organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,5-Di­chloro-2-hy­dr­oxy­benzyl­­idene)-4-nitro­benzohydrazide methanol solvate

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, People's Republic of China
*Correspondence e-mail: zhuzhuhaiyun@126.com

(Received 6 September 2010; accepted 8 September 2010; online 15 September 2010)

In the title compound, C14H9Cl2N3O4·CH4O, the dihedral angle between the two benzene rings in the hydrazone mol­ecule is 6.3 (3)°. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, centrosymmetrically related mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background to hydrazone compounds, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Fan et al. (2010[Fan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438-1446.]); Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]). For the crystal structures of related hydrazone compounds, see: Khaledi et al. (2010[Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105-o106.]); Han et al. (2010[Han, Y.-Y., Li, Y.-H. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1085-o1086.]); Hussain et al. (2010[Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl2N3O4·CH4O

  • Mr = 386.18

  • Monoclinic, P 21 /n

  • a = 7.415 (3) Å

  • b = 13.408 (3) Å

  • c = 16.674 (2) Å

  • β = 99.716 (3)°

  • V = 1634.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.958

  • 8410 measured reflections

  • 3467 independent reflections

  • 2099 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.124

  • S = 1.02

  • 3467 reflections

  • 232 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.633 (3) 145
N2—H2⋯O5 0.90 (1) 1.91 (1) 2.793 (3) 167 (3)
O5—H5⋯O2i 0.82 2.15 2.903 (3) 153
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, considerable interest has been focused on the preparation and biological properties of hydrazone compounds (Rasras et al., 2010; Fan et al., 2010; Ajani et al., 2010; Avaji et al., 2009). The crystal structures of a number of hydrazone compounds have been reported (Khaledi et al., 2010; Han et al., 2010; Hussain et al., 2010; Ji & Lu, 2010). The author reports in this paper the title new hydrazone compound.

The asymmetric unit of the title compound (Fig. 1) consists of a hydrazone molecule and a methanol molecule. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 6.3 (3)°. There is an intramolecular O—H···N hydrogen bond (Table 1) stabilizing the conformation of the hydrazone molecule. All bond lengths are within normal values (Allen et al., 1987), and are comparable with those in the similar hydrazone compounds as cited above. In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked through intermolecular O—H···O and N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to hydrazone compounds, see: Rasras et al. (2010); Fan et al. (2010); Ajani et al. (2010); Avaji et al. (2009). For the crystal structures of related hydrazone compounds, see: Khaledi et al. (2010); Han et al. (2010); Hussain et al. (2010); Ji & Lu (2010). For reference bond-length data, see: Allen et al. (1987).

Experimental top

3,5-Dichlorosalicylaldehyde (0.191 g, 1 mmol) and 4-nitrobenzohydrazide (0.181 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear yellow solution was left to slowly evaporate in air for a week, yielding yellow needle crystals of the title compound suitable for X-ray analysis.

Refinement top

The H2 atom attached to N2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å, and with Uiso fixed at 0.08 Å2. The remaining H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along the c axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity.
N'-(3,5-Dichloro-2-hydroxybenzylidene)-4-nitrobenzohydrazide methanol solvate top
Crystal data top
C14H9Cl2N3O4·CH4OF(000) = 792
Mr = 386.18Dx = 1.570 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1245 reflections
a = 7.415 (3) Åθ = 2.4–24.5°
b = 13.408 (3) ŵ = 0.43 mm1
c = 16.674 (2) ÅT = 298 K
β = 99.716 (3)°Cut from needle, yellow
V = 1634.0 (8) Å30.15 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3467 independent reflections
Radiation source: fine-focus sealed tube2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.938, Tmax = 0.958k = 1417
8410 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0676P]
where P = (Fo2 + 2Fc2)/3
3467 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C14H9Cl2N3O4·CH4OV = 1634.0 (8) Å3
Mr = 386.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.415 (3) ŵ = 0.43 mm1
b = 13.408 (3) ÅT = 298 K
c = 16.674 (2) Å0.15 × 0.13 × 0.10 mm
β = 99.716 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3467 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2099 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.958Rint = 0.046
8410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
3467 reflectionsΔρmin = 0.31 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46614 (12)0.21402 (6)0.15195 (5)0.0565 (3)
Cl20.37115 (12)0.17025 (6)0.06479 (5)0.0538 (3)
N10.2955 (3)0.01141 (17)0.40697 (13)0.0378 (6)
N20.2663 (3)0.02375 (17)0.48171 (14)0.0388 (6)
N30.0804 (4)0.1043 (3)0.84113 (17)0.0567 (8)
O10.3717 (3)0.14918 (14)0.30523 (12)0.0481 (6)
H10.35720.12750.34970.072*
O20.2382 (3)0.13351 (15)0.52776 (12)0.0552 (6)
O30.0317 (4)0.1905 (2)0.84516 (15)0.0786 (8)
O40.1004 (4)0.0463 (2)0.89825 (15)0.0911 (9)
O50.4237 (3)0.21205 (16)0.51288 (15)0.0619 (7)
H50.52750.21000.50210.093*
C10.3366 (4)0.0260 (2)0.27209 (16)0.0329 (6)
C20.3712 (4)0.0733 (2)0.25280 (16)0.0356 (7)
C30.4095 (4)0.0933 (2)0.17535 (16)0.0349 (7)
C40.4077 (4)0.0197 (2)0.11735 (17)0.0410 (7)
H40.43110.03530.06570.049*
C50.3705 (4)0.0773 (2)0.13695 (16)0.0370 (7)
C60.3342 (4)0.1002 (2)0.21322 (16)0.0363 (7)
H60.30790.16560.22560.044*
C70.3046 (4)0.0552 (2)0.35267 (16)0.0373 (7)
H70.29080.12230.36470.045*
C80.2371 (4)0.0435 (2)0.53888 (17)0.0369 (7)
C90.1972 (4)0.0003 (2)0.61643 (16)0.0332 (7)
C100.1438 (4)0.0976 (2)0.62461 (17)0.0395 (7)
H100.13320.14060.58030.047*
C110.1061 (4)0.1320 (2)0.69819 (18)0.0440 (8)
H110.07100.19780.70400.053*
C120.1216 (4)0.0669 (2)0.76247 (17)0.0405 (7)
C130.1716 (4)0.0309 (2)0.75640 (17)0.0439 (8)
H130.17960.07370.80080.053*
C140.2096 (4)0.0643 (2)0.68295 (17)0.0400 (7)
H140.24390.13040.67770.048*
C150.3910 (5)0.3073 (2)0.5430 (2)0.0592 (9)
H15A0.45910.31470.59700.089*
H15B0.26280.31470.54440.089*
H15C0.42880.35740.50820.089*
H20.300 (5)0.0871 (11)0.494 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0704 (6)0.0374 (5)0.0641 (6)0.0041 (4)0.0181 (4)0.0126 (4)
Cl20.0633 (6)0.0514 (5)0.0479 (5)0.0048 (4)0.0127 (4)0.0148 (4)
N10.0435 (15)0.0393 (14)0.0321 (13)0.0018 (12)0.0109 (11)0.0040 (11)
N20.0501 (16)0.0345 (14)0.0334 (13)0.0035 (13)0.0120 (11)0.0031 (11)
N30.0562 (19)0.072 (2)0.0457 (18)0.0123 (17)0.0203 (14)0.0134 (16)
O10.0704 (16)0.0325 (12)0.0429 (12)0.0015 (11)0.0138 (12)0.0040 (9)
O20.0864 (18)0.0301 (12)0.0527 (14)0.0008 (12)0.0223 (12)0.0067 (10)
O30.098 (2)0.076 (2)0.0684 (18)0.0053 (17)0.0328 (15)0.0264 (15)
O40.143 (3)0.093 (2)0.0445 (15)0.0060 (19)0.0359 (16)0.0005 (15)
O50.0673 (17)0.0488 (14)0.0767 (17)0.0132 (12)0.0326 (14)0.0180 (12)
C10.0328 (16)0.0336 (16)0.0335 (15)0.0002 (13)0.0089 (12)0.0015 (12)
C20.0350 (17)0.0346 (17)0.0375 (16)0.0021 (13)0.0065 (13)0.0027 (13)
C30.0342 (17)0.0311 (16)0.0406 (16)0.0007 (13)0.0094 (13)0.0066 (13)
C40.0444 (19)0.0441 (18)0.0354 (16)0.0056 (15)0.0095 (13)0.0027 (14)
C50.0375 (17)0.0383 (17)0.0357 (16)0.0036 (14)0.0081 (13)0.0039 (13)
C60.0371 (17)0.0290 (15)0.0423 (17)0.0011 (13)0.0056 (13)0.0008 (13)
C70.0401 (18)0.0323 (16)0.0406 (16)0.0026 (14)0.0099 (13)0.0024 (13)
C80.0384 (18)0.0350 (17)0.0378 (16)0.0028 (14)0.0078 (13)0.0025 (14)
C90.0307 (16)0.0351 (16)0.0344 (15)0.0016 (13)0.0075 (12)0.0028 (13)
C100.0459 (19)0.0368 (17)0.0387 (17)0.0034 (14)0.0157 (14)0.0019 (13)
C110.048 (2)0.0404 (18)0.0461 (18)0.0010 (15)0.0150 (15)0.0044 (15)
C120.0340 (17)0.054 (2)0.0356 (16)0.0081 (15)0.0132 (13)0.0094 (15)
C130.048 (2)0.047 (2)0.0368 (17)0.0054 (16)0.0068 (14)0.0039 (14)
C140.0417 (18)0.0332 (17)0.0458 (18)0.0059 (14)0.0094 (14)0.0009 (14)
C150.058 (2)0.047 (2)0.074 (2)0.0044 (17)0.0156 (18)0.0058 (18)
Geometric parameters (Å, º) top
Cl1—C31.733 (3)C4—C51.380 (4)
Cl2—C51.733 (3)C4—H40.9300
N1—C71.282 (3)C5—C61.378 (4)
N1—N21.383 (3)C6—H60.9300
N2—C81.356 (4)C7—H70.9300
N2—H20.898 (10)C8—C91.492 (4)
N3—O31.217 (4)C9—C101.385 (4)
N3—O41.219 (3)C9—C141.393 (4)
N3—C121.483 (4)C10—C111.383 (4)
O1—C21.341 (3)C10—H100.9300
O1—H10.8200C11—C121.372 (4)
O2—C81.221 (3)C11—H110.9300
O5—C151.409 (3)C12—C131.371 (4)
O5—H50.8200C13—C141.377 (4)
C1—C61.396 (4)C13—H130.9300
C1—C21.403 (4)C14—H140.9300
C1—C71.457 (4)C15—H15A0.9600
C2—C31.394 (4)C15—H15B0.9600
C3—C41.380 (4)C15—H15C0.9600
C7—N1—N2115.7 (2)C1—C7—H7120.0
C8—N2—N1118.3 (2)O2—C8—N2123.0 (3)
C8—N2—H2123 (2)O2—C8—C9121.5 (3)
N1—N2—H2116 (2)N2—C8—C9115.4 (2)
O3—N3—O4124.2 (3)C10—C9—C14119.1 (3)
O3—N3—C12118.5 (3)C10—C9—C8123.7 (3)
O4—N3—C12117.3 (3)C14—C9—C8117.1 (3)
C2—O1—H1109.5C11—C10—C9120.5 (3)
C15—O5—H5109.5C11—C10—H10119.8
C6—C1—C2119.7 (2)C9—C10—H10119.8
C6—C1—C7118.2 (3)C12—C11—C10118.6 (3)
C2—C1—C7122.1 (3)C12—C11—H11120.7
O1—C2—C3118.6 (3)C10—C11—H11120.7
O1—C2—C1123.4 (3)C13—C12—C11122.6 (3)
C3—C2—C1118.0 (2)C13—C12—N3119.2 (3)
C4—C3—C2122.1 (3)C11—C12—N3118.2 (3)
C4—C3—Cl1119.0 (2)C12—C13—C14118.4 (3)
C2—C3—Cl1118.9 (2)C12—C13—H13120.8
C5—C4—C3119.1 (3)C14—C13—H13120.8
C5—C4—H4120.4C13—C14—C9120.8 (3)
C3—C4—H4120.4C13—C14—H14119.6
C6—C5—C4120.4 (3)C9—C14—H14119.6
C6—C5—Cl2120.3 (2)O5—C15—H15A109.5
C4—C5—Cl2119.3 (2)O5—C15—H15B109.5
C5—C6—C1120.6 (3)H15A—C15—H15B109.5
C5—C6—H6119.7O5—C15—H15C109.5
C1—C6—H6119.7H15A—C15—H15C109.5
N1—C7—C1120.0 (3)H15B—C15—H15C109.5
N1—C7—H7120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.633 (3)145
N2—H2···O50.90 (1)1.91 (1)2.793 (3)167 (3)
O5—H5···O2i0.822.152.903 (3)153
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H9Cl2N3O4·CH4O
Mr386.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.415 (3), 13.408 (3), 16.674 (2)
β (°) 99.716 (3)
V3)1634.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.938, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
8410, 3467, 2099
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.124, 1.02
No. of reflections3467
No. of parameters232
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.633 (3)144.6
N2—H2···O50.898 (10)1.910 (13)2.793 (3)167 (3)
O5—H5···O2i0.822.152.903 (3)153.3
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Science Research Foundation of Baoji University of Arts and Sciences (grant No. ZK085).

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438–1446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHan, Y.-Y., Li, Y.-H. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1085–o1086.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds