metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[5-(1,3-Benzodioxol-5-yl)-3-ferrocenyl-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole

aInstitute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bDepartment of Chemical and Environment Engineering, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
*Correspondence e-mail: bxzhao@sdu.edu.cn

(Received 27 August 2010; accepted 11 September 2010; online 18 September 2010)

In the title compound, [Fe(C5H5)(C24H18N3O2S)], the pyrazoline ring adopts a twist conformation. The thia­zole ring forms dihedral angles of 83.7 (2) and 34.4 (2)° with the benzene ring of the benzodioxole ring and the fused phenyl ring, respectively. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯π inter­action. The crystal packing features inter­molecular C—H⋯N, C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

Related literature

For the biological activity of ferrocenyl derivatives, see: Jaouen et al. (2004[Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505-2517.]); Xie et al. (2008[Xie, Y. S., Pan, X. H., Zhao, B. X., Liu, J. T., Shin, D. S., Zhang, J. H., Zheng, L. W., Zhao, J. & Miao, J. Y. (2008). J. Organomet. Chem. 693, 1367-1374.], 2010[Xie, Y. S., Zhao, H. L., Su, H., Zhao, B. X., Liu, J. T., Li, J. K., Lv, H. S., Wang, B. S., Shin, D. S. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 210-218.]). For the crystal structures of pyrazoline derivatives, see: Gong et al. (2010[Gong, Z. L., Zheng, L. W., Zhao, B. X., Yang, D. Z., Lv, H. S., Liu, W. Y. & Lian, S. (2010). J. Photochem. Photobiol. A, 209, 49-55.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C24H18N3O2S)]

  • Mr = 533.41

  • Triclinic, [P \overline 1]

  • a = 10.228 (5) Å

  • b = 11.018 (5) Å

  • c = 12.604 (6) Å

  • α = 107.776 (8)°

  • β = 100.416 (8)°

  • γ = 112.767 (7)°

  • V = 1172.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.894, Tmax = 0.927

  • 6579 measured reflections

  • 4716 independent reflections

  • 3140 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.124

  • S = 1.02

  • 4716 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C13–C18, C25–C29, C1–C6 and C20–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N3i 0.93 2.49 3.402 (6) 168
C28—H28⋯O2ii 0.98 2.43 3.337 (6) 153
C22—H22⋯Cg1iii 0.98 2.97 3.709 (5) 133
C26—H26⋯Cg1 0.98 2.90 3.844 (5) 163
C5—H5⋯Cg2iv 0.93 2.91 3.658 (5) 138
C8—H8⋯Cg3v 0.93 2.98 3.590 (4) 125
C11—H11ACg4vi 0.97 2.85 3.670 (4) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z; (iv) x, y-1, z-1; (v) -x+1, -y, -z; (vi) -x, -y, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of pyrazoline possess widespread pharmacological activities. Among them ferrocenyl compounds display interesting antitumor (Jaouen et al., 2004) activities. In our recent study, incorporation of a ferrocene fragment into a heterocyclic ring may enhance their antitumor activities (Xie et al., 2008; Xie et al., 2010, which is rationalized as being due to their different membrane permeation properties and anomalous metabolism. In continuation of previous structural studies of pyrazoline derivatives (Gong et al., 2010), the title compound (I) was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The conformation of the central pyrazole ring is twist on C11—C12 as indicated by the ring-puckering parameters q2 = 0.204 (4) Å and ϕ2 = 309.1 (11) ° (Cremer & Pople, 1975), with maximum deviations from the mean plane of the ring of 0.120 (4) and -0.125 (4) Å for atoms C11 and C12, respectively. The thiazole ring forms dihedral angles with the benzene ring of the benzodioxole ring (C13–C18) and the C20–C24 cyclopentadienyl ring of 83.7 (2)° and 47.7 (2)°, respectively, while the dihedral angle between the thiazole and the conjoint phenyl ring (C1–C6) is 34.4 (2)°. The torsion angle C20—Cg4—Cg2—C26 (Cg4 and Cg2 are the centroids of the C20–C24 and C25–C29 rings, respectively) of 3.8° indicates an almost eclipsed orientation of two cyclopentadienyl rings. The molecular conformation is stabilized by an intramolecular C—H···π (C26–H26···Cg1; Table 1) interaction. In the crystal packing (Fig. 2), zigzag chains are formed through intermolecular C—H···N and C—H···O hydrogen bonds, wherein each molecule is connected to two neighbouring molecules. Furthermore, the structure is stabilized by weak intermolecular C—H···π hydrogen contacts (Table 1).

Related literature top

For the biological activity of ferrocenyl derivatives, see: Jaouen et al. (2004); Xie et al. (2008, 2010). For the crystal structures of pyrazoline derivatives, see: Gong et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

5-(Benzo[d][1,3]dioxol-5-yl)-3-ferrocenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide (400 mg, 0.92 mmol), 2-bromo-1-phenylethanone (182 mg, 0.92 mmol) and dichloromethane (8 mL) were added to a round-bottomed flask. The mixture was stirred and heated at reflux under nitrogen for 2 h. The solvent was removed on a rotary evaporator. The residue was purified by column chromatography (silica gel; petroleum ether–EtOAc 3:1 v/v) to afford title compound. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the solid in dichloromethane at room temperature for 3 days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. The intramolecular C—H···π interaction is shown as dashed line.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
2-[5-(1,3-Benzodioxol-5-yl)-3-ferrocenyl-4,5-dihydro-1H- pyrazol-1-yl]-4-phenyl-1,3-thiazole top
Crystal data top
[Fe(C5H5)(C24H18N3O2S)]Z = 2
Mr = 533.41F(000) = 552
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.228 (5) ÅCell parameters from 1390 reflections
b = 11.018 (5) Åθ = 1.8–26.4°
c = 12.604 (6) ŵ = 0.77 mm1
α = 107.776 (8)°T = 293 K
β = 100.416 (8)°Block, yellow
γ = 112.767 (7)°0.15 × 0.10 × 0.10 mm
V = 1172.7 (10) Å3
Data collection top
Bruker SMART area-detector
diffractometer
4716 independent reflections
Radiation source: fine-focus sealed tube3140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 127
Tmin = 0.894, Tmax = 0.927k = 1313
6579 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.2299P]
where P = (Fo2 + 2Fc2)/3
4716 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Fe(C5H5)(C24H18N3O2S)]γ = 112.767 (7)°
Mr = 533.41V = 1172.7 (10) Å3
Triclinic, P1Z = 2
a = 10.228 (5) ÅMo Kα radiation
b = 11.018 (5) ŵ = 0.77 mm1
c = 12.604 (6) ÅT = 293 K
α = 107.776 (8)°0.15 × 0.10 × 0.10 mm
β = 100.416 (8)°
Data collection top
Bruker SMART area-detector
diffractometer
4716 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3140 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.927Rint = 0.024
6579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
4716 reflectionsΔρmin = 0.30 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.23898 (10)0.03306 (12)0.18898 (8)0.0590 (3)
Fe0.13832 (5)0.39165 (5)0.68154 (4)0.04547 (17)
O10.9205 (3)0.6859 (3)0.8659 (3)0.0783 (9)
O20.8642 (3)0.4884 (3)0.9074 (2)0.0666 (7)
N20.3592 (3)0.1534 (3)0.4240 (2)0.0505 (7)
N30.2328 (3)0.1739 (3)0.4215 (2)0.0439 (7)
N70.4875 (3)0.0646 (3)0.3137 (2)0.0418 (6)
C10.7361 (4)0.0552 (3)0.2317 (3)0.0442 (8)
H10.76170.13430.30080.053*
C20.8476 (4)0.0314 (4)0.1989 (3)0.0528 (9)
H20.94830.09490.24510.063*
C30.8108 (4)0.0857 (4)0.0984 (3)0.0586 (10)
H30.88650.10150.07580.070*
C40.6632 (4)0.1795 (4)0.0311 (3)0.0644 (11)
H40.63820.25950.03710.077*
C50.5519 (4)0.1557 (4)0.0642 (3)0.0546 (9)
H50.45140.22110.01890.065*
C60.5863 (3)0.0368 (3)0.1635 (3)0.0387 (7)
C70.4688 (3)0.0038 (3)0.1954 (3)0.0404 (8)
C80.3423 (4)0.0305 (4)0.1179 (3)0.0526 (9)
H80.31400.07740.03610.063*
C90.3752 (4)0.0896 (3)0.3212 (3)0.0423 (8)
C100.2057 (3)0.1734 (3)0.5167 (3)0.0368 (7)
C110.3027 (4)0.1360 (3)0.5895 (3)0.0442 (8)
H11A0.24930.03630.57880.053*
H11B0.33920.19920.67290.053*
C120.4307 (4)0.1597 (4)0.5398 (3)0.0429 (8)
H120.45590.08050.52870.051*
C130.5684 (4)0.3028 (4)0.6171 (3)0.0425 (8)
C140.6077 (4)0.4218 (4)0.5902 (3)0.0534 (10)
H140.55400.41150.51730.064*
C150.7264 (4)0.5575 (4)0.6701 (4)0.0624 (11)
H150.75260.63770.65210.075*
C160.8005 (4)0.5666 (4)0.7735 (4)0.0558 (10)
C170.7652 (4)0.4490 (4)0.8002 (3)0.0476 (8)
C180.6510 (4)0.3179 (4)0.7253 (3)0.0456 (8)
H180.62780.23920.74520.055*
C190.9424 (5)0.6410 (4)0.9566 (4)0.0806 (13)
H19A0.90470.68041.01650.097*
H19B1.04910.67530.99360.097*
C200.0906 (3)0.2054 (3)0.5491 (3)0.0410 (8)
C210.0226 (4)0.2786 (4)0.5058 (3)0.0522 (9)
H210.04040.31250.44380.063*
C220.0765 (4)0.2935 (4)0.5680 (3)0.0586 (10)
H220.13890.34050.55730.070*
C230.0683 (4)0.2303 (4)0.6488 (3)0.0560 (10)
H230.12360.22660.70460.067*
C240.0342 (4)0.1770 (3)0.6385 (3)0.0488 (9)
H240.06220.12820.68470.059*
C250.2947 (5)0.5917 (4)0.7109 (4)0.0785 (13)
H250.30930.62920.65040.094*
C260.3654 (4)0.5192 (4)0.7469 (5)0.0796 (14)
H260.43900.49690.71680.096*
C270.3135 (5)0.4839 (4)0.8335 (4)0.0777 (13)
H270.34470.43280.87560.093*
C280.2109 (5)0.5350 (4)0.8506 (4)0.0749 (13)
H280.15710.52580.90700.090*
C290.1981 (5)0.6019 (4)0.7753 (4)0.0716 (12)
H290.13450.64860.76890.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0488 (5)0.0842 (7)0.0444 (6)0.0376 (5)0.0140 (4)0.0201 (5)
Fe0.0459 (3)0.0395 (3)0.0444 (3)0.0177 (2)0.0175 (2)0.0112 (2)
O10.0593 (17)0.0509 (17)0.104 (2)0.0132 (14)0.0179 (17)0.0294 (18)
O20.0615 (16)0.0570 (17)0.0603 (18)0.0191 (13)0.0054 (14)0.0186 (14)
N20.0580 (18)0.072 (2)0.0386 (17)0.0456 (17)0.0207 (14)0.0223 (15)
N30.0479 (16)0.0520 (17)0.0459 (17)0.0342 (14)0.0190 (14)0.0220 (14)
N70.0450 (16)0.0454 (16)0.0366 (16)0.0231 (13)0.0151 (13)0.0158 (13)
C10.049 (2)0.0398 (19)0.0386 (19)0.0215 (16)0.0115 (16)0.0105 (15)
C20.046 (2)0.053 (2)0.058 (2)0.0236 (18)0.0164 (18)0.0213 (19)
C30.058 (2)0.066 (3)0.063 (3)0.041 (2)0.026 (2)0.022 (2)
C40.061 (2)0.061 (3)0.054 (2)0.034 (2)0.015 (2)0.001 (2)
C50.043 (2)0.051 (2)0.047 (2)0.0168 (17)0.0095 (17)0.0027 (18)
C60.0452 (19)0.0363 (17)0.0375 (18)0.0200 (15)0.0158 (15)0.0170 (15)
C70.0408 (19)0.0402 (18)0.0401 (19)0.0170 (15)0.0160 (15)0.0181 (15)
C80.048 (2)0.071 (3)0.035 (2)0.0311 (19)0.0116 (16)0.0149 (18)
C90.0450 (19)0.047 (2)0.042 (2)0.0249 (16)0.0191 (16)0.0202 (16)
C100.0369 (17)0.0317 (17)0.0383 (19)0.0159 (14)0.0104 (14)0.0119 (14)
C110.049 (2)0.0405 (19)0.045 (2)0.0224 (16)0.0168 (16)0.0182 (16)
C120.054 (2)0.052 (2)0.0398 (19)0.0374 (18)0.0197 (16)0.0224 (16)
C130.0432 (19)0.053 (2)0.051 (2)0.0326 (17)0.0251 (17)0.0278 (18)
C140.054 (2)0.071 (3)0.068 (3)0.041 (2)0.032 (2)0.048 (2)
C150.059 (2)0.056 (3)0.096 (3)0.031 (2)0.038 (2)0.051 (3)
C160.045 (2)0.050 (2)0.081 (3)0.0234 (18)0.029 (2)0.031 (2)
C170.046 (2)0.053 (2)0.051 (2)0.0275 (18)0.0185 (17)0.0241 (19)
C180.049 (2)0.046 (2)0.054 (2)0.0258 (17)0.0237 (18)0.0279 (18)
C190.074 (3)0.054 (3)0.084 (3)0.024 (2)0.013 (3)0.009 (3)
C200.0368 (18)0.0401 (18)0.0383 (19)0.0177 (15)0.0099 (15)0.0089 (15)
C210.049 (2)0.057 (2)0.046 (2)0.0284 (18)0.0134 (17)0.0135 (18)
C220.046 (2)0.066 (3)0.059 (2)0.0348 (19)0.0120 (19)0.012 (2)
C230.042 (2)0.057 (2)0.059 (2)0.0179 (18)0.0243 (18)0.015 (2)
C240.045 (2)0.0404 (19)0.054 (2)0.0158 (16)0.0194 (17)0.0161 (17)
C250.087 (3)0.049 (2)0.079 (3)0.011 (2)0.045 (3)0.018 (2)
C260.046 (2)0.051 (3)0.097 (4)0.010 (2)0.020 (2)0.005 (2)
C270.076 (3)0.055 (3)0.060 (3)0.019 (2)0.007 (2)0.005 (2)
C280.087 (3)0.057 (3)0.055 (3)0.020 (2)0.028 (2)0.007 (2)
C290.082 (3)0.042 (2)0.084 (3)0.025 (2)0.040 (3)0.014 (2)
Geometric parameters (Å, º) top
S2—C81.714 (3)C10—C111.488 (4)
S2—C91.721 (3)C11—C121.518 (4)
Fe—C282.013 (4)C11—H11A0.9700
Fe—C272.018 (4)C11—H11B0.9700
Fe—C202.019 (3)C12—C131.505 (5)
Fe—C242.020 (3)C12—H120.9800
Fe—C212.021 (4)C13—C141.381 (4)
Fe—C292.027 (4)C13—C181.392 (4)
Fe—C252.028 (4)C14—C151.399 (5)
Fe—C262.031 (4)C14—H140.9300
Fe—C222.031 (4)C15—C161.337 (5)
Fe—C232.031 (4)C15—H150.9300
O1—C161.376 (5)C16—C171.367 (5)
O1—C191.392 (5)C17—C181.344 (5)
O2—C171.359 (4)C18—H180.9300
O2—C191.413 (5)C19—H19A0.9700
N2—C91.345 (4)C19—H19B0.9700
N2—N31.393 (3)C20—C211.414 (5)
N2—C121.478 (4)C20—C241.418 (4)
N3—C101.281 (4)C21—C221.417 (5)
N7—C91.294 (4)C21—H210.9800
N7—C71.388 (4)C22—C231.405 (5)
C1—C21.369 (4)C22—H220.9800
C1—C61.380 (4)C23—C241.393 (5)
C1—H10.9300C23—H230.9800
C2—C31.366 (5)C24—H240.9800
C2—H20.9300C25—C261.385 (6)
C3—C41.365 (5)C25—C291.402 (5)
C3—H30.9300C25—H250.9800
C4—C51.369 (5)C26—C271.390 (6)
C4—H40.9300C26—H260.9800
C5—C61.374 (4)C27—C281.389 (6)
C5—H50.9300C27—H270.9800
C6—C71.471 (4)C28—C291.385 (6)
C7—C81.337 (4)C28—H280.9800
C8—H80.9300C29—H290.9800
C10—C201.443 (4)
C8—S2—C988.06 (16)N2—C12—C11100.6 (2)
C28—Fe—C2740.31 (17)C13—C12—C11112.1 (3)
C28—Fe—C20156.29 (17)N2—C12—H12110.4
C27—Fe—C20121.27 (17)C13—C12—H12110.4
C28—Fe—C24120.58 (17)C11—C12—H12110.4
C27—Fe—C24107.07 (17)C14—C13—C18119.1 (3)
C20—Fe—C2441.11 (13)C14—C13—C12123.0 (3)
C28—Fe—C21161.29 (17)C18—C13—C12117.6 (3)
C27—Fe—C21157.07 (18)C13—C14—C15121.6 (3)
C20—Fe—C2140.97 (13)C13—C14—H14119.2
C24—Fe—C2169.01 (15)C15—C14—H14119.2
C28—Fe—C2940.11 (17)C16—C15—C14116.9 (3)
C27—Fe—C2967.72 (19)C16—C15—H15121.5
C20—Fe—C29162.05 (16)C14—C15—H15121.5
C24—Fe—C29155.74 (16)C15—C16—C17122.2 (4)
C21—Fe—C29125.12 (18)C15—C16—O1128.3 (4)
C28—Fe—C2567.40 (18)C17—C16—O1109.5 (4)
C27—Fe—C2567.3 (2)C18—C17—O2128.8 (3)
C20—Fe—C25125.29 (16)C18—C17—C16122.0 (4)
C24—Fe—C25161.49 (17)O2—C17—C16109.2 (3)
C21—Fe—C25108.88 (18)C17—C18—C13118.2 (3)
C29—Fe—C2540.46 (16)C17—C18—H18120.9
C28—Fe—C2667.56 (18)C13—C18—H18120.9
C27—Fe—C2640.16 (18)O1—C19—O2108.4 (3)
C20—Fe—C26108.16 (15)O1—C19—H19A110.0
C24—Fe—C26124.54 (17)O2—C19—H19A110.0
C21—Fe—C26122.27 (18)O1—C19—H19B110.0
C29—Fe—C2667.75 (18)O2—C19—H19B110.0
C25—Fe—C2639.90 (18)H19A—C19—H19B108.4
C28—Fe—C22124.29 (17)C21—C20—C24107.9 (3)
C27—Fe—C22160.44 (19)C21—C20—C10127.3 (3)
C20—Fe—C2268.64 (14)C24—C20—C10124.7 (3)
C24—Fe—C2268.35 (15)C21—C20—Fe69.59 (19)
C21—Fe—C2240.95 (13)C24—C20—Fe69.48 (18)
C29—Fe—C22108.17 (17)C10—C20—Fe122.9 (2)
C25—Fe—C22122.91 (19)C20—C21—C22107.5 (3)
C26—Fe—C22157.9 (2)C20—C21—Fe69.4 (2)
C28—Fe—C23107.49 (17)C22—C21—Fe69.9 (2)
C27—Fe—C23123.92 (19)C20—C21—H21126.2
C20—Fe—C2368.31 (14)C22—C21—H21126.2
C24—Fe—C2340.24 (13)Fe—C21—H21126.2
C21—Fe—C2368.53 (15)C23—C22—C21107.9 (3)
C29—Fe—C23121.52 (16)C23—C22—Fe69.8 (2)
C25—Fe—C23157.59 (18)C21—C22—Fe69.2 (2)
C26—Fe—C23160.5 (2)C23—C22—H22126.1
C22—Fe—C2340.48 (15)C21—C22—H22126.1
C16—O1—C19104.9 (3)Fe—C22—H22126.1
C17—O2—C19105.1 (3)C24—C23—C22108.8 (3)
C9—N2—N3119.2 (3)C24—C23—Fe69.4 (2)
C9—N2—C12125.6 (3)C22—C23—Fe69.8 (2)
N3—N2—C12111.6 (2)C24—C23—H23125.6
C10—N3—N2107.5 (2)C22—C23—H23125.6
C9—N7—C7109.6 (3)Fe—C23—H23125.6
C2—C1—C6120.9 (3)C23—C24—C20108.0 (3)
C2—C1—H1119.6C23—C24—Fe70.3 (2)
C6—C1—H1119.6C20—C24—Fe69.41 (18)
C3—C2—C1119.9 (3)C23—C24—H24126.0
C3—C2—H2120.1C20—C24—H24126.0
C1—C2—H2120.1Fe—C24—H24126.0
C4—C3—C2120.1 (3)C26—C25—C29108.5 (4)
C4—C3—H3120.0C26—C25—Fe70.1 (2)
C2—C3—H3120.0C29—C25—Fe69.7 (2)
C3—C4—C5119.9 (3)C26—C25—H25125.8
C3—C4—H4120.1C29—C25—H25125.8
C5—C4—H4120.1Fe—C25—H25125.8
C4—C5—C6121.0 (3)C25—C26—C27107.8 (4)
C4—C5—H5119.5C25—C26—Fe70.0 (2)
C6—C5—H5119.5C27—C26—Fe69.4 (2)
C5—C6—C1118.2 (3)C25—C26—H26126.1
C5—C6—C7121.7 (3)C27—C26—H26126.1
C1—C6—C7120.1 (3)Fe—C26—H26126.1
C8—C7—N7115.0 (3)C28—C27—C26108.0 (4)
C8—C7—C6125.0 (3)C28—C27—Fe69.6 (3)
N7—C7—C6120.0 (3)C26—C27—Fe70.4 (3)
C7—C8—S2111.2 (3)C28—C27—H27126.0
C7—C8—H8124.4C26—C27—H27126.0
S2—C8—H8124.4Fe—C27—H27126.0
N7—C9—N2124.1 (3)C29—C28—C27108.7 (4)
N7—C9—S2116.1 (2)C29—C28—Fe70.5 (2)
N2—C9—S2119.8 (2)C27—C28—Fe70.1 (2)
N3—C10—C20122.6 (3)C29—C28—H28125.7
N3—C10—C11113.8 (3)C27—C28—H28125.7
C20—C10—C11123.6 (3)Fe—C28—H28125.7
C10—C11—C12102.0 (3)C28—C29—C25107.1 (4)
C10—C11—H11A111.4C28—C29—Fe69.4 (2)
C12—C11—H11A111.4C25—C29—Fe69.8 (2)
C10—C11—H11B111.4C28—C29—H29126.5
C12—C11—H11B111.4C25—C29—H29126.5
H11A—C11—H11B109.2Fe—C29—H29126.5
N2—C12—C13112.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C13–C18, C25–C29, C1–C6 and C20–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.932.493.402 (6)168
C28—H28···O2ii0.982.433.337 (6)153
C22—H22···Cg1iii0.982.973.709 (5)133
C26—H26···Cg10.982.903.844 (5)163
C5—H5···Cg2iv0.932.913.658 (5)138
C8—H8···Cg3v0.932.983.590 (4)125
C11—H11A···Cg4vi0.972.853.670 (4)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x, y1, z1; (v) x+1, y, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C24H18N3O2S)]
Mr533.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.228 (5), 11.018 (5), 12.604 (6)
α, β, γ (°)107.776 (8), 100.416 (8), 112.767 (7)
V3)1172.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.894, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
6579, 4716, 3140
Rint0.024
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.124, 1.02
No. of reflections4716
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C13–C18, C25–C29, C1–C6 and C20–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.932.493.402 (6)168
C28—H28···O2ii0.982.433.337 (6)153
C22—H22···Cg1iii0.982.973.709 (5)133
C26—H26···Cg10.982.903.844 (5)163
C5—H5···Cg2iv0.932.913.658 (5)138
C8—H8···Cg3v0.932.983.590 (4)125
C11—H11A···Cg4vi0.972.853.670 (4)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x, y1, z1; (v) x+1, y, z; (vi) x, y, z+1.
 

Acknowledgements

This study was supported by the Natural Science Foundation of Shandong Province (Z2008B10).

References

First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGong, Z. L., Zheng, L. W., Zhao, B. X., Yang, D. Z., Lv, H. S., Liu, W. Y. & Lian, S. (2010). J. Photochem. Photobiol. A, 209, 49–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y. S., Pan, X. H., Zhao, B. X., Liu, J. T., Shin, D. S., Zhang, J. H., Zheng, L. W., Zhao, J. & Miao, J. Y. (2008). J. Organomet. Chem. 693, 1367–1374.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Y. S., Zhao, H. L., Su, H., Zhao, B. X., Liu, J. T., Li, J. K., Lv, H. S., Wang, B. S., Shin, D. S. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 210–218.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds