organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-[(E)-2,4-di­chloro­benzyl­­idene]aniline

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 29 August 2010; accepted 6 September 2010; online 11 September 2010)

In the mol­ecule of the title compound, C13H8Cl3N, the 4-chloro­aniline and 2,4-dichloro­benzaldehyde moieties are planar with r.m.s. deviation of 0.0115 and 0.0116 Å, respectively, and are oriented at a dihedral angle of 13.94 (8)°.

Related literature

For related structures, see: Bernstein (1972[Bernstein, J. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 946-950.]), Yin et al. (2007[Yin, Z.-G., Qian, H.-Y., Chen, Y.-Z. & Feng, Y.-L. (2007). Acta Cryst. E63, o4119.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl3N

  • Mr = 284.55

  • Monoclinic, P 21 /n

  • a = 3.9665 (3) Å

  • b = 27.639 (2) Å

  • c = 11.4287 (9) Å

  • β = 99.165 (3)°

  • V = 1236.93 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 296 K

  • 0.32 × 0.12 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.946

  • 9236 measured reflections

  • 2239 independent reflections

  • 1372 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.107

  • S = 1.02

  • 2239 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The synthesis and crystal structure of the title compound is herein reported as a part of our new project aimed to the study of new Schiff bases of 2,4-dichlorobenzaldehyde and their metal complexation abilities. The crystal structures of the related compounds N-(2,4-dichlorobenzylidene)aniline (Bernstein, 1972) and N-(2,4-dichlorobenzylidene)-N'-phenylhydrazine (Yin et al., 2007) have been already published.

In the title compound (Fig. 1), the 4-chloroaniline (C1—C6/N1/Cl1) and 2,4-dichlorobenzaldehyde (C7—C13/Cl2/Cl3) moieties are planar with r. m. s. deviation of 0.0115 and 0.0116 Å, respectively. The dihedral angle between the two moieties is 13.94 (8)°. There exist a weak intramolecular C—H···Cl hydrogen bond (Table 1, Fig. 1) forming an S(5) ring motif (Bernstein et al., 1995). The crystal structure is stabilized only by van der Waals interactions.

Related literature top

For related structures, see: Bernstein (1972), Yin et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

An equimolar ratio of 2,4-dichlorobanzaldehyde and 4-chloroaniline were refluxed in xylene (20 ml) with acetic acid (2 ml) as a catalyst for an hour. The completion of the reaction was monitored through TLC. After completion of the reaction, the xylene was distilled out and the solid product obtained was dried. The dried crude material obtained was recrystallized in ethyl acetate and methanol (1:1 v/v) to affoard light pink needles of the title compound in 24 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted line represent the intramolecular H-bonds.
4-Chloro-N-[(E)-2,4-dichlorobenzylidene]aniline top
Crystal data top
C13H8Cl3NF(000) = 576
Mr = 284.55Dx = 1.528 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1372 reflections
a = 3.9665 (3) Åθ = 2.0–25.2°
b = 27.639 (2) ŵ = 0.71 mm1
c = 11.4287 (9) ÅT = 296 K
β = 99.165 (3)°Needles, light pink
V = 1236.93 (16) Å30.32 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2239 independent reflections
Radiation source: fine-focus sealed tube1372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.0°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 3233
Tmin = 0.903, Tmax = 0.946l = 1313
9236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.032P)2 + 0.7441P]
where P = (Fo2 + 2Fc2)/3
2239 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H8Cl3NV = 1236.93 (16) Å3
Mr = 284.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.9665 (3) ŵ = 0.71 mm1
b = 27.639 (2) ÅT = 296 K
c = 11.4287 (9) Å0.32 × 0.12 × 0.08 mm
β = 99.165 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2239 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1372 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.946Rint = 0.047
9236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2239 reflectionsΔρmin = 0.21 e Å3
154 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.1794 (3)0.20049 (4)0.09024 (9)0.0739 (4)
Cl21.1913 (3)0.18426 (3)0.60890 (9)0.0635 (4)
Cl31.3135 (3)0.02321 (4)0.87154 (8)0.0702 (4)
N10.4889 (7)0.10444 (10)0.3494 (2)0.0458 (10)
C10.3428 (8)0.12998 (12)0.2462 (3)0.0409 (11)
C20.1799 (9)0.10234 (13)0.1521 (3)0.0521 (14)
C30.0224 (9)0.12381 (14)0.0490 (3)0.0567 (16)
C40.0238 (8)0.17295 (14)0.0389 (3)0.0489 (14)
C50.1799 (9)0.20122 (14)0.1310 (3)0.0576 (14)
C60.3342 (9)0.17971 (14)0.2341 (3)0.0573 (12)
C70.7186 (8)0.12440 (13)0.4242 (3)0.0440 (12)
C80.8657 (7)0.10042 (12)0.5344 (3)0.0383 (11)
C91.0827 (8)0.12398 (12)0.6247 (3)0.0409 (11)
C101.2154 (8)0.10111 (13)0.7292 (3)0.0469 (12)
C111.1380 (8)0.05286 (13)0.7431 (3)0.0469 (14)
C120.9276 (9)0.02799 (13)0.6552 (3)0.0494 (12)
C130.7960 (8)0.05201 (13)0.5530 (3)0.0467 (12)
H20.177330.068820.158910.0624*
H30.084270.104900.013440.0681*
H50.180790.234730.123490.0691*
H60.434650.198950.296880.0683*
H70.794970.155150.408310.0528*
H101.354060.117800.789190.0562*
H120.876150.004430.665140.0591*
H130.654590.035240.493950.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0774 (7)0.0752 (8)0.0638 (7)0.0095 (6)0.0051 (5)0.0237 (6)
Cl20.0658 (6)0.0420 (6)0.0792 (7)0.0104 (5)0.0009 (5)0.0039 (5)
Cl30.0822 (7)0.0674 (8)0.0552 (6)0.0117 (6)0.0065 (5)0.0141 (5)
N10.0531 (18)0.0406 (18)0.0431 (16)0.0013 (14)0.0058 (13)0.0019 (14)
C10.0409 (19)0.041 (2)0.0413 (19)0.0013 (16)0.0077 (15)0.0013 (16)
C20.070 (3)0.035 (2)0.050 (2)0.0030 (18)0.0056 (18)0.0025 (17)
C30.066 (3)0.052 (3)0.049 (2)0.004 (2)0.0000 (18)0.0037 (19)
C40.043 (2)0.053 (3)0.051 (2)0.0061 (18)0.0088 (16)0.0085 (19)
C50.058 (2)0.037 (2)0.074 (3)0.0060 (19)0.001 (2)0.007 (2)
C60.060 (2)0.046 (2)0.061 (2)0.0027 (19)0.0057 (19)0.007 (2)
C70.043 (2)0.043 (2)0.048 (2)0.0034 (16)0.0137 (16)0.0043 (17)
C80.0338 (18)0.040 (2)0.0417 (19)0.0008 (15)0.0078 (14)0.0022 (16)
C90.0379 (19)0.037 (2)0.049 (2)0.0018 (15)0.0105 (15)0.0006 (16)
C100.043 (2)0.048 (2)0.047 (2)0.0007 (17)0.0011 (15)0.0010 (18)
C110.045 (2)0.053 (3)0.042 (2)0.0076 (18)0.0049 (16)0.0015 (18)
C120.061 (2)0.040 (2)0.047 (2)0.0003 (18)0.0084 (17)0.0054 (17)
C130.051 (2)0.044 (2)0.045 (2)0.0051 (17)0.0074 (16)0.0060 (17)
Geometric parameters (Å, º) top
Cl1—C41.740 (4)C8—C131.390 (5)
Cl2—C91.738 (3)C9—C101.379 (5)
Cl3—C111.728 (4)C10—C111.383 (5)
N1—C11.417 (4)C11—C121.382 (5)
N1—C71.272 (4)C12—C131.372 (5)
C1—C21.392 (5)C2—H20.9300
C1—C61.381 (5)C3—H30.9300
C2—C31.377 (5)C5—H50.9300
C3—C41.363 (5)C6—H60.9300
C4—C51.376 (5)C7—H70.9300
C5—C61.374 (5)C10—H100.9300
C7—C81.460 (5)C12—H120.9300
C8—C91.395 (5)C13—H130.9300
Cl2···C7i3.602 (4)C13···C12viii3.547 (5)
Cl3···Cl3ii3.3276 (14)C13···C10vii3.561 (5)
Cl1···H6iii3.1300C6···H72.5700
Cl1···H10iv3.1200C7···H62.6700
Cl2···H5v3.0400C12···H13viii3.1000
Cl2···H5vi2.9500C13···H13ix3.0000
Cl2···H72.6900H5···Cl2x2.9500
N1···C7vii3.347 (4)H5···Cl2iii3.0400
N1···H132.5400H6···C72.6700
C1···C7vii3.449 (5)H6···H72.1300
C7···C1i3.449 (5)H6···Cl1v3.1300
C7···Cl2vii3.602 (4)H7···Cl22.6900
C7···N1i3.347 (4)H7···C62.5700
C8···C9vii3.487 (4)H7···H62.1300
C9···C8i3.487 (4)H10···Cl1xi3.1200
C10···C13i3.561 (5)H13···N12.5400
C11···C12i3.506 (5)H13···C12viii3.1000
C12···C13viii3.547 (5)H13···C13ix3.0000
C12···C11vii3.506 (5)H13···H13ix2.3200
C1—N1—C7119.9 (3)Cl3—C11—C12119.8 (3)
N1—C1—C2116.6 (3)C10—C11—C12121.0 (3)
N1—C1—C6125.4 (3)C11—C12—C13118.8 (3)
C2—C1—C6117.9 (3)C8—C13—C12122.6 (3)
C1—C2—C3121.1 (3)C1—C2—H2119.00
C2—C3—C4119.6 (3)C3—C2—H2119.00
Cl1—C4—C3120.0 (3)C2—C3—H3120.00
Cl1—C4—C5119.4 (3)C4—C3—H3120.00
C3—C4—C5120.6 (3)C4—C5—H5120.00
C4—C5—C6119.7 (4)C6—C5—H5120.00
C1—C6—C5121.1 (3)C1—C6—H6119.00
N1—C7—C8121.9 (3)C5—C6—H6119.00
C7—C8—C9122.7 (3)N1—C7—H7119.00
C7—C8—C13120.5 (3)C8—C7—H7119.00
C9—C8—C13116.8 (3)C9—C10—H10121.00
Cl2—C9—C8120.3 (3)C11—C10—H10121.00
Cl2—C9—C10117.6 (3)C11—C12—H12121.00
C8—C9—C10122.1 (3)C13—C12—H12121.00
C9—C10—C11118.7 (3)C8—C13—H13119.00
Cl3—C11—C10119.2 (3)C12—C13—H13119.00
C7—N1—C1—C2160.2 (3)N1—C7—C8—C139.7 (5)
C7—N1—C1—C623.3 (5)C7—C8—C9—Cl20.4 (4)
C1—N1—C7—C8177.2 (3)C7—C8—C9—C10178.9 (3)
N1—C1—C2—C3178.4 (3)C13—C8—C9—Cl2178.9 (2)
C6—C1—C2—C31.6 (5)C13—C8—C9—C101.8 (5)
N1—C1—C6—C5178.6 (3)C7—C8—C13—C12179.8 (3)
C2—C1—C6—C52.2 (5)C9—C8—C13—C120.9 (5)
C1—C2—C3—C40.4 (5)Cl2—C9—C10—C11178.8 (3)
C2—C3—C4—Cl1179.1 (3)C8—C9—C10—C111.9 (5)
C2—C3—C4—C50.3 (5)C9—C10—C11—Cl3177.9 (3)
Cl1—C4—C5—C6178.6 (3)C9—C10—C11—C121.0 (5)
C3—C4—C5—C60.3 (5)Cl3—C11—C12—C13178.8 (3)
C4—C5—C6—C11.6 (5)C10—C11—C12—C130.1 (5)
N1—C7—C8—C9171.0 (3)C11—C12—C13—C80.1 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+3, y, z+2; (iii) x1/2, y+1/2, z1/2; (iv) x2, y, z1; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x1, y, z; (viii) x+2, y, z+1; (ix) x+1, y, z+1; (x) x3/2, y+1/2, z1/2; (xi) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl20.932.693.074 (4)106

Experimental details

Crystal data
Chemical formulaC13H8Cl3N
Mr284.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)3.9665 (3), 27.639 (2), 11.4287 (9)
β (°) 99.165 (3)
V3)1236.93 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.32 × 0.12 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.903, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
9236, 2239, 1372
Rint0.047
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.02
No. of reflections2239
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl20.932.693.074 (4)106
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 946–950.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, Z.-G., Qian, H.-Y., Chen, Y.-Z. & Feng, Y.-L. (2007). Acta Cryst. E63, o4119.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds