organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-{[2-(3-Fluoro­phen­yl)eth­yl](meth­yl)amino}­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecan-8-one

aSchool of Chemistry, F11, The University of Sydney, New South Wales 2006, Australia, bDepartment of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, England, and cBrain and Mind Research Institute, Sydney, New South Wales 2050, Australia, Discipline of Medical Radiation Sciences, The University of Sydney, New South Wales 2006, Australia
*Correspondence e-mail: m.kassiou@chem.usyd.edu.au

(Received 5 September 2010; accepted 26 September 2010; online 30 September 2010)

In the title compound, C20H22FNO, the distances close to the carbonyl and amine are: N—O = 3.232 (4) Å and N—C = 2.666 (5) Å. The crystal packing is unremarkable.

Related literature

For in vitro σ-receptor affinity of tris­homocubane derivatives related to the title compound, see: Nguyen et al. (1996[Nguyen, V. H., Kassiou, M., Johnston, G. A. & Christie, M. J. (1996). Eur. J. Pharmacol. 311, 233-240.]); Liu et al. (1999[Liu, X., Kassiou, M. & Christie, M. J. (1999). Aust. J. Chem. 52, 653-656.]). For in vivo pharmacology of related tris­homocubanes, see: Liu et al. (2001[Liu, X., Nuwayhid, S., Christie, M. J., Kassiou, M. & Werling, L. L. (2001). Eur. J. Pharmacol. 422, 39-45.], 2007[Liu, X., Banister, S. D., Christie, M. J., Banati, R., Meikle, S., Coster, M. J. & Kassiou, M. (2007). Eur. J. Pharmacol. 555, 37-42.]). For rationalization of observed structure–affinity relationships of tris­homocubanes at σ-receptors using mol­ecular modeling, see: Banister et al. (2010[Banister, S. D., Moussa, I. A., Jordan, M. J. T., Coster, M. J. & Kassiou, M. (2010). Bioorg. Med. Chem. Lett. 20, 145-148.]). For X-ray crystallographic studies of biologically active tris­homocubanes related to the title compound, see: Hambley et al. (2000[Hambley, T. W., Knott, R., Kassiou, M. & Christie, M. J. (2000). Aust. J. Chem. 53, 899-904.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22FNO

  • Mr = 311.39

  • Monoclinic, P 21 /n

  • a = 10.5450 (18) Å

  • b = 10.980 (2) Å

  • c = 13.822 (3) Å

  • β = 95.214 (8)°

  • V = 1593.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker–Nonius APEXII FR591 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.684, Tmax = 0.746

  • 17270 measured reflections

  • 2773 independent reflections

  • 1566 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.271

  • S = 1.14

  • 2773 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker–Nonius, 2003[Bruker-Nonius (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker–Nonius, 2003); data reduction: SAINT and XPREP (Bruker–Nonius, 2003[Bruker-Nonius (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and POV-RAY (Cason, 2002[Cason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Trishomocubanes have been shown to have in vitro σ-receptor affinity and selectivity [Nguyen et al., (1996); Liu et al., (1999)] and a number of their crystal structures have been reported [Hambley et al., (2000)]. Several trishomocubane derivatives synthesized in our laboratory were reported to possess anti-cocaine activity in vivo [Liu et al., (2001), (Liu et al., (2007)]. The importance of the nature ofthe hemiaminal bridge of N-(2-(3-fluorophenyl)ethyl)-4-azahexacyclo [5.4.1.02,6.03,10.05,9.08,11]dodecan-3-ol I *(Fig. 1) to σ-receptor binding was demonstrated by the reduced affinity, and off-target activity, of the corresponding hemiaminal ether, N-(2-(3-fluorophenyl)ethyl)-3-amino-4-oxapentacyclo [5.4.1.02,6.03,10.05,9.08,11]dodecane II [Banister et al., (2010)] (Fig. 1). In our ongoing efforts to elucidate the nature of σ-receptor binding we have synthesized the title compound III (Fig. 1) as a methyl homologue of I, representing a "locked" form of the non-transannular, aminoketone tautomer of the latter. A molecular and crystal structures were obtained to unambiguously confirm the structure of III (Fig. 2), and to identify key interatomic distances, for use in modeling studies. Important distances are those close to the carbonyl and amine, including: N1–O1 = 3.232 (4)Å; N1–C18 = 2.666 (5)Å; O1–C9 = 3.943 (5)Å; C9–C18 = 3.574 (6)Å.

Related literature top

For in vitro σ-receptor affinity of trishomocubane derivatives related to the title compound, see: Nguyen et al. (1996); Liu et al. (1999). For in vivo pharmacology of related trishomocubanes, see: Liu et al. (2001, 2007). For rationalization of observed structure–affinity relationships of trishomocubanes at σ-receptors using molecular modeling, see: Banister et al. (2010). For X-ray crystallographic studies of biologically active trishomocubanes related to the title compound, see: Hambley et al. (2000).

Experimental top

A solution of N-(2-(3-fluorophenyl)ethyl)-4-azahexacyclo [5.4.1.02,6.03,10.05,9.08,11]dodecan-3-ol (942 mg, 3.17 mmol) and 37% aqueous formaldehyde (285 µL, 3.80 mmol, 1.2 equiv.) in ClCH2CH2Cl (30 ml) was treated with NaBH(OAc)3 (3.359 g, 15.85 mmol, 5 equiv.) and the mixture stirred for 18 h. The reaction was quenched with 1 M aqueous NaOH (30 ml), and the layers separated. The aqueous layer was extracted with CH2Cl2 (3 × 15 ml) and the combined organic layers were washed with brine (25 ml), dried (Na2SO4) and the solvent evaporated. Purification was achieved using column chromatography on silica eluting with CHCl3-MeOH-conc. aq. NH4OH (90:9:1) to give N-(2-(3-fluorophenyl)ethyl)-N-methyl-11-aminopentacyclo [5.4.0.02,6.03,10.05,9]undecan-8-one III as colourless crystals (902 mg, 91%): m. pt. 363-364.5 K; Rf 0.43 (90:9:1 v/v/v CHCl3:MeOH: conc. aq. NH4OH); IR (thin film) cm-1; 2970, 2861, 1721 (CO), 1582, 1484, 1426, 1343, 1229, 1141, 1059, 981, 939, 906, 791; 1H NMR (400 MHz, CDCl3); δ 7.25-7.19 (1H, m, ArH), 6.93 (1H, d, J = 7.9 Hz, ArH), 6.89-6.85 (2H, m, ArH), 3.02-2.97 (1H, m, CH), 2.87-2.67 (7H, m, CH), 2.66-2.62 (2H, m, CH), 2.50 (1H, t, J = 4.2 Hz, CH), 2.47-2.43 (1H, m, CH), 2.35-2.31 (1H, m, CH), 2.30 (3H, s, CH3), 1.86 (1H, d, J = 10.8 Hz, CHCH2CH), 1.48 (1H, d, J = 10.8 Hz, CHCH2CH); 13C NMR (100.6 MHz, CDCl3); δ 213.1 (CO), 163.0 (3'-C, 1JC–F = 245.3 Hz), 143.4 (1'-C, 3JC–F = 7.4 Hz), 129.9 (5'-C, 3JC–F = 8.3 Hz), 124.5 (6'-C, 4JC–F = 2.6 Hz), 115.6 (2'-C, 2JC–F = 20.8 Hz), 112.9 (4'-C, 2JC–F = 21.1 Hz), 64.6 (CH), 57.1 (CH2), 51.6 (CH), 50.1 (CH), 46.4 (CH), 42.1 (CH), 41.6 (CH), 41.4 (CH), 40.8 (CH), 40.2 (CH), 38.5 (CH2), 37.2 (CH), 31.7 (CH2); m/z (+ESI) 312.13 ([M + H]+, 100); Anal. (C20H22NOF): calc, C 77.14, H 7.12, N 4.50; found, C 76.90, H 7.19, N 4.55. Crystals suitable for X-ray diffraction were grown by the slow evaporation of a hexane solution.

Refinement top

C bound H atoms were included in idealized positions and refined using a riding-model approximation with aromatic C–H bond lengths fixed at 0.95Å and aliphatic bond lengths at 1.00Å, 0.99Å and 0.98Å for methine, methylene and methyl H atoms respectively. Uiso(H) values were fixed at 1.2Ueq of the parent C atoms, except for the methyl protons, which were fixed at 1.5Ueq(C). The highest residual peak is 0.69 eÅ-3 and is located 1.17Å from C12 with the deepest hole -0.47 eÅ-3 1.07Å from F1.

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2003); cell refinement: SAINT (Bruker–Nonius, 2003); data reduction: SAINT and XPREP (Bruker–Nonius, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and POV-RAY (Cason, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Chemical structures of I, II and III.
[Figure 2] Fig. 2. 221ORTEP representation of III with atom numbering scheme. Displacement ellipsoids are shown at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
11-{[2-(3-Fluorophenyl)ethyl](methyl)amino}pentacyclo [5.4.0.02,6.03,10.05,9]undecan-8-one top
Crystal data top
C20H22FNOF(000) = 664
Mr = 311.39Dx = 1.298 Mg m3
Monoclinic, P21/nMelting point: 363.5 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5450 (18) ÅCell parameters from 2297 reflections
b = 10.980 (2) Åθ = 2.7–23.1°
c = 13.822 (3) ŵ = 0.09 mm1
β = 95.214 (8)°T = 150 K
V = 1593.8 (5) Å3Block, colourless
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker–Nonius APEXII FR591
diffractometer
2773 independent reflections
Radiation source: rotating anode1566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω and ϕ scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1212
Tmin = 0.684, Tmax = 0.746k = 1312
17270 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.271H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1415P)2 + 0.2766P]
where P = (Fo2 + 2Fc2)/3
2773 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C20H22FNOV = 1593.8 (5) Å3
Mr = 311.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5450 (18) ŵ = 0.09 mm1
b = 10.980 (2) ÅT = 150 K
c = 13.822 (3) Å0.25 × 0.20 × 0.15 mm
β = 95.214 (8)°
Data collection top
Bruker–Nonius APEXII FR591
diffractometer
2773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
1566 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.746Rint = 0.087
17270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.271H-atom parameters constrained
S = 1.14Δρmax = 0.69 e Å3
2773 reflectionsΔρmin = 0.48 e Å3
209 parameters
Special details top

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150 K under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5938 (5)0.3609 (4)0.6172 (5)0.0588 (17)
C20.5803 (4)0.2626 (4)0.6825 (3)0.0399 (11)
H20.54500.27440.74260.048*
C30.6209 (3)0.1482 (3)0.6545 (3)0.0250 (9)
C40.6703 (4)0.1374 (4)0.5656 (3)0.0382 (11)
H40.69880.05980.54620.046*
C50.6797 (5)0.2343 (6)0.5047 (4)0.0609 (16)
H50.71230.22200.44360.073*
C60.6442 (6)0.3449 (6)0.5291 (5)0.0680 (18)
H60.65320.41200.48690.082*
C70.6123 (5)0.0379 (4)0.7189 (3)0.0503 (13)
H7A0.61560.06450.78750.060*
H7B0.68650.01560.71210.060*
C80.4885 (4)0.0351 (4)0.6931 (3)0.0304 (10)
H8A0.41620.01310.71370.036*
H8B0.47580.04360.62160.036*
C90.5715 (4)0.2420 (4)0.6958 (4)0.0490 (13)
H9A0.65870.22490.72330.074*
H9B0.56610.23260.62500.074*
H9C0.54860.32560.71190.074*
C100.4948 (4)0.1550 (4)0.8423 (3)0.0348 (11)
H100.57950.12120.86750.042*
C110.3871 (4)0.0811 (4)0.8822 (3)0.0408 (12)
H110.39560.00940.87740.049*
C120.3700 (5)0.1303 (4)0.9854 (4)0.0506 (13)
H120.37360.07021.04000.061*
C130.4537 (4)0.2406 (5)0.9980 (3)0.0502 (14)
H130.53430.22861.04090.060*
C140.4724 (4)0.2781 (4)0.8898 (3)0.0479 (13)
H140.54450.33640.88510.057*
C150.3636 (5)0.3402 (5)1.0322 (4)0.0542 (14)
H15A0.40110.42291.03280.065*
H15B0.33140.32161.09570.065*
C160.2635 (4)0.3182 (5)0.9450 (3)0.0470 (13)
H160.18590.37050.94510.056*
C170.3392 (4)0.3332 (4)0.8509 (4)0.0469 (13)
H170.34290.41860.82620.056*
C180.2639 (4)0.2484 (4)0.7847 (3)0.0379 (11)
C190.2540 (4)0.1331 (5)0.8456 (3)0.0429 (12)
H190.18930.07200.81960.052*
C200.2372 (4)0.1834 (4)0.9485 (3)0.0435 (12)
H200.16140.15570.98120.052*
N10.4837 (3)0.1570 (3)0.7364 (2)0.0259 (8)
O10.2010 (3)0.2730 (3)0.70829 (19)0.0431 (9)
F10.5547 (4)0.4710 (3)0.6455 (4)0.128 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.016 (2)0.119 (5)0.004 (2)0.030 (3)0.007 (3)
C20.023 (2)0.053 (3)0.043 (3)0.007 (2)0.0052 (18)0.016 (2)
C30.028 (2)0.026 (2)0.020 (2)0.0055 (18)0.0039 (16)0.0031 (16)
C40.036 (2)0.045 (3)0.033 (3)0.001 (2)0.0019 (19)0.007 (2)
C50.044 (3)0.104 (5)0.034 (3)0.023 (3)0.001 (2)0.017 (3)
C60.056 (4)0.070 (4)0.074 (4)0.032 (3)0.019 (3)0.038 (4)
C70.053 (3)0.047 (3)0.046 (3)0.028 (2)0.021 (2)0.021 (2)
C80.028 (2)0.036 (2)0.026 (2)0.0048 (19)0.0042 (17)0.0024 (18)
C90.039 (3)0.044 (3)0.063 (3)0.007 (2)0.001 (2)0.011 (2)
C100.031 (2)0.041 (3)0.030 (2)0.017 (2)0.0098 (18)0.0099 (19)
C110.046 (3)0.050 (3)0.027 (2)0.023 (2)0.009 (2)0.006 (2)
C120.066 (3)0.043 (3)0.040 (3)0.015 (3)0.009 (2)0.005 (2)
C130.031 (2)0.090 (4)0.028 (2)0.011 (3)0.0097 (19)0.012 (2)
C140.040 (3)0.044 (3)0.056 (3)0.014 (2)0.015 (2)0.020 (2)
C150.057 (3)0.059 (3)0.045 (3)0.008 (3)0.006 (2)0.018 (2)
C160.046 (3)0.070 (4)0.023 (2)0.028 (3)0.003 (2)0.006 (2)
C170.042 (3)0.037 (3)0.058 (3)0.016 (2)0.013 (2)0.010 (2)
C180.033 (2)0.051 (3)0.028 (2)0.019 (2)0.0031 (19)0.008 (2)
C190.039 (3)0.058 (3)0.033 (3)0.006 (2)0.005 (2)0.001 (2)
C200.039 (3)0.060 (3)0.032 (3)0.002 (2)0.006 (2)0.008 (2)
N10.0248 (17)0.0248 (18)0.0278 (19)0.0006 (15)0.0002 (13)0.0012 (14)
O10.0350 (16)0.070 (2)0.0232 (16)0.0208 (16)0.0058 (13)0.0024 (14)
F10.088 (3)0.038 (2)0.246 (6)0.0133 (19)0.048 (3)0.037 (2)
Geometric parameters (Å, º) top
C1—F11.347 (6)C10—H101.0000
C1—C61.384 (9)C11—C121.551 (7)
C1—C21.422 (7)C11—C191.557 (6)
C2—C31.393 (6)C11—H111.0000
C2—H20.9500C12—C131.499 (7)
C3—C41.382 (6)C12—C201.560 (7)
C3—C71.511 (6)C12—H121.0000
C4—C51.366 (7)C13—C151.551 (7)
C4—H40.9500C13—C141.581 (7)
C5—C61.323 (8)C13—H131.0000
C5—H50.9500C14—C171.579 (6)
C6—H60.9500C14—H141.0000
C7—C81.546 (6)C15—C161.546 (6)
C7—H7A0.9900C15—H15A0.9900
C7—H7B0.9900C15—H15B0.9900
C8—N11.469 (5)C16—C201.508 (7)
C8—H8A0.9900C16—C171.595 (7)
C8—H8B0.9900C16—H161.0000
C9—N11.463 (5)C17—C181.484 (6)
C9—H9A0.9800C17—H171.0000
C9—H9B0.9800C18—O11.225 (5)
C9—H9C0.9800C18—C191.529 (7)
C10—N11.458 (5)C19—C201.550 (6)
C10—C141.531 (6)C19—H191.0000
C10—C111.538 (6)C20—H201.0000
F1—C1—C6121.4 (6)C13—C12—H12117.7
F1—C1—C2116.5 (6)C11—C12—H12117.7
C6—C1—C2122.0 (5)C20—C12—H12117.7
C3—C2—C1117.2 (4)C12—C13—C15103.6 (4)
C3—C2—H2121.4C12—C13—C14102.9 (3)
C1—C2—H2121.4C15—C13—C14103.7 (4)
C4—C3—C2118.3 (4)C12—C13—H13115.0
C4—C3—C7120.2 (4)C15—C13—H13115.0
C2—C3—C7121.5 (4)C14—C13—H13115.0
C5—C4—C3122.4 (5)C10—C14—C17111.0 (3)
C5—C4—H4118.8C10—C14—C13102.3 (4)
C3—C4—H4118.8C17—C14—C13103.8 (4)
C6—C5—C4121.3 (5)C10—C14—H14113.0
C6—C5—H5119.3C17—C14—H14113.0
C4—C5—H5119.3C13—C14—H14113.0
C5—C6—C1118.7 (5)C16—C15—C1392.6 (3)
C5—C6—H6120.6C16—C15—H15A113.2
C1—C6—H6120.6C13—C15—H15A113.2
C3—C7—C8112.0 (3)C16—C15—H15B113.2
C3—C7—H7A109.2C13—C15—H15B113.2
C8—C7—H7A109.2H15A—C15—H15B110.5
C3—C7—H7B109.2C20—C16—C15104.1 (4)
C8—C7—H7B109.2C20—C16—C17103.6 (4)
H7A—C7—H7B107.9C15—C16—C17105.2 (4)
N1—C8—C7116.0 (3)C20—C16—H16114.2
N1—C8—H8A108.3C15—C16—H16114.2
C7—C8—H8A108.3C17—C16—H16114.2
N1—C8—H8B108.3C18—C17—C14112.3 (3)
C7—C8—H8B108.3C18—C17—C1699.1 (4)
H8A—C8—H8B107.4C14—C17—C16100.2 (4)
N1—C9—H9A109.5C18—C17—H17114.4
N1—C9—H9B109.5C14—C17—H17114.4
H9A—C9—H9B109.5C16—C17—H17114.4
N1—C9—H9C109.5O1—C18—C17127.6 (4)
H9A—C9—H9C109.5O1—C18—C19126.7 (4)
H9B—C9—H9C109.5C17—C18—C19103.9 (4)
N1—C10—C14114.6 (3)C18—C19—C20103.2 (4)
N1—C10—C11112.0 (3)C18—C19—C11112.2 (4)
C14—C10—C1199.4 (3)C20—C19—C1190.4 (3)
N1—C10—H10110.1C18—C19—H19115.9
C14—C10—H10110.1C20—C19—H19115.9
C11—C10—H10110.1C11—C19—H19115.9
C10—C11—C12107.3 (4)C16—C20—C19106.5 (4)
C10—C11—C19111.3 (3)C16—C20—C12102.4 (4)
C12—C11—C1989.7 (3)C19—C20—C1289.6 (3)
C10—C11—H11115.2C16—C20—H20118.0
C12—C11—H11115.2C19—C20—H20118.0
C19—C11—H11115.2C12—C20—H20118.0
C13—C12—C11105.8 (4)C10—N1—C9113.5 (3)
C13—C12—C20103.8 (4)C10—N1—C8113.1 (3)
C11—C12—C2090.3 (3)C9—N1—C8112.3 (3)
F1—C1—C2—C3179.7 (4)C13—C14—C17—C18104.4 (4)
C6—C1—C2—C30.5 (6)C10—C14—C17—C16109.2 (4)
C1—C2—C3—C40.6 (6)C13—C14—C17—C160.0 (4)
C1—C2—C3—C7179.2 (4)C20—C16—C17—C1841.0 (4)
C2—C3—C4—C50.4 (6)C15—C16—C17—C18150.0 (4)
C7—C3—C4—C5179.8 (4)C20—C16—C17—C1473.7 (4)
C3—C4—C5—C61.6 (7)C15—C16—C17—C1435.3 (5)
C4—C5—C6—C11.6 (8)C14—C17—C18—O1137.7 (5)
F1—C1—C6—C5179.2 (5)C16—C17—C18—O1117.2 (5)
C2—C1—C6—C50.6 (8)C14—C17—C18—C1956.7 (5)
C4—C3—C7—C885.8 (5)C16—C17—C18—C1948.4 (4)
C2—C3—C7—C894.4 (5)O1—C18—C19—C20127.7 (4)
C3—C7—C8—N1167.1 (4)C17—C18—C19—C2038.0 (4)
N1—C10—C11—C12154.8 (3)O1—C18—C19—C11136.4 (4)
C14—C10—C11—C1233.3 (4)C17—C18—C19—C1158.0 (4)
N1—C10—C11—C1958.2 (4)C10—C11—C19—C183.5 (5)
C14—C10—C11—C1963.3 (4)C12—C11—C19—C18105.0 (4)
C10—C11—C12—C137.4 (5)C10—C11—C19—C20108.1 (4)
C19—C11—C12—C13104.9 (4)C12—C11—C19—C200.5 (4)
C10—C11—C12—C20111.8 (4)C15—C16—C20—C19128.1 (4)
C19—C11—C12—C200.5 (4)C17—C16—C20—C1918.3 (4)
C11—C12—C13—C15128.9 (4)C15—C16—C20—C1234.8 (4)
C20—C12—C13—C1534.7 (4)C17—C16—C20—C1275.0 (4)
C11—C12—C13—C1421.1 (4)C18—C19—C20—C1610.6 (4)
C20—C12—C13—C1473.1 (4)C11—C19—C20—C16102.3 (4)
N1—C10—C14—C1755.1 (5)C18—C19—C20—C12113.4 (4)
C11—C10—C14—C1764.4 (5)C11—C19—C20—C120.5 (4)
N1—C10—C14—C13165.3 (3)C13—C12—C20—C160.0 (4)
C11—C10—C14—C1345.8 (4)C11—C12—C20—C16106.3 (4)
C12—C13—C14—C1042.8 (4)C13—C12—C20—C19106.8 (4)
C15—C13—C14—C10150.5 (4)C11—C12—C20—C190.5 (4)
C12—C13—C14—C1772.8 (4)C14—C10—N1—C958.3 (5)
C15—C13—C14—C1734.9 (5)C11—C10—N1—C9170.6 (3)
C12—C13—C15—C1653.3 (4)C14—C10—N1—C8172.2 (3)
C14—C13—C15—C1653.9 (4)C11—C10—N1—C859.9 (4)
C13—C15—C16—C2053.6 (4)C7—C8—N1—C1061.1 (5)
C13—C15—C16—C1755.0 (4)C7—C8—N1—C969.0 (5)
C10—C14—C17—C184.9 (6)

Experimental details

Crystal data
Chemical formulaC20H22FNO
Mr311.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.5450 (18), 10.980 (2), 13.822 (3)
β (°) 95.214 (8)
V3)1593.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius APEXII FR591
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.684, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17270, 2773, 1566
Rint0.087
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.271, 1.14
No. of reflections2773
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.48

Computer programs: APEX2 (Bruker–Nonius, 2003), SAINT (Bruker–Nonius, 2003), SAINT and XPREP (Bruker–Nonius, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and POV-RAY (Cason, 2002), enCIFer (Allen et al., 2004).

 

Acknowledgements

We gratefully acknowledge the Australian Research Council for support. JKC acknowledges the Marie Curie IIF scheme of the 7th EU Framework Program.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBanister, S. D., Moussa, I. A., Jordan, M. J. T., Coster, M. J. & Kassiou, M. (2010). Bioorg. Med. Chem. Lett. 20, 145–148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker–Nonius (2003). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHambley, T. W., Knott, R., Kassiou, M. & Christie, M. J. (2000). Aust. J. Chem. 53, 899–904.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X., Banister, S. D., Christie, M. J., Banati, R., Meikle, S., Coster, M. J. & Kassiou, M. (2007). Eur. J. Pharmacol. 555, 37–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X., Kassiou, M. & Christie, M. J. (1999). Aust. J. Chem. 52, 653–656.  Web of Science CrossRef CAS Google Scholar
First citationLiu, X., Nuwayhid, S., Christie, M. J., Kassiou, M. & Werling, L. L. (2001). Eur. J. Pharmacol. 422, 39–45.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNguyen, V. H., Kassiou, M., Johnston, G. A. & Christie, M. J. (1996). Eur. J. Pharmacol. 311, 233–240.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds