organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Bis(4-meth­­oxy­phen­­oxy)phthalo­nitrile

aCollege of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: lirj@whu.edu.cn,

(Received 27 August 2010; accepted 4 September 2010; online 11 September 2010)

The title compound, C22H16N2O4, was obtained unintentionally as the product of an attempted synthesis of a new phthalocyanine. The dihedral angles formed by the central benzene ring with the aromatic rings of the meth­oxy­phen­oxy groups are 85.39 (5) and 64.19 (5)°.

Related literature

For background information on phthalcoyanines, see: Hanack & Lang (1994[Hanack, M. & Lang, M. (1994). Adv. Mater. 6, 819-833.]). For the synthesis of the title compound, see: Li et al. (2006[Li, R., Zhang, X., Zhu, P., Ng, D. K. P., Kobayashi, N. & Jiang, J. (2006). Inorg. Chem. 45, 2327-2334.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O4

  • Mr = 372.37

  • Monoclinic, P 21 /c

  • a = 13.7614 (2) Å

  • b = 10.4926 (1) Å

  • c = 14.0701 (2) Å

  • β = 112.551 (1)°

  • V = 1876.28 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.38 × 0.23 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.988

  • 24018 measured reflections

  • 3311 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.02

  • 3311 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, phthalocyanines have been extensively studied for their high thermal stability as well as their wide application fields (Hanack & Lang, 1994). As part of our ongoing studies of phthalocyanines (Li et al., 2006), we report herein the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The C—N bond lengths within each CN group are almost equal, with an average value of 1.141 (2) Å. The C and O atoms of the central 1,2-dioxybenzene group and the cyanide groups are substantially coplanar [maximum deviation 0.029 (2) Å for atom N2] and form dihedral angles of 85.39 (5) and 64.19 (5)° with the C16—C21 and C9—C14 benzene rings. The crystal packing is stabilized only by van der Waals interactions.

Related literature top

For background information on phthalcoyanines, see: Hanack & Lang (1994). For the synthesis of the title compound, see: Li et al. (2006).

Experimental top

The title compound was prepared according to the literarure method (Li et al., 2006), using vapour diffusion of ethanol into a toluene solution of the title compound at room temperature. Analysis calculated (%): C 70.96, N 7.52, H 4.33; found(%): C 70.51, N 7.21, H 4.19. 1H NMR (CDCl3, δ, p.p.m.): 7.95 (s, 2H), 7.36 (d, 4H), 6.92 (m, 4H), 3.90 (s, 6H).

