organic compounds
4-[(2-Hydroxy-5-nitrobenzylidene)amino]benzenesulfonamide
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The title Schiff base compound, C13H11N3O5S, exists in an E configuration with respect to the C=N double bond. The benzene rings are almost coplanar, making a dihedral angle of 2.82 (6). The sulfonamide group is twisted away from the attached phenyl ring with an N—S—C—C torsion angle of 64.84 (11)°. An intramolecular O—H⋯N hydrogen bond stabilizes the molecule, generating an S(6) ring motif. In the crystal, intermolecular N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Related literature
For background and the biological activity of sulfonamide and its derivatives, see: Kremer et al. (2006); Chumakov et al. (2006); Mohamed & Sharaby (2007); Wang et al. (2010); Sharaby (2007); Aziz-ur-Rehman et al. (2010); Subashini et al. (2009); Loughrey et al. (2009). For a related structure, see: Fun et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810036949/sj5036sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810036949/sj5036Isup2.hkl
The title compound was synthesized by the general method of condensation of sulfanilamide with 2-hydroxy-5-nitrobenzaldehyde. To a methanolic solution (10 ml) of sulfanilamide (0.3444 g, 2 mmol), sodium acetate (0.1641 g, 2 mmol) was added. The resulting solution was heated to reflux on a water bath. A methanolic solution (10 ml) of 2-hydroxy-5-nitrobenzaldehyde (0.3342 g, 2 mmol) was then added dropwise to the solution. The solution was left under reflux (65–70°C) for 1 h. After half an hour, yellowish orange precipitate started to form during refluxing. The resulting mixture was filtered and the filtrate was left to evaporate slowly at room temperature. Orange crystals of the title compound suitable for X-ray diffraction were obtained after 1 week.
N– and O– bound H atoms were located from difference Fourier map and refined freely with the N–H bond lengths being 0.83 (2) to 0.84 (2) Å and the O–H distance 0.96 (3) Å. The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 Å].
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond. | |
Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the three-dimensional network. Intermolecular interactions are shown as dashed lines. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
C13H11N3O5S | F(000) = 664 |
Mr = 321.31 | Dx = 1.596 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9950 reflections |
a = 6.7698 (1) Å | θ = 2.8–35.5° |
b = 26.4754 (3) Å | µ = 0.27 mm−1 |
c = 9.9683 (1) Å | T = 100 K |
β = 131.544 (1)° | Plate, orange |
V = 1337.21 (3) Å3 | 0.41 × 0.27 × 0.06 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 4825 independent reflections |
Radiation source: fine-focus sealed tube | 4104 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and ω scans | θmax = 32.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→10 |
Tmin = 0.896, Tmax = 0.985 | k = −40→36 |
29377 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.7191P] where P = (Fo2 + 2Fc2)/3 |
4825 reflections | (Δ/σ)max = 0.002 |
211 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
C13H11N3O5S | V = 1337.21 (3) Å3 |
Mr = 321.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.7698 (1) Å | µ = 0.27 mm−1 |
b = 26.4754 (3) Å | T = 100 K |
c = 9.9683 (1) Å | 0.41 × 0.27 × 0.06 mm |
β = 131.544 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4825 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4104 reflections with I > 2σ(I) |
Tmin = 0.896, Tmax = 0.985 | Rint = 0.031 |
29377 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.60 e Å−3 |
4825 reflections | Δρmin = −0.43 e Å−3 |
211 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.25811 (6) | 0.770137 (11) | 0.29838 (4) | 0.01433 (8) | |
O1 | 0.69814 (19) | 1.06412 (4) | 0.38905 (13) | 0.01833 (18) | |
O2 | 1.2322 (2) | 1.14670 (4) | 0.11034 (15) | 0.0251 (2) | |
O3 | 1.1687 (2) | 1.06896 (4) | 0.02207 (13) | 0.0217 (2) | |
O4 | 0.46897 (19) | 0.73446 (4) | 0.38253 (15) | 0.0264 (2) | |
O5 | 0.1385 (2) | 0.77870 (4) | 0.37367 (14) | 0.0243 (2) | |
N1 | 0.6474 (2) | 0.97162 (4) | 0.29501 (13) | 0.01443 (19) | |
N2 | 0.0283 (2) | 0.75128 (4) | 0.09717 (14) | 0.01538 (19) | |
N3 | 1.1534 (2) | 1.10368 (4) | 0.09747 (14) | 0.0166 (2) | |
C1 | 0.8033 (2) | 1.07306 (5) | 0.31518 (15) | 0.0146 (2) | |
C2 | 0.8745 (2) | 1.12251 (5) | 0.31389 (16) | 0.0169 (2) | |
H2A | 0.8429 | 1.1487 | 0.3599 | 0.020* | |
C3 | 0.9919 (2) | 1.13262 (5) | 0.24433 (16) | 0.0167 (2) | |
H3A | 1.0412 | 1.1654 | 0.2442 | 0.020* | |
C4 | 1.0352 (2) | 1.09290 (5) | 0.17442 (15) | 0.0142 (2) | |
C5 | 0.9623 (2) | 1.04378 (5) | 0.17048 (15) | 0.0146 (2) | |
H5A | 0.9913 | 1.0181 | 0.1215 | 0.018* | |
C6 | 0.8442 (2) | 1.03309 (5) | 0.24119 (15) | 0.0139 (2) | |
C7 | 0.7632 (2) | 0.98178 (5) | 0.23515 (16) | 0.0158 (2) | |
H7A | 0.7949 | 0.9561 | 0.1879 | 0.019* | |
C8 | 0.5618 (2) | 0.92230 (5) | 0.29004 (15) | 0.0135 (2) | |
C9 | 0.4354 (2) | 0.91795 (5) | 0.35687 (16) | 0.0152 (2) | |
H9A | 0.4130 | 0.9465 | 0.4000 | 0.018* | |
C10 | 0.3425 (2) | 0.87159 (5) | 0.35986 (16) | 0.0158 (2) | |
H10A | 0.2583 | 0.8689 | 0.4045 | 0.019* | |
C11 | 0.3773 (2) | 0.82917 (5) | 0.29516 (15) | 0.0139 (2) | |
C12 | 0.5046 (2) | 0.83273 (5) | 0.22825 (16) | 0.0163 (2) | |
H12A | 0.5280 | 0.8040 | 0.1862 | 0.020* | |
C13 | 0.5958 (2) | 0.87914 (5) | 0.22483 (16) | 0.0164 (2) | |
H13A | 0.6792 | 0.8818 | 0.1796 | 0.020* | |
H2N2 | 0.074 (4) | 0.7439 (7) | 0.041 (3) | 0.028 (5)* | |
H1N2 | −0.119 (4) | 0.7655 (8) | 0.038 (3) | 0.030 (5)* | |
H1O1 | 0.655 (5) | 1.0290 (11) | 0.368 (4) | 0.068 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01492 (14) | 0.01229 (14) | 0.01464 (13) | −0.00158 (10) | 0.00933 (11) | 0.00082 (9) |
O1 | 0.0243 (5) | 0.0160 (5) | 0.0229 (4) | 0.0000 (4) | 0.0191 (4) | −0.0007 (3) |
O2 | 0.0303 (5) | 0.0155 (5) | 0.0373 (5) | −0.0009 (4) | 0.0257 (5) | 0.0052 (4) |
O3 | 0.0270 (5) | 0.0219 (5) | 0.0227 (4) | −0.0038 (4) | 0.0192 (4) | −0.0036 (4) |
O4 | 0.0152 (4) | 0.0161 (5) | 0.0320 (5) | 0.0019 (4) | 0.0090 (4) | 0.0079 (4) |
O5 | 0.0372 (6) | 0.0225 (5) | 0.0267 (5) | −0.0090 (4) | 0.0268 (5) | −0.0048 (4) |
N1 | 0.0162 (4) | 0.0123 (5) | 0.0157 (4) | −0.0014 (4) | 0.0110 (4) | −0.0003 (3) |
N2 | 0.0137 (4) | 0.0156 (5) | 0.0161 (4) | −0.0005 (4) | 0.0096 (4) | −0.0019 (4) |
N3 | 0.0167 (5) | 0.0155 (5) | 0.0175 (4) | 0.0006 (4) | 0.0112 (4) | 0.0032 (4) |
C1 | 0.0147 (5) | 0.0149 (5) | 0.0142 (4) | 0.0010 (4) | 0.0096 (4) | 0.0005 (4) |
C2 | 0.0200 (5) | 0.0117 (5) | 0.0197 (5) | 0.0014 (4) | 0.0134 (5) | −0.0002 (4) |
C3 | 0.0170 (5) | 0.0134 (5) | 0.0181 (5) | 0.0001 (4) | 0.0110 (5) | 0.0010 (4) |
C4 | 0.0148 (5) | 0.0132 (5) | 0.0146 (5) | −0.0003 (4) | 0.0098 (4) | 0.0011 (4) |
C5 | 0.0179 (5) | 0.0118 (5) | 0.0154 (5) | −0.0005 (4) | 0.0116 (4) | −0.0002 (4) |
C6 | 0.0165 (5) | 0.0118 (5) | 0.0143 (4) | −0.0007 (4) | 0.0105 (4) | −0.0006 (4) |
C7 | 0.0195 (5) | 0.0134 (5) | 0.0171 (5) | −0.0009 (4) | 0.0132 (5) | −0.0005 (4) |
C8 | 0.0136 (5) | 0.0122 (5) | 0.0137 (4) | −0.0007 (4) | 0.0087 (4) | −0.0002 (4) |
C9 | 0.0183 (5) | 0.0127 (5) | 0.0185 (5) | −0.0005 (4) | 0.0138 (5) | −0.0016 (4) |
C10 | 0.0173 (5) | 0.0158 (6) | 0.0178 (5) | −0.0015 (4) | 0.0132 (5) | −0.0012 (4) |
C11 | 0.0143 (5) | 0.0129 (5) | 0.0139 (4) | −0.0017 (4) | 0.0091 (4) | −0.0005 (4) |
C12 | 0.0196 (5) | 0.0138 (5) | 0.0187 (5) | −0.0021 (4) | 0.0140 (5) | −0.0030 (4) |
C13 | 0.0202 (5) | 0.0146 (6) | 0.0199 (5) | −0.0020 (4) | 0.0157 (5) | −0.0022 (4) |
S1—O4 | 1.4301 (10) | C3—C4 | 1.3958 (17) |
S1—O5 | 1.4408 (10) | C3—H3A | 0.9300 |
S1—N2 | 1.5980 (11) | C4—C5 | 1.3822 (17) |
S1—C11 | 1.7689 (12) | C5—C6 | 1.4014 (15) |
O1—C1 | 1.3417 (14) | C5—H5A | 0.9300 |
O1—H1O1 | 0.96 (3) | C6—C7 | 1.4513 (17) |
O2—N3 | 1.2278 (14) | C7—H7A | 0.9300 |
O3—N3 | 1.2345 (14) | C8—C9 | 1.3951 (15) |
N1—C7 | 1.2892 (15) | C8—C13 | 1.4068 (16) |
N1—C8 | 1.4160 (16) | C9—C10 | 1.3881 (17) |
N2—H2N2 | 0.83 (2) | C9—H9A | 0.9300 |
N2—H1N2 | 0.84 (2) | C10—C11 | 1.3908 (17) |
N3—C4 | 1.4576 (15) | C10—H10A | 0.9300 |
C1—C2 | 1.3982 (17) | C11—C12 | 1.3999 (16) |
C1—C6 | 1.4181 (16) | C12—C13 | 1.3855 (17) |
C2—C3 | 1.3837 (17) | C12—H12A | 0.9300 |
C2—H2A | 0.9300 | C13—H13A | 0.9300 |
O4—S1—O5 | 119.05 (7) | C4—C5—H5A | 120.4 |
O4—S1—N2 | 106.97 (6) | C6—C5—H5A | 120.4 |
O5—S1—N2 | 106.71 (6) | C5—C6—C1 | 118.97 (11) |
O4—S1—C11 | 107.71 (6) | C5—C6—C7 | 119.61 (10) |
O5—S1—C11 | 106.92 (6) | C1—C6—C7 | 121.42 (10) |
N2—S1—C11 | 109.23 (6) | N1—C7—C6 | 120.34 (11) |
C1—O1—H1O1 | 104.2 (17) | N1—C7—H7A | 119.8 |
C7—N1—C8 | 122.45 (11) | C6—C7—H7A | 119.8 |
S1—N2—H2N2 | 115.9 (13) | C9—C8—C13 | 119.57 (11) |
S1—N2—H1N2 | 117.2 (14) | C9—C8—N1 | 115.21 (10) |
H2N2—N2—H1N2 | 115.7 (19) | C13—C8—N1 | 125.21 (10) |
O2—N3—O3 | 123.25 (11) | C10—C9—C8 | 120.88 (11) |
O2—N3—C4 | 118.61 (11) | C10—C9—H9A | 119.6 |
O3—N3—C4 | 118.14 (10) | C8—C9—H9A | 119.6 |
O1—C1—C2 | 118.81 (11) | C9—C10—C11 | 119.06 (10) |
O1—C1—C6 | 120.75 (11) | C9—C10—H10A | 120.5 |
C2—C1—C6 | 120.44 (11) | C11—C10—H10A | 120.5 |
C3—C2—C1 | 120.11 (11) | C10—C11—C12 | 120.90 (11) |
C3—C2—H2A | 119.9 | C10—C11—S1 | 119.05 (9) |
C1—C2—H2A | 119.9 | C12—C11—S1 | 120.04 (9) |
C2—C3—C4 | 119.01 (11) | C13—C12—C11 | 119.77 (11) |
C2—C3—H3A | 120.5 | C13—C12—H12A | 120.1 |
C4—C3—H3A | 120.5 | C11—C12—H12A | 120.1 |
C5—C4—C3 | 122.27 (11) | C12—C13—C8 | 119.81 (10) |
C5—C4—N3 | 118.65 (11) | C12—C13—H13A | 120.1 |
C3—C4—N3 | 119.05 (11) | C8—C13—H13A | 120.1 |
C4—C5—C6 | 119.17 (11) | ||
O1—C1—C2—C3 | 177.73 (11) | C1—C6—C7—N1 | 1.12 (18) |
C6—C1—C2—C3 | −1.66 (18) | C7—N1—C8—C9 | −178.76 (11) |
C1—C2—C3—C4 | 0.62 (18) | C7—N1—C8—C13 | 1.41 (19) |
C2—C3—C4—C5 | 0.68 (19) | C13—C8—C9—C10 | −0.02 (18) |
C2—C3—C4—N3 | 178.64 (11) | N1—C8—C9—C10 | −179.86 (11) |
O2—N3—C4—C5 | −175.78 (11) | C8—C9—C10—C11 | 0.06 (19) |
O3—N3—C4—C5 | 4.36 (16) | C9—C10—C11—C12 | 0.21 (18) |
O2—N3—C4—C3 | 6.19 (17) | C9—C10—C11—S1 | −179.82 (9) |
O3—N3—C4—C3 | −173.67 (11) | O4—S1—C11—C10 | −128.97 (10) |
C3—C4—C5—C6 | −0.92 (18) | O5—S1—C11—C10 | 0.07 (12) |
N3—C4—C5—C6 | −178.88 (10) | N2—S1—C11—C10 | 115.18 (10) |
C4—C5—C6—C1 | −0.13 (17) | O4—S1—C11—C12 | 51.00 (12) |
C4—C5—C6—C7 | 179.03 (11) | O5—S1—C11—C12 | −179.95 (10) |
O1—C1—C6—C5 | −177.97 (11) | N2—S1—C11—C12 | −64.84 (11) |
C2—C1—C6—C5 | 1.41 (18) | C10—C11—C12—C13 | −0.51 (18) |
O1—C1—C6—C7 | 2.88 (18) | S1—C11—C12—C13 | 179.51 (10) |
C2—C1—C6—C7 | −177.74 (11) | C11—C12—C13—C8 | 0.55 (19) |
C8—N1—C7—C6 | 179.21 (11) | C9—C8—C13—C12 | −0.29 (18) |
C5—C6—C7—N1 | −178.02 (11) | N1—C8—C13—C12 | 179.54 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O5i | 0.82 (3) | 2.07 (3) | 2.891 (2) | 172 (3) |
N2—H1N2···O2ii | 0.84 (3) | 2.58 (2) | 3.1378 (15) | 125 (2) |
N2—H1N2···O4iii | 0.84 (3) | 2.11 (3) | 2.883 (2) | 153 (2) |
O1—H1O1···N1 | 0.96 (3) | 1.67 (3) | 2.5626 (15) | 154 (4) |
C5—H5A···O3iv | 0.93 | 2.55 | 3.3350 (17) | 143 |
C7—H7A···O3iv | 0.93 | 2.36 | 3.187 (2) | 148 |
C10—H10A···O1v | 0.93 | 2.58 | 3.1861 (19) | 123 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z; (iii) x−1, −y+3/2, z−1/2; (iv) −x+2, −y+2, −z; (v) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H11N3O5S |
Mr | 321.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.7698 (1), 26.4754 (3), 9.9683 (1) |
β (°) | 131.544 (1) |
V (Å3) | 1337.21 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.41 × 0.27 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.896, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29377, 4825, 4104 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.756 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.110, 1.06 |
No. of reflections | 4825 |
No. of parameters | 211 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.60, −0.43 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O5i | 0.82 (3) | 2.07 (3) | 2.891 (2) | 172 (3) |
N2—H1N2···O2ii | 0.84 (3) | 2.58 (2) | 3.1378 (15) | 125 (2) |
N2—H1N2···O4iii | 0.84 (3) | 2.11 (3) | 2.883 (2) | 153 (2) |
O1—H1O1···N1 | 0.96 (3) | 1.67 (3) | 2.5626 (15) | 154 (4) |
C5—H5A···O3iv | 0.93 | 2.55 | 3.3350 (17) | 143 |
C7—H7A···O3iv | 0.93 | 2.36 | 3.187 (2) | 148 |
C10—H10A···O1v | 0.93 | 2.58 | 3.1861 (19) | 123 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z; (iii) x−1, −y+3/2, z−1/2; (iv) −x+2, −y+2, −z; (v) −x+1, −y+2, −z+1. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the RU research grant (PKIMIA/815002). HKF and WSL thank USM for the Research University Grant (1001/PFIZIK/811160). YHT and WSL are grateful for the award of USM fellowships for financial assistance.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., Palomares-Sánches, S. A., Ortiz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923–929. Web of Science CrossRef CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Goh, J. H., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o372–o373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kremer, E., Facchin, G., Estévez, E., Alborés, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167–1175. Web of Science CSD CrossRef PubMed CAS Google Scholar
Loughrey, B. T., Williams, M. L. & Healy, P. C. (2009). Acta Cryst. E65, o2087. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed, G. G. & Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 949–958. CrossRef Google Scholar
Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271–1278. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subashini, A., Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2009). J. Chem. Crystallogr. 39, 112–116. Web of Science CSD CrossRef CAS Google Scholar
Wang, X. L., Wan, K. & Zhou, C. H. (2010). Eur. J. Med. Chem. 45, 4631–4639. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfanilamide which is also known as sulfonamide and its derivatives are extensively used in medicine as they possess a wide range of medicinal, pharmacological and antimicrobial properties (Kremer et al., 2006, Chumakov et al., 2006). Sulfanilamide was the first drug that had been found to be used as a preventive and therapeutic agent towards a variety of diseases or bacterial infections in human biological systems. Schiff bases derived from sulfanilamide exhibit various pharmacological activities including antibacterial, antifungal, antiviral, antimicrobial, anticonvulsant, antitumor, antiulcer, anti-neoplastic, and anti-inflammatory properties as well as acting as enzymatic inhibitors (Wang et al., 2010, Sharaby, 2007, Kremer et al., 2006, Chumakov et al., 2006, Aziz-ur-Rehman et al., 2010, Subashini et al., 2009, Loughrey et al., 2009). The biological activity could be increased by the complexation with metal ions (Mohamed & Sharaby, 2007; Kremer et al., 2006).
The title Schiff base compound (Fig. 1) exists in an E configuration with respect to the C7═N1 double bond. The phenyl rings (C1–C6 & C8–C13) are almost coplanar with each other with a dihedral angle of 2.82 (6)°. The sulfonamide group (S1/O3/O4/N2) is twisted away from the attached phenyl ring with the torsion angle between N2–S1–C11–C12 being 64.84 (11)°. An intramolecular O1—H1O1···N1 hydrogen bond stabilized the molecule, generating an S(6) ring motif (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Fun et al., 2010).
In the crystal packing (Fig. 2), intermolecular N2—H2N2···O5, N2—H1N2···O2, N2—H1N2···O4, C5—H5A···O3, C7—H7A···O3 and C10—H10A···O1 hydrogen bonds (Table 1) link the molecules into three-dimensional network.