organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­methyl­amino-N′-(3-pyridyl­methyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and bThe Miyun High School Attached to Capital Normal University, Beijing 101500, People's Republic of China
*Correspondence e-mail: dingyanwei@sohu.com

(Received 14 September 2010; accepted 20 September 2010; online 25 September 2010)

The title compound, C15H16N4O, was prepared by the reaction of pyridine-3-carbaldehyde with 4-dimethyl­amino­benzo­hydrazide in methanol. The dihedral angle between the pyridine and the benzene rings is 5.1 (3)°. In the crystal structure, the hydrazone mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the b axis.

Related literature

For the synthesis and biological applications of hydrazone compounds, see: Alvarez et al. (2008[Alvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952-5961.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); El-Dissouky et al. (2010[El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330-345.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Fouda et al. (2008[Fouda, M. F. R., Abd-Elzaher, M. M., Shakdofa, M. M., El-Saied, F. A., Ayad, M. I. & El Tabl, A. S. (2008). J. Coord. Chem. 61, 1983-1996.]). For the crystal structures of similar hydrazone compounds, see: Wen et al. (2009[Wen, L., Yin, H., Li, W. & Li, K. (2009). Acta Cryst. E65, o2623.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Cui et al. (2009[Cui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N4O

  • Mr = 268.32

  • Orthorhombic, P b c a

  • a = 11.513 (2) Å

  • b = 7.898 (2) Å

  • c = 30.359 (3) Å

  • V = 2760.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.10 × 0.07 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.992, Tmax = 0.996

  • 20776 measured reflections

  • 2991 independent reflections

  • 1163 reflections with I > 2σ(I)

  • Rint = 0.190

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.151

  • S = 0.79

  • 2991 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.89 (1) 2.16 (1) 3.035 (3) 166 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, considerable attention has focused on the preparation and biological application of hydrazone compounds (Alvarez et al., 2008; Angelusiu et al., 2010; Ajani et al., 2010; El-Dissouky et al., 2010; Avaji et al., 2009; Fouda et al., 2008). In this paper, the crystal structure of the title new hydrazone compound is reported.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the pyridine and the benzene rings is 5.1 (3)°. The torsion angles C1—C6—N2—N3, C6—N2—N3—C7, N2—N3—C7—C8, and N2—N3—C7—O1 are 2.4 (3), 2.4 (3), 3.4 (3), and 0.9 (3)°, respectively. All the bond lengths are within normal values and are comparable with the similar hydrazone compounds (Wen et al., 2009; Fun et al., 2008; Ji & Lu, 2010; Ahmad et al., 2010; Cui et al., 2009). In the crystal structure, the hydrazone molecules are linked through intermolecular hydrogen bonds of type N—H···O (Table 1), forming chains along the b axis, as shown in Fig. 2.

Related literature top

For the synthesis and biological applications of hydrazone compounds, see: Alvarez et al. (2008); Angelusiu et al. (2010); Ajani et al. (2010); El-Dissouky et al. (2010); Avaji et al. (2009); Fouda et al. (2008). For the crystal structures of similar hydrazone compounds, see: Wen et al. (2009); Fun et al. (2008); Ji & Lu (2010); Ahmad et al. (2010); Cui et al. (2009).

Experimental top

The title compound was prepared by the reaction of pyridine-3-carbaldehyde (0.107 g, 1 mmol) with 4-dimethylaminobenzohydrazide (0.179 g, 1 mmol) in methanol at ambient temperature. Colourless block-like single crytals were formed by slow evaporation of the solution in air.