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
4,5-bis(4-methoxyphenoxy)benzene-1,2-dicarbonitrile top
Crystal data top
C22H16N2O4F(000) = 776
Mr = 372.37Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5549 reflections
a = 13.7614 (2) Åθ = 2.5–23.5°
b = 10.4926 (1) ŵ = 0.09 mm1
c = 14.0701 (2) ÅT = 298 K
β = 112.551 (1)°Block, colourless
V = 1876.28 (4) Å30.38 × 0.23 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3311 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scanθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1616
Tmin = 0.966, Tmax = 0.988k = 1112
24018 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4099P]
where P = (Fo2 + 2Fc2)/3
3311 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H16N2O4V = 1876.28 (4) Å3
Mr = 372.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7614 (2) ŵ = 0.09 mm1
b = 10.4926 (1) ÅT = 298 K
c = 14.0701 (2) Å0.38 × 0.23 × 0.13 mm
β = 112.551 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2189 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.988Rint = 0.032
24018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
3311 reflectionsΔρmin = 0.17 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.07245 (13)0.02765 (18)0.29042 (13)0.0566 (5)
H170.05240.10960.26530.068*
N20.54537 (15)0.17422 (18)0.53262 (13)0.0822 (6)
N10.63571 (15)0.30662 (18)0.31740 (13)0.0820 (5)
C20.49439 (14)0.16026 (18)0.44763 (15)0.0572 (5)
C10.55634 (16)0.25589 (18)0.29120 (14)0.0598 (5)
O10.22453 (9)0.09523 (14)0.03832 (9)0.0684 (4)
O20.16999 (9)0.01007 (12)0.18264 (8)0.0621 (4)
O30.33469 (11)0.01535 (14)0.29526 (10)0.0796 (4)
O40.02251 (11)0.19057 (15)0.46372 (11)0.0843 (5)
C50.33212 (13)0.08186 (16)0.31600 (12)0.0496 (4)
H50.31240.05070.36790.060*
C30.45763 (13)0.19033 (16)0.26340 (13)0.0494 (4)
C70.29686 (13)0.11161 (17)0.13679 (12)0.0510 (4)
C60.26639 (13)0.06676 (16)0.21448 (12)0.0485 (4)
C40.42795 (13)0.14356 (16)0.34096 (12)0.0475 (4)
C80.39146 (13)0.17408 (16)0.16126 (13)0.0534 (5)
H80.41090.20530.10920.064*
C90.25752 (13)0.07923 (17)0.04349 (12)0.0513 (4)
C110.21973 (15)0.11325 (19)0.22164 (13)0.0611 (5)
H110.17800.15010.28410.073*
C120.30366 (15)0.03855 (18)0.21509 (13)0.0561 (5)
C100.19704 (14)0.13386 (19)0.13506 (13)0.0599 (5)
H100.14040.18510.13940.072*
C140.34035 (16)0.0024 (2)0.03671 (14)0.0701 (6)
H140.38070.03640.02530.084*
C150.25790 (19)0.0227 (2)0.39650 (15)0.0916 (7)
H15A0.19820.02840.40170.137*
H15B0.28710.00830.44410.137*
H15C0.23620.10970.41250.137*
C130.36321 (16)0.0166 (2)0.12246 (15)0.0729 (6)
H130.42000.06790.11770.087*
C160.13818 (13)0.04202 (18)0.25815 (12)0.0500 (4)
C190.06522 (13)0.14685 (19)0.39663 (13)0.0562 (5)
C180.03643 (14)0.02478 (19)0.36030 (14)0.0611 (5)
H180.00760.02230.38320.073*
C200.13229 (14)0.21514 (19)0.36496 (14)0.0605 (5)
H200.15290.29680.39030.073*
C210.16913 (14)0.16199 (19)0.29513 (14)0.0610 (5)
H210.21480.20770.27350.073*
C220.05311 (19)0.3141 (2)0.50731 (17)0.0959 (8)
H22A0.03480.37640.45330.144*
H22B0.01740.33330.55230.144*
H22C0.12780.31560.54570.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.0538 (11)0.0585 (12)0.0579 (11)0.0016 (9)0.0218 (9)0.0032 (9)
N20.0906 (13)0.0919 (14)0.0548 (11)0.0179 (11)0.0175 (10)0.0080 (9)
N10.0812 (12)0.0891 (13)0.0840 (12)0.0312 (11)0.0409 (10)0.0140 (10)
C20.0604 (11)0.0590 (12)0.0547 (12)0.0090 (9)0.0249 (10)0.0040 (9)
C10.0674 (13)0.0617 (13)0.0582 (12)0.0135 (11)0.0330 (10)0.0070 (9)
O10.0540 (7)0.1085 (11)0.0438 (7)0.0043 (7)0.0200 (6)0.0038 (7)
O20.0499 (7)0.0901 (10)0.0466 (7)0.0137 (7)0.0187 (6)0.0044 (6)
O30.0843 (10)0.1044 (12)0.0543 (8)0.0018 (8)0.0311 (7)0.0108 (8)
O40.0803 (10)0.1067 (12)0.0830 (10)0.0058 (9)0.0502 (8)0.0287 (9)
C50.0543 (11)0.0557 (11)0.0444 (10)0.0003 (9)0.0250 (8)0.0026 (8)
C30.0525 (10)0.0480 (10)0.0533 (10)0.0039 (8)0.0263 (9)0.0024 (8)
C70.0521 (10)0.0591 (11)0.0427 (10)0.0022 (9)0.0193 (8)0.0028 (8)
C60.0453 (10)0.0532 (11)0.0495 (10)0.0009 (8)0.0211 (8)0.0016 (8)
C40.0506 (10)0.0473 (10)0.0463 (10)0.0005 (8)0.0205 (8)0.0028 (8)
C80.0591 (11)0.0591 (12)0.0502 (10)0.0017 (9)0.0302 (9)0.0042 (9)
C90.0506 (10)0.0611 (12)0.0423 (10)0.0062 (9)0.0179 (8)0.0023 (8)
C110.0629 (12)0.0727 (13)0.0433 (10)0.0001 (10)0.0155 (9)0.0107 (9)
C120.0610 (12)0.0617 (12)0.0463 (10)0.0065 (10)0.0213 (9)0.0047 (9)
C100.0532 (11)0.0723 (13)0.0523 (11)0.0070 (10)0.0180 (9)0.0086 (10)
C140.0786 (14)0.0786 (15)0.0464 (11)0.0182 (11)0.0166 (10)0.0123 (10)
C150.1065 (18)0.120 (2)0.0493 (12)0.0121 (15)0.0310 (12)0.0134 (12)
C130.0765 (14)0.0812 (15)0.0571 (12)0.0228 (11)0.0213 (11)0.0005 (11)
C160.0428 (9)0.0633 (12)0.0441 (9)0.0084 (9)0.0166 (8)0.0005 (9)
C190.0463 (10)0.0733 (14)0.0511 (10)0.0036 (10)0.0211 (9)0.0057 (10)
C180.0558 (11)0.0723 (14)0.0632 (12)0.0069 (10)0.0316 (10)0.0005 (10)
C200.0590 (11)0.0601 (12)0.0620 (12)0.0040 (10)0.0229 (10)0.0087 (10)
C210.0575 (11)0.0706 (14)0.0613 (11)0.0063 (10)0.0298 (9)0.0009 (10)
C220.0987 (17)0.113 (2)0.0784 (15)0.0085 (15)0.0363 (13)0.0389 (14)
Geometric parameters (Å, º) top
C17—C161.369 (2)C9—C101.363 (2)
C17—C181.374 (2)C9—C141.369 (2)
C17—H170.9300C11—C121.369 (3)
N2—C21.140 (2)C11—C101.386 (2)
N1—C11.142 (2)C11—H110.9300
C2—C41.438 (2)C12—C131.373 (3)
C1—C31.437 (3)C10—H100.9300
O1—C71.3719 (19)C14—C131.373 (3)
O1—C91.400 (2)C14—H140.9300
O2—C61.3633 (19)C15—H15A0.9600
O2—C161.4057 (19)C15—H15B0.9600
O3—C121.372 (2)C15—H15C0.9600
O3—C151.413 (2)C13—H130.9300
O4—C191.369 (2)C16—C211.366 (2)
O4—C221.426 (3)C19—C201.371 (2)
C5—C61.376 (2)C19—C181.380 (3)
C5—C41.388 (2)C18—H180.9300
C5—H50.9300C20—C211.384 (2)
C3—C81.386 (2)C20—H200.9300
C3—C41.393 (2)C21—H210.9300
C7—C81.378 (2)C22—H22A0.9600
C7—C61.394 (2)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
C16—C17—C18119.27 (18)C9—C10—C11120.23 (18)
C16—C17—H17120.4C9—C10—H10119.9
C18—C17—H17120.4C11—C10—H10119.9
N2—C2—C4178.6 (2)C9—C14—C13119.32 (17)
N1—C1—C3177.2 (2)C9—C14—H14120.3
C7—O1—C9120.46 (13)C13—C14—H14120.3
C6—O2—C16117.85 (12)O3—C15—H15A109.5
C12—O3—C15118.08 (16)O3—C15—H15B109.5
C19—O4—C22117.84 (16)H15A—C15—H15B109.5
C6—C5—C4119.94 (15)O3—C15—H15C109.5
C6—C5—H5120.0H15A—C15—H15C109.5
C4—C5—H5120.0H15B—C15—H15C109.5
C8—C3—C4119.71 (16)C14—C13—C12121.19 (19)
C8—C3—C1121.20 (16)C14—C13—H13119.4
C4—C3—C1119.08 (15)C12—C13—H13119.4
O1—C7—C8124.19 (15)C21—C16—C17120.99 (16)
O1—C7—C6115.44 (15)C21—C16—O2120.27 (16)
C8—C7—C6120.27 (15)C17—C16—O2118.68 (17)
O2—C6—C5124.12 (15)O4—C19—C20124.73 (18)
O2—C6—C7115.91 (14)O4—C19—C18115.37 (17)
C5—C6—C7119.96 (16)C20—C19—C18119.89 (17)
C5—C4—C3120.11 (15)C17—C18—C19120.37 (17)
C5—C4—C2118.90 (15)C17—C18—H18119.8
C3—C4—C2120.98 (15)C19—C18—H18119.8
C7—C8—C3119.99 (16)C19—C20—C21119.71 (18)
C7—C8—H8120.0C19—C20—H20120.1
C3—C8—H8120.0C21—C20—H20120.1
C10—C9—C14120.23 (17)C16—C21—C20119.74 (17)
C10—C9—O1116.98 (16)C16—C21—H21120.1
C14—C9—O1122.49 (16)C20—C21—H21120.1
C12—C11—C10119.92 (17)O4—C22—H22A109.5
C12—C11—H11120.0O4—C22—H22B109.5
C10—C11—H11120.0H22A—C22—H22B109.5
C11—C12—O3124.51 (17)O4—C22—H22C109.5
C11—C12—C13119.09 (18)H22A—C22—H22C109.5
O3—C12—C13116.40 (18)H22B—C22—H22C109.5
C9—O1—C7—C833.4 (3)C15—O3—C12—C1126.5 (3)
C9—O1—C7—C6150.32 (16)C15—O3—C12—C13154.53 (19)
C16—O2—C6—C53.4 (2)C14—C9—C10—C110.7 (3)
C16—O2—C6—C7177.01 (15)O1—C9—C10—C11174.62 (16)
C4—C5—C6—O2178.51 (15)C12—C11—C10—C90.5 (3)
C4—C5—C6—C71.0 (3)C10—C9—C14—C131.4 (3)
O1—C7—C6—O21.4 (2)O1—C9—C14—C13174.93 (18)
C8—C7—C6—O2177.87 (15)C9—C14—C13—C120.9 (3)
O1—C7—C6—C5178.18 (15)C11—C12—C13—C140.4 (3)
C8—C7—C6—C51.7 (3)O3—C12—C13—C14178.69 (18)
C6—C5—C4—C30.1 (2)C18—C17—C16—C210.7 (3)
C6—C5—C4—C2178.85 (16)C18—C17—C16—O2176.69 (15)
C8—C3—C4—C50.5 (2)C6—O2—C16—C2183.9 (2)
C1—C3—C4—C5178.88 (16)C6—O2—C16—C1798.69 (18)
C8—C3—C4—C2179.28 (16)C22—O4—C19—C202.7 (3)
C1—C3—C4—C20.1 (2)C22—O4—C19—C18177.31 (17)
O1—C7—C8—C3177.40 (16)C16—C17—C18—C190.7 (3)
C6—C7—C8—C31.3 (3)O4—C19—C18—C17178.31 (16)
C4—C3—C8—C70.2 (3)C20—C19—C18—C171.7 (3)
C1—C3—C8—C7179.53 (16)O4—C19—C20—C21178.76 (17)
C7—O1—C9—C10143.22 (17)C18—C19—C20—C211.2 (3)
C7—O1—C9—C1443.1 (2)C17—C16—C21—C201.1 (3)
C10—C11—C12—O3177.94 (17)O2—C16—C21—C20176.20 (15)
C10—C11—C12—C131.1 (3)C19—C20—C21—C160.2 (3)

Experimental details

Crystal data
Chemical formulaC22H16N2O4
Mr372.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.7614 (2), 10.4926 (1), 14.0701 (2)
β (°) 112.551 (1)
V3)1876.28 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.23 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
24018, 3311, 2189
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.02
No. of reflections3311
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Foundation and the Research Fund for the Doctoral Program of Higher Education of China.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHanack, M. & Lang, M. (1994). Adv. Mater. 6, 819–833.  CrossRef CAS Web of Science Google Scholar
First citationLi, R., Zhang, X., Zhu, P., Ng, D. K. P., Kobayashi, N. & Jiang, J. (2006). Inorg. Chem. 45, 2327–2334.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds