organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2610-o2611

4-[(2-Hy­dr­oxy-5-nitro­benzyl­­idene)amino]­benzene­sulfonamide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 September 2010; accepted 15 September 2010; online 25 September 2010)

The title Schiff base compound, C13H11N3O5S, exists in an E configuration with respect to the C=N double bond. The benzene rings are almost coplanar, making a dihedral angle of 2.82 (6). The sulfonamide group is twisted away from the attached phenyl ring with an N—S—C—C torsion angle of 64.84 (11)°. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecule, generating an S(6) ring motif. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background and the biological activity of sulfonamide and its derivatives, see: Kremer et al. (2006[Kremer, E., Facchin, G., Estévez, E., Alborés, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167-1175.]); Chumakov et al. (2006[Chumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., Palomares-Sánches, S. A., Ortiz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923-929.]); Mohamed & Sharaby (2007[Mohamed, G. G. & Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 949-958.]); Wang et al. (2010[Wang, X. L., Wan, K. & Zhou, C. H. (2010). Eur. J. Med. Chem. 45, 4631-4639.]); Sharaby (2007[Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271-1278.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.]); Subashini et al. (2009[Subashini, A., Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2009). J. Chem. Crystallogr. 39, 112-116.]); Loughrey et al. (2009[Loughrey, B. T., Williams, M. L. & Healy, P. C. (2009). Acta Cryst. E65, o2087.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Goh, J. H., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o372-o373.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O5S

  • Mr = 321.31

  • Monoclinic, P 21 /c

  • a = 6.7698 (1) Å

  • b = 26.4754 (3) Å

  • c = 9.9683 (1) Å

  • β = 131.544 (1)°

  • V = 1337.21 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.41 × 0.27 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.985

  • 29377 measured reflections

  • 4825 independent reflections

  • 4104 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.06

  • 4825 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O5i 0.82 (3) 2.07 (3) 2.891 (2) 172 (3)
N2—H1N2⋯O2ii 0.84 (3) 2.58 (2) 3.1378 (15) 125 (2)
N2—H1N2⋯O4iii 0.84 (3) 2.11 (3) 2.883 (2) 153 (2)
O1—H1O1⋯N1 0.96 (3) 1.67 (3) 2.5626 (15) 154 (4)
C5—H5A⋯O3iv 0.93 2.55 3.3350 (17) 143
C7—H7A⋯O3iv 0.93 2.36 3.187 (2) 148
C10—H10A⋯O1v 0.93 2.58 3.1861 (19) 123
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y+2, -z; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfanilamide which is also known as sulfonamide and its derivatives are extensively used in medicine as they possess a wide range of medicinal, pharmacological and antimicrobial properties (Kremer et al., 2006, Chumakov et al., 2006). Sulfanilamide was the first drug that had been found to be used as a preventive and therapeutic agent towards a variety of diseases or bacterial infections in human biological systems. Schiff bases derived from sulfanilamide exhibit various pharmacological activities including antibacterial, antifungal, antiviral, antimicrobial, anticonvulsant, antitumor, antiulcer, anti-neoplastic, and anti-inflammatory properties as well as acting as enzymatic inhibitors (Wang et al., 2010, Sharaby, 2007, Kremer et al., 2006, Chumakov et al., 2006, Aziz-ur-Rehman et al., 2010, Subashini et al., 2009, Loughrey et al., 2009). The biological activity could be increased by the complexation with metal ions (Mohamed & Sharaby, 2007; Kremer et al., 2006).

The title Schiff base compound (Fig. 1) exists in an E configuration with respect to the C7N1 double bond. The phenyl rings (C1–C6 & C8–C13) are almost coplanar with each other with a dihedral angle of 2.82 (6)°. The sulfonamide group (S1/O3/O4/N2) is twisted away from the attached phenyl ring with the torsion angle between N2–S1–C11–C12 being 64.84 (11)°. An intramolecular O1—H1O1···N1 hydrogen bond stabilized the molecule, generating an S(6) ring motif (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), intermolecular N2—H2N2···O5, N2—H1N2···O2, N2—H1N2···O4, C5—H5A···O3, C7—H7A···O3 and C10—H10A···O1 hydrogen bonds (Table 1) link the molecules into three-dimensional network.

Related literature top

For background and the biological activity of sulfonamide and its derivatives, see: Kremer et al. (2006); Chumakov et al. (2006); Mohamed & Sharaby (2007); Wang et al. (2010); Sharaby (2007); Aziz-ur-Rehman et al. (2010); Subashini et al. (2009); Loughrey et al. (2009). For a related structure, see: Fun et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by the general method of condensation of sulfanilamide with 2-hydroxy-5-nitrobenzaldehyde. To a methanolic solution (10 ml) of sulfanilamide (0.3444 g, 2 mmol), sodium acetate (0.1641 g, 2 mmol) was added. The resulting solution was heated to reflux on a water bath. A methanolic solution (10 ml) of 2-hydroxy-5-nitrobenzaldehyde (0.3342 g, 2 mmol) was then added dropwise to the solution. The solution was left under reflux (65–70°C) for 1 h. After half an hour, yellowish orange precipitate started to form during refluxing. The resulting mixture was filtered and the filtrate was left to evaporate slowly at room temperature. Orange crystals of the title compound suitable for X-ray diffraction were obtained after 1 week.

Refinement top

N– and O– bound H atoms were located from difference Fourier map and refined freely with the N–H bond lengths being 0.83 (2) to 0.84 (2) Å and the O–H distance 0.96 (3) Å. The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the three-dimensional network. Intermolecular interactions are shown as dashed lines. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4-[(2-Hydroxy-5-nitrobenzylidene)amino]benzenesulfonamide top
Crystal data top
C13H11N3O5SF(000) = 664
Mr = 321.31Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9950 reflections
a = 6.7698 (1) Åθ = 2.8–35.5°
b = 26.4754 (3) ŵ = 0.27 mm1
c = 9.9683 (1) ÅT = 100 K
β = 131.544 (1)°Plate, orange
V = 1337.21 (3) Å30.41 × 0.27 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4825 independent reflections
Radiation source: fine-focus sealed tube4104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 32.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.896, Tmax = 0.985k = 4036
29377 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.7191P]
where P = (Fo2 + 2Fc2)/3
4825 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C13H11N3O5SV = 1337.21 (3) Å3
Mr = 321.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7698 (1) ŵ = 0.27 mm1
b = 26.4754 (3) ÅT = 100 K
c = 9.9683 (1) Å0.41 × 0.27 × 0.06 mm
β = 131.544 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4825 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4104 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.985Rint = 0.031
29377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.60 e Å3
4825 reflectionsΔρmin = 0.43 e Å3
211 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25811 (6)0.770137 (11)0.29838 (4)0.01433 (8)
O10.69814 (19)1.06412 (4)0.38905 (13)0.01833 (18)
O21.2322 (2)1.14670 (4)0.11034 (15)0.0251 (2)
O31.1687 (2)1.06896 (4)0.02207 (13)0.0217 (2)
O40.46897 (19)0.73446 (4)0.38253 (15)0.0264 (2)
O50.1385 (2)0.77870 (4)0.37367 (14)0.0243 (2)
N10.6474 (2)0.97162 (4)0.29501 (13)0.01443 (19)
N20.0283 (2)0.75128 (4)0.09717 (14)0.01538 (19)
N31.1534 (2)1.10368 (4)0.09747 (14)0.0166 (2)
C10.8033 (2)1.07306 (5)0.31518 (15)0.0146 (2)
C20.8745 (2)1.12251 (5)0.31389 (16)0.0169 (2)
H2A0.84291.14870.35990.020*
C30.9919 (2)1.13262 (5)0.24433 (16)0.0167 (2)
H3A1.04121.16540.24420.020*
C41.0352 (2)1.09290 (5)0.17442 (15)0.0142 (2)
C50.9623 (2)1.04378 (5)0.17048 (15)0.0146 (2)
H5A0.99131.01810.12150.018*
C60.8442 (2)1.03309 (5)0.24119 (15)0.0139 (2)
C70.7632 (2)0.98178 (5)0.23515 (16)0.0158 (2)
H7A0.79490.95610.18790.019*
C80.5618 (2)0.92230 (5)0.29004 (15)0.0135 (2)
C90.4354 (2)0.91795 (5)0.35687 (16)0.0152 (2)
H9A0.41300.94650.40000.018*
C100.3425 (2)0.87159 (5)0.35986 (16)0.0158 (2)
H10A0.25830.86890.40450.019*
C110.3773 (2)0.82917 (5)0.29516 (15)0.0139 (2)
C120.5046 (2)0.83273 (5)0.22825 (16)0.0163 (2)
H12A0.52800.80400.18620.020*
C130.5958 (2)0.87914 (5)0.22483 (16)0.0164 (2)
H13A0.67920.88180.17960.020*
H2N20.074 (4)0.7439 (7)0.041 (3)0.028 (5)*
H1N20.119 (4)0.7655 (8)0.038 (3)0.030 (5)*
H1O10.655 (5)1.0290 (11)0.368 (4)0.068 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01492 (14)0.01229 (14)0.01464 (13)0.00158 (10)0.00933 (11)0.00082 (9)
O10.0243 (5)0.0160 (5)0.0229 (4)0.0000 (4)0.0191 (4)0.0007 (3)
O20.0303 (5)0.0155 (5)0.0373 (5)0.0009 (4)0.0257 (5)0.0052 (4)
O30.0270 (5)0.0219 (5)0.0227 (4)0.0038 (4)0.0192 (4)0.0036 (4)
O40.0152 (4)0.0161 (5)0.0320 (5)0.0019 (4)0.0090 (4)0.0079 (4)
O50.0372 (6)0.0225 (5)0.0267 (5)0.0090 (4)0.0268 (5)0.0048 (4)
N10.0162 (4)0.0123 (5)0.0157 (4)0.0014 (4)0.0110 (4)0.0003 (3)
N20.0137 (4)0.0156 (5)0.0161 (4)0.0005 (4)0.0096 (4)0.0019 (4)
N30.0167 (5)0.0155 (5)0.0175 (4)0.0006 (4)0.0112 (4)0.0032 (4)
C10.0147 (5)0.0149 (5)0.0142 (4)0.0010 (4)0.0096 (4)0.0005 (4)
C20.0200 (5)0.0117 (5)0.0197 (5)0.0014 (4)0.0134 (5)0.0002 (4)
C30.0170 (5)0.0134 (5)0.0181 (5)0.0001 (4)0.0110 (5)0.0010 (4)
C40.0148 (5)0.0132 (5)0.0146 (5)0.0003 (4)0.0098 (4)0.0011 (4)
C50.0179 (5)0.0118 (5)0.0154 (5)0.0005 (4)0.0116 (4)0.0002 (4)
C60.0165 (5)0.0118 (5)0.0143 (4)0.0007 (4)0.0105 (4)0.0006 (4)
C70.0195 (5)0.0134 (5)0.0171 (5)0.0009 (4)0.0132 (5)0.0005 (4)
C80.0136 (5)0.0122 (5)0.0137 (4)0.0007 (4)0.0087 (4)0.0002 (4)
C90.0183 (5)0.0127 (5)0.0185 (5)0.0005 (4)0.0138 (5)0.0016 (4)
C100.0173 (5)0.0158 (6)0.0178 (5)0.0015 (4)0.0132 (5)0.0012 (4)
C110.0143 (5)0.0129 (5)0.0139 (4)0.0017 (4)0.0091 (4)0.0005 (4)
C120.0196 (5)0.0138 (5)0.0187 (5)0.0021 (4)0.0140 (5)0.0030 (4)
C130.0202 (5)0.0146 (6)0.0199 (5)0.0020 (4)0.0157 (5)0.0022 (4)
Geometric parameters (Å, º) top
S1—O41.4301 (10)C3—C41.3958 (17)
S1—O51.4408 (10)C3—H3A0.9300
S1—N21.5980 (11)C4—C51.3822 (17)
S1—C111.7689 (12)C5—C61.4014 (15)
O1—C11.3417 (14)C5—H5A0.9300
O1—H1O10.96 (3)C6—C71.4513 (17)
O2—N31.2278 (14)C7—H7A0.9300
O3—N31.2345 (14)C8—C91.3951 (15)
N1—C71.2892 (15)C8—C131.4068 (16)
N1—C81.4160 (16)C9—C101.3881 (17)
N2—H2N20.83 (2)C9—H9A0.9300
N2—H1N20.84 (2)C10—C111.3908 (17)
N3—C41.4576 (15)C10—H10A0.9300
C1—C21.3982 (17)C11—C121.3999 (16)
C1—C61.4181 (16)C12—C131.3855 (17)
C2—C31.3837 (17)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
O4—S1—O5119.05 (7)C4—C5—H5A120.4
O4—S1—N2106.97 (6)C6—C5—H5A120.4
O5—S1—N2106.71 (6)C5—C6—C1118.97 (11)
O4—S1—C11107.71 (6)C5—C6—C7119.61 (10)
O5—S1—C11106.92 (6)C1—C6—C7121.42 (10)
N2—S1—C11109.23 (6)N1—C7—C6120.34 (11)
C1—O1—H1O1104.2 (17)N1—C7—H7A119.8
C7—N1—C8122.45 (11)C6—C7—H7A119.8
S1—N2—H2N2115.9 (13)C9—C8—C13119.57 (11)
S1—N2—H1N2117.2 (14)C9—C8—N1115.21 (10)
H2N2—N2—H1N2115.7 (19)C13—C8—N1125.21 (10)
O2—N3—O3123.25 (11)C10—C9—C8120.88 (11)
O2—N3—C4118.61 (11)C10—C9—H9A119.6
O3—N3—C4118.14 (10)C8—C9—H9A119.6
O1—C1—C2118.81 (11)C9—C10—C11119.06 (10)
O1—C1—C6120.75 (11)C9—C10—H10A120.5
C2—C1—C6120.44 (11)C11—C10—H10A120.5
C3—C2—C1120.11 (11)C10—C11—C12120.90 (11)
C3—C2—H2A119.9C10—C11—S1119.05 (9)
C1—C2—H2A119.9C12—C11—S1120.04 (9)
C2—C3—C4119.01 (11)C13—C12—C11119.77 (11)
C2—C3—H3A120.5C13—C12—H12A120.1
C4—C3—H3A120.5C11—C12—H12A120.1
C5—C4—C3122.27 (11)C12—C13—C8119.81 (10)
C5—C4—N3118.65 (11)C12—C13—H13A120.1
C3—C4—N3119.05 (11)C8—C13—H13A120.1
C4—C5—C6119.17 (11)
O1—C1—C2—C3177.73 (11)C1—C6—C7—N11.12 (18)
C6—C1—C2—C31.66 (18)C7—N1—C8—C9178.76 (11)
C1—C2—C3—C40.62 (18)C7—N1—C8—C131.41 (19)
C2—C3—C4—C50.68 (19)C13—C8—C9—C100.02 (18)
C2—C3—C4—N3178.64 (11)N1—C8—C9—C10179.86 (11)
O2—N3—C4—C5175.78 (11)C8—C9—C10—C110.06 (19)
O3—N3—C4—C54.36 (16)C9—C10—C11—C120.21 (18)
O2—N3—C4—C36.19 (17)C9—C10—C11—S1179.82 (9)
O3—N3—C4—C3173.67 (11)O4—S1—C11—C10128.97 (10)
C3—C4—C5—C60.92 (18)O5—S1—C11—C100.07 (12)
N3—C4—C5—C6178.88 (10)N2—S1—C11—C10115.18 (10)
C4—C5—C6—C10.13 (17)O4—S1—C11—C1251.00 (12)
C4—C5—C6—C7179.03 (11)O5—S1—C11—C12179.95 (10)
O1—C1—C6—C5177.97 (11)N2—S1—C11—C1264.84 (11)
C2—C1—C6—C51.41 (18)C10—C11—C12—C130.51 (18)
O1—C1—C6—C72.88 (18)S1—C11—C12—C13179.51 (10)
C2—C1—C6—C7177.74 (11)C11—C12—C13—C80.55 (19)
C8—N1—C7—C6179.21 (11)C9—C8—C13—C120.29 (18)
C5—C6—C7—N1178.02 (11)N1—C8—C13—C12179.54 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O5i0.82 (3)2.07 (3)2.891 (2)172 (3)
N2—H1N2···O2ii0.84 (3)2.58 (2)3.1378 (15)125 (2)
N2—H1N2···O4iii0.84 (3)2.11 (3)2.883 (2)153 (2)
O1—H1O1···N10.96 (3)1.67 (3)2.5626 (15)154 (4)
C5—H5A···O3iv0.932.553.3350 (17)143
C7—H7A···O3iv0.932.363.187 (2)148
C10—H10A···O1v0.932.583.1861 (19)123
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z; (iii) x1, y+3/2, z1/2; (iv) x+2, y+2, z; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H11N3O5S
Mr321.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.7698 (1), 26.4754 (3), 9.9683 (1)
β (°) 131.544 (1)
V3)1337.21 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.41 × 0.27 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.896, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
29377, 4825, 4104
Rint0.031
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.06
No. of reflections4825
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O5i0.82 (3)2.07 (3)2.891 (2)172 (3)
N2—H1N2···O2ii0.84 (3)2.58 (2)3.1378 (15)125 (2)
N2—H1N2···O4iii0.84 (3)2.11 (3)2.883 (2)153 (2)
O1—H1O1···N10.96 (3)1.67 (3)2.5626 (15)154 (4)
C5—H5A···O3iv0.932.553.3350 (17)143
C7—H7A···O3iv0.932.363.187 (2)148
C10—H10A···O1v0.932.583.1861 (19)123
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z; (iii) x1, y+3/2, z1/2; (iv) x+2, y+2, z; (v) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the RU research grant (PKIMIA/815002). HKF and WSL thank USM for the Research University Grant (1001/PFIZIK/811160). YHT and WSL are grateful for the award of USM fellowships for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., Palomares-Sánches, S. A., Ortiz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923–929.  Web of Science CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o372–o373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKremer, E., Facchin, G., Estévez, E., Alborés, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167–1175.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLoughrey, B. T., Williams, M. L. & Healy, P. C. (2009). Acta Cryst. E65, o2087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, G. G. & Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 949–958.  CrossRef Google Scholar
First citationSharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271–1278.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2009). J. Chem. Crystallogr. 39, 112–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X. L., Wan, K. & Zhou, C. H. (2010). Eur. J. Med. Chem. 45, 4631–4639.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2610-o2611
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds