162.02 (6)–169.86 (7)°, respectively, exhibiting small deviation from the corresponding values for a regular geometry and the above bonding values about the Co atoms are all within the normal ranges. The K+ cations are each surrounded by seven O atoms belonging to three water molecules and four carboxylate groups with usual K–O contact distances.
Along [1 0 0] direction, the [Co(bipy)(CO3)2]- unit are stacked through π···π stacking interactions (interplanar distances between bipy rings 3.36 (4) and 3.44 (6) Å) to form the one–dimensional chain metallacycle (Fig. 2). The hydrogen bonding O—H···O interactions interlink the chains to form the long–tunnel channels in (1 0 0), which accommodate the K+ ions, and thus lead into three–dimensional supramolecular architecture (Fig. 3).