Refinement top

Atom H3 attached to N3 was located in a difference Fourier map and refined with the N3—H3 distance restrained to 0.90 (1) Å and an isotropic displacement parameter fixed at 0.08 Å2. All other H atoms were positioned geometrically and refined using a riding-model approximation, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. Crystals were small and very weakly diffracting and this is reflected in the large value of Rint (0.19), and the low ratio of observed/unique reflections (39%).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
4-Dimethylamino-N'-(3-pyridylmethylidene)benzohydrazide top
Crystal data top
C15H16N4OF(000) = 1136
Mr = 268.32Dx = 1.291 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1003 reflections
a = 11.513 (2) Åθ = 2.3–24.0°
b = 7.898 (2) ŵ = 0.09 mm1
c = 30.359 (3) ÅT = 298 K
V = 2760.5 (9) Å3Block, colourless
Z = 80.10 × 0.07 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2991 independent reflections
Radiation source: fine-focus sealed tube1163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.190
ω scansθmax = 27.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.992, Tmax = 0.996k = 109
20776 measured reflectionsl = 3837
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.79 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
2991 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C15H16N4OV = 2760.5 (9) Å3
Mr = 268.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.513 (2) ŵ = 0.09 mm1
b = 7.898 (2) ÅT = 298 K
c = 30.359 (3) Å0.10 × 0.07 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1163 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.996Rint = 0.190
20776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.79Δρmax = 0.20 e Å3
2991 reflectionsΔρmin = 0.25 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7015 (2)0.4212 (3)0.79621 (8)0.0715 (8)
N20.74617 (19)0.2877 (3)0.66360 (7)0.0442 (6)
N30.7654 (2)0.2199 (3)0.62206 (7)0.0462 (6)
N40.8832 (2)0.0665 (3)0.41884 (7)0.0548 (7)
O10.89752 (16)0.4234 (2)0.60695 (5)0.0494 (5)
C10.6436 (2)0.2668 (4)0.73145 (8)0.0425 (7)
C20.5449 (3)0.2126 (4)0.75284 (10)0.0636 (9)
H20.49230.14160.73870.076*
C30.5253 (3)0.2652 (4)0.79551 (10)0.0677 (10)
H3A0.45950.22960.81070.081*
C40.6033 (3)0.3691 (4)0.81491 (10)0.0664 (10)
H40.58710.40690.84330.080*
C50.7181 (3)0.3692 (4)0.75487 (9)0.0581 (9)
H50.78540.40500.74070.070*
C60.6688 (2)0.2116 (4)0.68628 (9)0.0459 (8)
H60.62830.12100.67420.055*
C70.8431 (2)0.2965 (4)0.59507 (9)0.0405 (7)
C80.8553 (2)0.2255 (3)0.55060 (8)0.0374 (7)
C90.7769 (2)0.1128 (3)0.53203 (8)0.0416 (7)
H90.71570.07320.54910.050*
C100.7866 (2)0.0575 (3)0.48906 (8)0.0456 (7)
H100.73250.01850.47780.055*
C110.8776 (2)0.1154 (3)0.46229 (9)0.0423 (7)
C120.9577 (2)0.2268 (4)0.48112 (9)0.0506 (8)
H121.01980.26560.46430.061*
C130.9464 (2)0.2797 (3)0.52384 (9)0.0470 (8)
H131.00120.35400.53540.056*
C140.8071 (3)0.0613 (4)0.40150 (9)0.0736 (10)
H14A0.82020.16600.41680.110*
H14B0.82250.07650.37070.110*
H14C0.72790.02660.40550.110*
C150.9728 (3)0.1326 (4)0.38994 (9)0.0780 (11)
H15A0.97550.25370.39240.117*
H15B0.95560.10180.36010.117*
H15C1.04670.08590.39820.117*
H30.728 (2)0.124 (2)0.6156 (9)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.084 (2)0.094 (2)0.0365 (16)0.0072 (18)0.0065 (15)0.0122 (15)
N20.0460 (15)0.0567 (17)0.0298 (13)0.0026 (13)0.0005 (11)0.0049 (12)
N30.0557 (17)0.0556 (18)0.0274 (12)0.0044 (13)0.0040 (11)0.0085 (12)
N40.0619 (17)0.0693 (18)0.0331 (14)0.0091 (15)0.0156 (13)0.0065 (13)
O10.0555 (13)0.0565 (13)0.0363 (12)0.0069 (11)0.0072 (9)0.0053 (10)
C10.0428 (17)0.0533 (19)0.0313 (16)0.0044 (15)0.0021 (13)0.0008 (14)
C20.050 (2)0.087 (3)0.054 (2)0.0078 (18)0.0038 (16)0.0122 (18)
C30.058 (2)0.103 (3)0.042 (2)0.004 (2)0.0161 (17)0.0005 (19)
C40.078 (3)0.088 (3)0.0328 (18)0.018 (2)0.0087 (19)0.0037 (18)
C50.062 (2)0.076 (2)0.0366 (18)0.0078 (18)0.0079 (16)0.0041 (16)
C60.0441 (18)0.055 (2)0.0382 (17)0.0024 (15)0.0041 (14)0.0068 (15)
C70.0432 (18)0.0435 (19)0.0348 (17)0.0083 (15)0.0065 (14)0.0014 (15)
C80.0382 (16)0.0434 (18)0.0305 (16)0.0019 (14)0.0009 (12)0.0024 (13)
C90.0453 (18)0.0491 (19)0.0304 (15)0.0046 (15)0.0082 (13)0.0051 (13)
C100.0497 (18)0.053 (2)0.0340 (16)0.0088 (15)0.0014 (14)0.0004 (14)
C110.0454 (18)0.0516 (19)0.0301 (16)0.0027 (15)0.0065 (14)0.0013 (14)
C120.0433 (18)0.064 (2)0.0445 (18)0.0057 (16)0.0133 (14)0.0009 (16)
C130.0407 (18)0.057 (2)0.0431 (18)0.0047 (15)0.0024 (14)0.0050 (15)
C140.102 (3)0.087 (3)0.0322 (18)0.014 (2)0.0041 (18)0.0140 (17)
C150.088 (3)0.098 (3)0.047 (2)0.010 (2)0.0301 (19)0.0022 (18)
Geometric parameters (Å, º) top
N1—C41.331 (4)C6—H60.9300
N1—C51.334 (3)C7—C81.469 (3)
N2—C61.276 (3)C8—C91.388 (3)
N2—N31.388 (3)C8—C131.394 (3)
N3—C71.356 (3)C9—C101.380 (3)
N3—H30.894 (10)C9—H90.9300
N4—C111.376 (3)C10—C111.402 (3)
N4—C141.436 (3)C10—H100.9300
N4—C151.451 (3)C11—C121.397 (3)
O1—C71.236 (3)C12—C131.369 (3)
C1—C21.377 (4)C12—H120.9300
C1—C51.377 (4)C13—H130.9300
C1—C61.468 (3)C14—H14A0.9600
C2—C31.379 (4)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.352 (4)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—H50.9300
C4—N1—C5115.3 (3)C9—C8—C7123.8 (2)
C6—N2—N3114.8 (2)C13—C8—C7119.4 (3)
C7—N3—N2118.8 (2)C10—C9—C8122.3 (2)
C7—N3—H3124.4 (19)C10—C9—H9118.8
N2—N3—H3116.7 (19)C8—C9—H9118.8
C11—N4—C14121.3 (2)C9—C10—C11120.3 (3)
C11—N4—C15120.8 (3)C9—C10—H10119.8
C14—N4—C15117.7 (2)C11—C10—H10119.8
C2—C1—C5116.9 (3)N4—C11—C12122.5 (2)
C2—C1—C6120.8 (3)N4—C11—C10119.9 (3)
C5—C1—C6122.3 (3)C12—C11—C10117.5 (2)
C1—C2—C3119.0 (3)C13—C12—C11121.2 (2)
C1—C2—H2120.5C13—C12—H12119.4
C3—C2—H2120.5C11—C12—H12119.4
C4—C3—C2118.9 (3)C12—C13—C8122.0 (3)
C4—C3—H3A120.6C12—C13—H13119.0
C2—C3—H3A120.6C8—C13—H13119.0
N1—C4—C3124.5 (3)N4—C14—H14A109.5
N1—C4—H4117.8N4—C14—H14B109.5
C3—C4—H4117.8H14A—C14—H14B109.5
N1—C5—C1125.3 (3)N4—C14—H14C109.5
N1—C5—H5117.4H14A—C14—H14C109.5
C1—C5—H5117.4H14B—C14—H14C109.5
N2—C6—C1120.1 (3)N4—C15—H15A109.5
N2—C6—H6119.9N4—C15—H15B109.5
C1—C6—H6119.9H15A—C15—H15B109.5
O1—C7—N3121.4 (3)N4—C15—H15C109.5
O1—C7—C8122.0 (3)H15A—C15—H15C109.5
N3—C7—C8116.6 (3)H15B—C15—H15C109.5
C9—C8—C13116.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.89 (1)2.16 (1)3.035 (3)166 (3)
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H16N4O
Mr268.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.513 (2), 7.898 (2), 30.359 (3)
V3)2760.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.07 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.992, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
20776, 2991, 1163
Rint0.190
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.151, 0.79
No. of reflections2991
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.894 (10)2.159 (12)3.035 (3)166 (3)
Symmetry code: (i) x+3/2, y1/2, z.
 

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952–5961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.  Web of Science CrossRef CAS Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Shakdofa, M. M., El-Saied, F. A., Ayad, M. I. & El Tabl, A. S. (2008). J. Coord. Chem. 61, 1983–1996.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L., Yin, H., Li, W. & Li, K. (2009). Acta Cryst. E65, o2623.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds