organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2587-o2588

7-[(3,5-Di-tert-butyl-2-hy­dr­oxy­benzyl­­idene)amino]-4-methyl-2H-chromen-2-one

aDepartment of Chemistry, Girls Section, University of King Abdulaziz, PO Box 6171, Jeddah 21442, Saudi Arabia, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey
*Correspondence e-mail: wayfield8@yahoo.com

(Received 13 September 2010; accepted 14 September 2010; online 18 September 2010)

The title compound, C25H29NO3, is a Schiff base derivative of coumarin 120. There are two structurally similar but crystallographically independent mol­ecules in the asymmetric unit. Both mol­ecules exist in E configurations with respect to the C=N double bonds. The dihedral angles between the coumarin and 3,5-di-tert-butyl-2-hy­droxy­benzyl­idene ring planes are 4.62 (7) and 14.62 (7)° for the two mol­ecules. Intra­molecular O—H⋯N hydrogen bonding involving the O—H groups and the azomethine N atoms generate S(6) rings. In the crystal structure, independent mol­ecules are linked by C—H⋯π inter­actions, with groups of four mol­ecules stacked along the c axis.

Related literature

For the chemistry and catalytic properties of coumarin-derived Schiff base complexes, see: Youssef et al. (2009[Youssef, N. S., El-Zahany, E., El-Seidy, A. M. A., Caselli, A. & Cenini, S. (2009). J. Mol. Catal. A, pp. 159-168.]). For their biological and pharmacological properties, see: Kulkarni et al. (2009[Kulkarni, A., Patil, S. A. & Badami, P. S. (2009). Eur. J. Med. Chem., pp. 1-9.]); Youssef et al. (2009[Youssef, N. S., El-Zahany, E., El-Seidy, A. M. A., Caselli, A. & Cenini, S. (2009). J. Mol. Catal. A, pp. 159-168.]); Ronad et al. (2008[Ronad, P., Dharbamalla, S., Hunshal, R. & Maddi, V. (2008). Arch. Pharm. Chem. Life Sci. 341, 696-700.]). For their applications as dyes and fluorescent agents, see: Kachkovski et al. (2004[Kachkovski, O. D., Tolmachev, O. I., Kobryn, L. O., Bila, E. E. & Ganushchak, M. I. (2004). Dyes Pigm. 63, 203-211.]); Creaven et al. (2009[Creaven, B. S., Devereux, M., Karcz, D., Kellett, A., McCann, M., Noble, A. & Walsh, M. (2009). J. Inorg. Biochem. 103, 1196-1203.]). For related structures, see: Honda et al. (1996[Honda, T., Fujii, I., Hirayama, N., Aoyama, N. & Miike, A. (1996). Acta Cryst. C52, 899-901.]); Aazam et al. (2006[Aazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285-o4287.], 2008[Aazam, E. S., El Husseiny, A. F., Hitchcock, P. B. & Al Shehary, J. (2008). Centr. Eur. J. Chem. 6, 319-323.], 2010[Aazam, E. S., El Husseiny, A. F., Al-Amri, H. M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o179.]); El Husseiny et al. (2008[El Husseiny, A. F., Aazam, E. S. & Al Shehary, J. (2008). ICAIJ, 3, 64-68.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H29NO3

  • Mr = 391.49

  • Monoclinic, P 21 /c

  • a = 17.6067 (14) Å

  • b = 9.6853 (5) Å

  • c = 27.237 (3) Å

  • β = 109.832 (6)°

  • V = 4369.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.20 × 0.05 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 29259 measured reflections

  • 8242 independent reflections

  • 3118 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.146

  • S = 0.84

  • 8242 reflections

  • 524 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C26–C31 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.80 2.538 (4) 149
O4—H4A⋯N2 0.82 1.80 2.537 (4) 149
C25—H25BCg1 0.96 2.73 3.536 (4) 143
C50—H50ACg2i 0.96 2.80 3.571 (4) 138
C50—H50BCg1ii 0.96 2.91 3.569 (4) 136
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie, (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie, (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coumarin-derived Schiff bases are regarded as "privileged ligands" due to their ability to form complexes with different transition metals that can act as catalysts for many different reactions (Youssef et al., 2009). They have been found to exhibit biological and plant regulating activities (Kulkarni et al., 2009; Youssef et al., 2009). They can also act as anti-inflammatory and analgesic agents (Ronad et al., 2008). Several reports of their applications as dyes and fluorescent agents have appeared (Kachkovski et al., 2004; Creaven et al., 2009).

In a continuation of our interest in the synthesis, crystal structure elucidation (Aazam et al., 2006, 2008, 2010), biological activity and photophysical properties of Schiff-base ligands incorporating a coumarin moiety and their metal complexes (El Husseiny et al., 2008), we report here the crystal structure of a newly synthesized coumarin Schiff base derived from 7-amino-4-methyl coumarin and 3,5-di-t-butyl-2-hydroxybenzaldehyde.

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules, A and B (Honda et al. ,1996). The two independent molecules differ in planarity, where molecule A is more planar than molecule B, having dihedral angles between the coumarin and 3,5-di-tert-butyl- 2-hydroxybenzylidene ring planes of 4.64 (7)° and 14.62 (7)° for molecule A and B respectively. The planarity of both molecules is greater than that of the related 4-methyl-7-(salicylideneamino)coumarin Schiff base where the corresponding dihedral angle was 24.0 (1)° (Aazam et al., 2006). The greater planarity of the title compound may explain the higher fluorescence quantum yield of 0.53 observed (compared with Φf = 0.43 for 4-methyl-7-(salicylideneamino) coumarin in DMSO).

The terminal C=O bond distances of 1.203 (4)Å and 1.209 (4)Å agree with 1.2119 (15)Å found in the related compound 4-methyl-7-(salicylideneamino) coumarin (Aazam et al.2006), but are shorter than that of 1.3040 (17)Å found in 8-[(1E)-1-(2-Aminophenyliminio)ethyl]-2-oxo-2H-chromen-7-olate (Aazam et al., 2010). Intramolecular O—H···N hydrogen bonding involving the O–H groups and the azomethine N atoms generate S(6) rings (Bernstein et al., 1995). In the crystal structure, the independent molecules are linked by C—H···π interactions, with groups of four molecules stacked along the c axis (Fig. 2).

Related literature top

For the chemistry and catalytic properties of coumarin-derived Schiff base complexes, see: Youssef et al. (2009). For their biological and pharmacological properties, see: Kulkarni et al. (2009); Youssef et al. (2009); Ronad et al. (2008). For their applications as dyes and fluorescent agents, see: Kachkovski et al. (2004); Creaven et al. (2009). For related structures, see: Honda et al. (1996); Aazam et al. (2006, 2008, 2010); El Husseiny et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3,5-di-tertbutyl-2-hydroxybenzaldehyde (0.26 g, 1.50 mmol) in 20 ml of absolute ethanol was added to a warm solution of 7-amino-4-methyl coumarin (0.35 g, 1.5 mmol) in 30 ml of absolute ethanol. The mixture was refluxed for 3 hrs upon which a yellow solution was formed. The solvent was pumped off by rotary evaporation leaving behind an orange solid shown to be pure by NMR spectroscopy. The product was recrystallized from chloroform by slow evaporation forming orange needles. Yield (68%, 0.4 g, 1.02 mmol).

Refinement top

H atoms were positioned geometrically (C–H = 0.93 or 0.96 Å, O–H = 0.82 Å) and refined using a riding model. The Uiso(H) values were set at 1.2Ueq(C aromatic) and 1.5Ueq(C methyl, O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of molecule of molecule A and B. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing diagram of the title compound, with displacement ellipsoids displayed at the 30% probability level. The t-butyl substituents on the benzene ring and H atoms not involved in C—H···π interactions (shown as dashed lines) have been omitted for clarity.
7-[(3,5-Di-tert-butyl-2-hydroxybenzylidene)amino]-4-methyl-2H- chromen-2-one top
Crystal data top
C25H29NO3F(000) = 1680
Mr = 391.49Dx = 1.190 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15467 reflections
a = 17.6067 (14) Åθ = 1.2–26.2°
b = 9.6853 (5) ŵ = 0.08 mm1
c = 27.237 (3) ÅT = 296 K
β = 109.832 (6)°Plate, light brown
V = 4369.2 (6) Å30.32 × 0.20 × 0.05 mm
Z = 8
Data collection top
Stoe IPDS 2
diffractometer
3118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.7°, θmin = 1.2°
rotation method scansh = 2121
29259 measured reflectionsk = 1111
8242 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
8242 reflections(Δ/σ)max < 0.001
524 parametersΔρmax = 0.31 e Å3
84 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H29NO3V = 4369.2 (6) Å3
Mr = 391.49Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.6067 (14) ŵ = 0.08 mm1
b = 9.6853 (5) ÅT = 296 K
c = 27.237 (3) Å0.32 × 0.20 × 0.05 mm
β = 109.832 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3118 reflections with I > 2σ(I)
29259 measured reflectionsRint = 0.072
8242 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05584 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.84Δρmax = 0.31 e Å3
8242 reflectionsΔρmin = 0.18 e Å3
524 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71746 (19)0.2973 (3)0.62303 (13)0.0465 (9)
C20.7896 (2)0.2190 (3)0.64044 (13)0.0472 (9)
C30.8653 (2)0.2821 (3)0.65273 (13)0.0479 (9)
C40.8651 (2)0.4252 (3)0.64687 (14)0.0555 (10)
H40.91470.46940.65460.067*
C50.7956 (2)0.5068 (3)0.63012 (14)0.0503 (9)
C60.7225 (2)0.4405 (4)0.61833 (13)0.0503 (9)
H60.67520.49230.60690.060*
C70.9434 (2)0.1987 (3)0.66976 (15)0.0552 (10)
C80.9451 (2)0.1059 (4)0.62451 (17)0.0831 (13)
H8A0.94170.16210.59480.100*
H8B0.90010.04350.61560.100*
H8C0.99450.05410.63480.100*
C90.9506 (2)0.1101 (4)0.71730 (16)0.0850 (13)
H9A0.90570.04760.70910.102*
H9B0.95070.16840.74580.102*
H9C1.00000.05840.72700.102*
C101.0184 (2)0.2909 (4)0.68392 (17)0.0779 (12)
H10A1.01930.35070.71220.093*
H10B1.01690.34540.65420.093*
H10C1.06600.23430.69430.093*
C110.8004 (2)0.6645 (4)0.62607 (17)0.0633 (11)
C120.7749 (3)0.7289 (4)0.66932 (17)0.0899 (14)
H12A0.81050.69820.70270.108*
H12B0.72060.70130.66500.108*
H12C0.77740.82770.66740.108*
C130.8853 (3)0.7151 (5)0.6345 (2)0.1178 (18)
H13A0.90450.67540.60860.141*
H13B0.92020.68800.66860.141*
H13C0.88510.81390.63170.141*
C140.7431 (3)0.7135 (4)0.57389 (16)0.0835 (13)
H14A0.68900.68670.57030.100*
H14B0.75810.67280.54630.100*
H14C0.74600.81230.57200.100*
C150.6386 (2)0.2320 (4)0.60526 (13)0.0487 (9)
H150.59230.28590.59270.058*
C160.5586 (2)0.0272 (3)0.58550 (13)0.0476 (9)
C170.4838 (2)0.0864 (4)0.55885 (14)0.0556 (10)
H170.47840.18180.55570.067*
C180.4178 (2)0.0014 (4)0.53712 (14)0.0536 (10)
H180.36790.04150.51970.064*
C190.4233 (2)0.1423 (4)0.54042 (13)0.0475 (9)
C200.4982 (2)0.1965 (3)0.56716 (13)0.0484 (9)
C210.5650 (2)0.1151 (4)0.59003 (14)0.0530 (9)
H210.61430.15560.60850.064*
C220.3565 (2)0.2352 (4)0.51815 (13)0.0500 (9)
C230.3719 (2)0.3718 (4)0.52296 (15)0.0629 (11)
H230.32900.43210.50850.075*
C240.4500 (2)0.4303 (4)0.54877 (14)0.0625 (11)
C250.2738 (2)0.1795 (4)0.49157 (14)0.0658 (11)
H25A0.27400.12190.46290.079*
H25B0.25740.12610.51590.079*
H25C0.23680.25460.47870.079*
N10.63226 (16)0.0999 (3)0.60680 (11)0.0507 (8)
O10.78494 (14)0.0796 (2)0.64396 (10)0.0644 (7)
H1A0.73740.05650.63570.097*
O20.46800 (18)0.5512 (3)0.55272 (12)0.0875 (10)
O30.51209 (14)0.3380 (2)0.57174 (10)0.0606 (7)
C260.67182 (18)0.1911 (3)0.36205 (12)0.0424 (8)
C270.7414 (2)0.2736 (3)0.38276 (13)0.0479 (9)
C280.81763 (19)0.2128 (3)0.40647 (13)0.0478 (9)
C290.8196 (2)0.0694 (4)0.40745 (13)0.0520 (9)
H290.86960.02730.42290.062*
C300.7525 (2)0.0166 (3)0.38701 (13)0.0466 (9)
C310.6791 (2)0.0473 (3)0.36445 (13)0.0482 (9)
H310.63310.00660.35040.058*
C320.89406 (19)0.3001 (4)0.43076 (15)0.0557 (10)
C330.9692 (2)0.2112 (4)0.45430 (18)0.0809 (13)
H33A0.97650.15310.42770.097*
H33B0.96280.15500.48160.097*
H33C1.01550.26970.46840.097*
C340.8854 (2)0.3901 (4)0.47456 (16)0.0741 (12)
H34A0.87780.33230.50110.089*
H34B0.83960.44990.46080.089*
H34C0.93330.44460.48930.089*
C350.9091 (2)0.3908 (4)0.38876 (16)0.0744 (12)
H35A0.86360.45060.37370.089*
H35B0.91630.33320.36200.089*
H35C0.95670.44550.40430.089*
C360.7602 (2)0.1747 (4)0.39020 (15)0.0548 (10)
C370.8450 (3)0.2233 (4)0.4182 (2)0.1033 (16)
H37A0.86330.18830.45320.124*
H37B0.87980.19040.40020.124*
H37C0.84600.32240.41900.124*
C380.7046 (3)0.2350 (4)0.41652 (17)0.0836 (13)
H38A0.64990.20970.39720.100*
H38B0.71930.19980.45150.100*
H38C0.70950.33380.41760.100*
C390.7345 (3)0.2358 (4)0.33471 (16)0.0851 (13)
H39A0.76900.20060.31690.102*
H39B0.67960.21030.31590.102*
H39C0.73880.33460.33680.102*
C400.59273 (19)0.2538 (4)0.33832 (13)0.0492 (9)
H400.54760.19780.32460.059*
C410.5103 (2)0.4573 (3)0.31500 (13)0.0483 (9)
C420.4340 (2)0.3969 (4)0.29606 (14)0.0549 (10)
H420.42850.30140.29580.066*
C430.3672 (2)0.4796 (4)0.27784 (13)0.0550 (10)
H430.31660.43800.26530.066*
C440.3715 (2)0.6238 (4)0.27722 (13)0.0467 (9)
C450.4483 (2)0.6801 (3)0.29646 (14)0.0495 (9)
C460.5164 (2)0.5999 (4)0.31460 (14)0.0542 (10)
H460.56700.64150.32670.065*
C470.3032 (2)0.7170 (4)0.25793 (13)0.0527 (9)
C480.3177 (3)0.8536 (4)0.26011 (15)0.0642 (11)
H480.27380.91280.24750.077*
C490.3967 (3)0.9138 (4)0.28057 (15)0.0608 (10)
C500.2196 (2)0.6579 (4)0.23672 (15)0.0687 (11)
H50A0.20940.60250.26310.082*
H50B0.21500.60160.20680.082*
H50C0.18100.73160.22670.082*
N20.58451 (16)0.3866 (3)0.33607 (11)0.0516 (8)
O40.73564 (13)0.4132 (2)0.38099 (9)0.0616 (7)
H4A0.68840.43570.36640.092*
O50.41309 (18)1.0345 (3)0.28431 (11)0.0795 (9)
O60.46070 (14)0.8222 (2)0.29799 (10)0.0615 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.045 (2)0.048 (2)0.0058 (17)0.0157 (16)0.0017 (17)
C20.051 (2)0.037 (2)0.053 (2)0.0006 (16)0.0169 (18)0.0018 (16)
C30.050 (2)0.041 (2)0.054 (2)0.0001 (16)0.0187 (17)0.0008 (17)
C40.052 (2)0.046 (2)0.068 (3)0.0034 (18)0.0206 (19)0.0006 (19)
C50.048 (2)0.040 (2)0.061 (2)0.0013 (17)0.0180 (18)0.0041 (18)
C60.048 (2)0.047 (2)0.055 (2)0.0013 (17)0.0165 (17)0.0039 (18)
C70.049 (2)0.044 (2)0.070 (3)0.0044 (17)0.0160 (18)0.004 (2)
C80.073 (3)0.071 (2)0.105 (3)0.009 (2)0.031 (2)0.011 (2)
C90.069 (2)0.082 (3)0.094 (3)0.007 (2)0.014 (2)0.022 (2)
C100.056 (2)0.068 (2)0.103 (3)0.002 (2)0.018 (2)0.000 (2)
C110.057 (2)0.041 (2)0.093 (3)0.0015 (18)0.027 (2)0.015 (2)
C120.109 (3)0.052 (2)0.091 (3)0.004 (2)0.011 (2)0.000 (2)
C130.090 (3)0.068 (3)0.189 (4)0.011 (2)0.039 (3)0.030 (3)
C140.106 (3)0.059 (2)0.085 (3)0.008 (2)0.032 (2)0.018 (2)
C150.044 (2)0.051 (2)0.050 (2)0.0001 (17)0.0161 (17)0.0006 (18)
C160.041 (2)0.050 (2)0.051 (2)0.0034 (17)0.0148 (16)0.0006 (18)
C170.057 (2)0.044 (2)0.067 (3)0.0048 (18)0.0220 (19)0.0015 (19)
C180.041 (2)0.057 (2)0.061 (2)0.0024 (18)0.0146 (18)0.0032 (19)
C190.045 (2)0.051 (2)0.047 (2)0.0041 (17)0.0162 (17)0.0020 (17)
C200.053 (2)0.042 (2)0.051 (2)0.0045 (18)0.0192 (18)0.0023 (18)
C210.045 (2)0.054 (2)0.056 (2)0.0016 (18)0.0116 (17)0.0024 (19)
C220.049 (2)0.060 (2)0.042 (2)0.0094 (18)0.0159 (17)0.0056 (18)
C230.066 (3)0.060 (3)0.060 (3)0.023 (2)0.018 (2)0.008 (2)
C240.071 (3)0.053 (3)0.058 (3)0.012 (2)0.015 (2)0.003 (2)
C250.058 (2)0.078 (2)0.062 (2)0.010 (2)0.0209 (18)0.012 (2)
N10.0504 (18)0.0427 (18)0.058 (2)0.0060 (14)0.0171 (14)0.0006 (15)
O10.0574 (16)0.0368 (14)0.091 (2)0.0038 (12)0.0151 (14)0.0042 (13)
O20.104 (2)0.0444 (17)0.106 (3)0.0065 (16)0.0258 (19)0.0004 (16)
O30.0566 (16)0.0443 (14)0.0735 (18)0.0036 (12)0.0125 (13)0.0014 (13)
C260.0369 (19)0.047 (2)0.041 (2)0.0025 (16)0.0111 (15)0.0019 (16)
C270.053 (2)0.039 (2)0.050 (2)0.0032 (17)0.0146 (18)0.0027 (17)
C280.0397 (19)0.046 (2)0.055 (2)0.0021 (16)0.0128 (16)0.0017 (17)
C290.044 (2)0.050 (2)0.056 (2)0.0050 (17)0.0088 (17)0.0042 (18)
C300.044 (2)0.0399 (19)0.051 (2)0.0024 (16)0.0105 (16)0.0009 (17)
C310.051 (2)0.042 (2)0.050 (2)0.0052 (17)0.0156 (17)0.0020 (17)
C320.039 (2)0.053 (2)0.069 (3)0.0025 (17)0.0116 (18)0.002 (2)
C330.055 (2)0.069 (2)0.104 (3)0.007 (2)0.007 (2)0.005 (2)
C340.063 (2)0.071 (2)0.081 (3)0.021 (2)0.016 (2)0.010 (2)
C350.064 (2)0.073 (2)0.089 (3)0.012 (2)0.029 (2)0.004 (2)
C360.053 (2)0.046 (2)0.062 (3)0.0054 (18)0.0156 (19)0.0056 (19)
C370.087 (3)0.058 (2)0.140 (4)0.006 (2)0.006 (3)0.009 (2)
C380.103 (3)0.057 (2)0.096 (3)0.003 (2)0.042 (2)0.004 (2)
C390.109 (3)0.065 (2)0.085 (3)0.003 (2)0.037 (2)0.001 (2)
C400.044 (2)0.054 (2)0.047 (2)0.0025 (17)0.0110 (16)0.0019 (18)
C410.046 (2)0.047 (2)0.048 (2)0.0016 (17)0.0110 (17)0.0017 (17)
C420.053 (2)0.046 (2)0.061 (2)0.0044 (18)0.0130 (18)0.0003 (18)
C430.049 (2)0.055 (2)0.058 (3)0.0004 (19)0.0145 (19)0.0001 (19)
C440.046 (2)0.051 (2)0.042 (2)0.0050 (17)0.0138 (17)0.0016 (17)
C450.055 (2)0.040 (2)0.055 (2)0.0025 (18)0.0209 (18)0.0015 (17)
C460.041 (2)0.057 (2)0.062 (3)0.0017 (18)0.0142 (18)0.002 (2)
C470.049 (2)0.067 (3)0.042 (2)0.0101 (19)0.0150 (17)0.0022 (19)
C480.074 (3)0.062 (3)0.060 (3)0.023 (2)0.027 (2)0.014 (2)
C490.074 (3)0.054 (2)0.057 (3)0.009 (2)0.025 (2)0.006 (2)
C500.057 (2)0.078 (2)0.067 (2)0.017 (2)0.0163 (19)0.002 (2)
N20.0433 (17)0.0456 (18)0.061 (2)0.0070 (14)0.0115 (14)0.0054 (15)
O40.0467 (15)0.0432 (15)0.0863 (19)0.0006 (12)0.0115 (13)0.0039 (13)
O50.104 (2)0.0458 (17)0.090 (2)0.0101 (15)0.0349 (18)0.0071 (15)
O60.0628 (17)0.0441 (15)0.0746 (19)0.0052 (13)0.0194 (14)0.0014 (13)
Geometric parameters (Å, º) top
C1—C61.398 (5)C26—C311.398 (5)
C1—C21.417 (4)C26—C271.410 (4)
C1—C151.452 (4)C26—C401.454 (4)
C2—O11.358 (4)C27—O41.356 (4)
C2—C31.399 (4)C27—C281.406 (4)
C3—C41.395 (5)C28—C291.390 (5)
C3—C71.526 (4)C28—C321.536 (5)
C4—C51.397 (4)C29—C301.398 (4)
C4—H40.9300C29—H290.9300
C5—C61.375 (4)C30—C311.375 (4)
C5—C111.536 (5)C30—C361.537 (5)
C6—H60.9300C31—H310.9300
C7—C91.522 (5)C32—C331.525 (5)
C7—C101.531 (5)C32—C341.526 (5)
C7—C81.533 (5)C32—C351.535 (5)
C8—H8A0.9600C33—H33A0.9600
C8—H8B0.9600C33—H33B0.9600
C8—H8C0.9600C33—H33C0.9600
C9—H9A0.9600C34—H34A0.9600
C9—H9B0.9600C34—H34B0.9600
C9—H9C0.9600C34—H34C0.9600
C10—H10A0.9600C35—H35A0.9600
C10—H10B0.9600C35—H35B0.9600
C10—H10C0.9600C35—H35C0.9600
C11—C141.513 (5)C36—C371.503 (5)
C11—C131.515 (5)C36—C381.513 (5)
C11—C121.529 (6)C36—C391.541 (5)
C12—H12A0.9600C37—H37A0.9600
C12—H12B0.9600C37—H37B0.9600
C12—H12C0.9600C37—H37C0.9600
C13—H13A0.9600C38—H38A0.9600
C13—H13B0.9600C38—H38B0.9600
C13—H13C0.9600C38—H38C0.9600
C14—H14A0.9600C39—H39A0.9600
C14—H14B0.9600C39—H39B0.9600
C14—H14C0.9600C39—H39C0.9600
C15—N11.286 (4)C40—N21.294 (4)
C15—H150.9300C40—H400.9300
C16—C211.384 (5)C41—C461.386 (5)
C16—C171.393 (4)C41—C421.394 (5)
C16—N11.416 (4)C41—N21.413 (4)
C17—C181.382 (5)C42—C431.369 (4)
C17—H170.9300C42—H420.9300
C18—C191.396 (5)C43—C441.399 (5)
C18—H180.9300C43—H430.9300
C19—C201.376 (5)C44—C451.386 (5)
C19—C221.442 (5)C44—C471.453 (4)
C20—C211.378 (4)C45—C461.372 (4)
C20—O31.390 (4)C45—O61.392 (4)
C21—H210.9300C46—H460.9300
C22—C231.348 (5)C47—C481.344 (5)
C22—C251.489 (5)C47—C501.500 (5)
C23—C241.432 (5)C48—C491.434 (5)
C23—H230.9300C48—H480.9300
C24—O21.208 (4)C49—O51.201 (4)
C24—O31.386 (4)C49—O61.385 (4)
C25—H25A0.9600C50—H50A0.9600
C25—H25B0.9600C50—H50B0.9600
C25—H25C0.9600C50—H50C0.9600
O1—H1A0.8200O4—H4A0.8200
C6—C1—C2119.0 (3)C31—C26—C27119.5 (3)
C6—C1—C15119.0 (3)C31—C26—C40119.7 (3)
C2—C1—C15121.7 (3)C27—C26—C40120.8 (3)
O1—C2—C3119.6 (3)O4—C27—C28118.8 (3)
O1—C2—C1119.1 (3)O4—C27—C26120.5 (3)
C3—C2—C1121.3 (3)C28—C27—C26120.7 (3)
C4—C3—C2116.2 (3)C29—C28—C27116.2 (3)
C4—C3—C7121.8 (3)C29—C28—C32121.9 (3)
C2—C3—C7121.9 (3)C27—C28—C32121.9 (3)
C3—C4—C5124.5 (3)C28—C29—C30125.1 (3)
C3—C4—H4117.7C28—C29—H29117.4
C5—C4—H4117.7C30—C29—H29117.4
C6—C5—C4117.4 (3)C31—C30—C29116.7 (3)
C6—C5—C11121.2 (3)C31—C30—C36121.7 (3)
C4—C5—C11121.5 (3)C29—C30—C36121.6 (3)
C5—C6—C1121.6 (3)C30—C31—C26121.8 (3)
C5—C6—H6119.2C30—C31—H31119.1
C1—C6—H6119.2C26—C31—H31119.1
C9—C7—C3111.3 (3)C33—C32—C34107.2 (3)
C9—C7—C10107.4 (3)C33—C32—C35107.0 (3)
C3—C7—C10112.3 (3)C34—C32—C35110.1 (3)
C9—C7—C8109.6 (3)C33—C32—C28112.2 (3)
C3—C7—C8109.1 (3)C34—C32—C28110.2 (3)
C10—C7—C8107.1 (3)C35—C32—C28110.0 (3)
C7—C8—H8A109.5C32—C33—H33A109.5
C7—C8—H8B109.5C32—C33—H33B109.5
H8A—C8—H8B109.5H33A—C33—H33B109.5
C7—C8—H8C109.5C32—C33—H33C109.5
H8A—C8—H8C109.5H33A—C33—H33C109.5
H8B—C8—H8C109.5H33B—C33—H33C109.5
C7—C9—H9A109.5C32—C34—H34A109.5
C7—C9—H9B109.5C32—C34—H34B109.5
H9A—C9—H9B109.5H34A—C34—H34B109.5
C7—C9—H9C109.5C32—C34—H34C109.5
H9A—C9—H9C109.5H34A—C34—H34C109.5
H9B—C9—H9C109.5H34B—C34—H34C109.5
C7—C10—H10A109.5C32—C35—H35A109.5
C7—C10—H10B109.5C32—C35—H35B109.5
H10A—C10—H10B109.5H35A—C35—H35B109.5
C7—C10—H10C109.5C32—C35—H35C109.5
H10A—C10—H10C109.5H35A—C35—H35C109.5
H10B—C10—H10C109.5H35B—C35—H35C109.5
C14—C11—C13110.5 (4)C37—C36—C38109.2 (3)
C14—C11—C12108.6 (3)C37—C36—C30113.2 (3)
C13—C11—C12106.5 (4)C38—C36—C30110.6 (3)
C14—C11—C5110.1 (3)C37—C36—C39106.7 (3)
C13—C11—C5112.8 (3)C38—C36—C39107.1 (3)
C12—C11—C5108.2 (3)C30—C36—C39109.7 (3)
C11—C12—H12A109.5C36—C37—H37A109.5
C11—C12—H12B109.5C36—C37—H37B109.5
H12A—C12—H12B109.5H37A—C37—H37B109.5
C11—C12—H12C109.5C36—C37—H37C109.5
H12A—C12—H12C109.5H37A—C37—H37C109.5
H12B—C12—H12C109.5H37B—C37—H37C109.5
C11—C13—H13A109.5C36—C38—H38A109.5
C11—C13—H13B109.5C36—C38—H38B109.5
H13A—C13—H13B109.5H38A—C38—H38B109.5
C11—C13—H13C109.5C36—C38—H38C109.5
H13A—C13—H13C109.5H38A—C38—H38C109.5
H13B—C13—H13C109.5H38B—C38—H38C109.5
C11—C14—H14A109.5C36—C39—H39A109.5
C11—C14—H14B109.5C36—C39—H39B109.5
H14A—C14—H14B109.5H39A—C39—H39B109.5
C11—C14—H14C109.5C36—C39—H39C109.5
H14A—C14—H14C109.5H39A—C39—H39C109.5
H14B—C14—H14C109.5H39B—C39—H39C109.5
N1—C15—C1120.4 (3)N2—C40—C26120.7 (3)
N1—C15—H15119.8N2—C40—H40119.6
C1—C15—H15119.8C26—C40—H40119.6
C21—C16—C17119.3 (3)C46—C41—C42118.9 (3)
C21—C16—N1115.0 (3)C46—C41—N2115.0 (3)
C17—C16—N1125.6 (3)C42—C41—N2126.1 (3)
C18—C17—C16119.1 (3)C43—C42—C41119.4 (4)
C18—C17—H17120.4C43—C42—H42120.3
C16—C17—H17120.4C41—C42—H42120.3
C17—C18—C19122.4 (3)C42—C43—C44123.0 (4)
C17—C18—H18118.8C42—C43—H43118.5
C19—C18—H18118.8C44—C43—H43118.5
C20—C19—C18116.6 (3)C45—C44—C43116.0 (3)
C20—C19—C22118.9 (3)C45—C44—C47118.3 (3)
C18—C19—C22124.5 (3)C43—C44—C47125.7 (3)
C19—C20—C21122.6 (3)C46—C45—C44122.3 (3)
C19—C20—O3122.1 (3)C46—C45—O6116.1 (3)
C21—C20—O3115.2 (3)C44—C45—O6121.6 (3)
C20—C21—C16119.9 (3)C45—C46—C41120.4 (3)
C20—C21—H21120.1C45—C46—H46119.8
C16—C21—H21120.1C41—C46—H46119.8
C23—C22—C19117.6 (3)C48—C47—C44118.3 (4)
C23—C22—C25122.3 (3)C48—C47—C50122.7 (3)
C19—C22—C25120.1 (3)C44—C47—C50119.0 (3)
C22—C23—C24124.4 (4)C47—C48—C49124.2 (4)
C22—C23—H23117.8C47—C48—H48117.9
C24—C23—H23117.8C49—C48—H48117.9
O2—C24—O3116.2 (4)O5—C49—O6116.7 (4)
O2—C24—C23127.4 (4)O5—C49—C48127.1 (4)
O3—C24—C23116.4 (4)O6—C49—C48116.2 (3)
C22—C25—H25A109.5C47—C50—H50A109.5
C22—C25—H25B109.5C47—C50—H50B109.5
H25A—C25—H25B109.5H50A—C50—H50B109.5
C22—C25—H25C109.5C47—C50—H50C109.5
H25A—C25—H25C109.5H50A—C50—H50C109.5
H25B—C25—H25C109.5H50B—C50—H50C109.5
C15—N1—C16124.0 (3)C40—N2—C41125.0 (3)
C2—O1—H1A109.5C27—O4—H4A109.5
C24—O3—C20120.5 (3)C49—O6—C45121.4 (3)
C6—C1—C2—O1178.6 (3)C31—C26—C27—O4179.8 (3)
C15—C1—C2—O14.6 (5)C40—C26—C27—O40.2 (5)
C6—C1—C2—C30.2 (5)C31—C26—C27—C281.0 (5)
C15—C1—C2—C3173.8 (3)C40—C26—C27—C28178.9 (3)
O1—C2—C3—C4178.4 (3)O4—C27—C28—C29179.5 (3)
C1—C2—C3—C40.0 (5)C26—C27—C28—C290.7 (5)
O1—C2—C3—C70.4 (5)O4—C27—C28—C320.6 (5)
C1—C2—C3—C7177.9 (3)C26—C27—C28—C32178.2 (3)
C2—C3—C4—C50.3 (5)C27—C28—C29—C300.1 (5)
C7—C3—C4—C5178.3 (3)C32—C28—C29—C30178.8 (3)
C3—C4—C5—C60.5 (6)C28—C29—C30—C310.2 (5)
C3—C4—C5—C11178.3 (4)C28—C29—C30—C36179.5 (4)
C4—C5—C6—C10.3 (5)C29—C30—C31—C260.1 (5)
C11—C5—C6—C1178.5 (4)C36—C30—C31—C26179.2 (4)
C2—C1—C6—C50.1 (5)C27—C26—C31—C300.7 (5)
C15—C1—C6—C5174.1 (3)C40—C26—C31—C30179.3 (3)
C4—C3—C7—C9125.7 (4)C29—C28—C32—C330.8 (5)
C2—C3—C7—C956.5 (5)C27—C28—C32—C33179.7 (3)
C4—C3—C7—C105.3 (5)C29—C28—C32—C34118.6 (4)
C2—C3—C7—C10176.9 (3)C27—C28—C32—C3460.3 (5)
C4—C3—C7—C8113.3 (4)C29—C28—C32—C35119.8 (4)
C2—C3—C7—C864.6 (4)C27—C28—C32—C3561.3 (4)
C6—C5—C11—C1449.3 (5)C31—C30—C36—C37177.7 (4)
C4—C5—C11—C14132.0 (4)C29—C30—C36—C371.5 (5)
C6—C5—C11—C13173.3 (4)C31—C30—C36—C3854.7 (5)
C4—C5—C11—C138.0 (6)C29—C30—C36—C38124.6 (4)
C6—C5—C11—C1269.2 (5)C31—C30—C36—C3963.2 (5)
C4—C5—C11—C12109.5 (4)C29—C30—C36—C39117.5 (4)
C6—C1—C15—N1176.7 (3)C31—C26—C40—N2179.4 (4)
C2—C1—C15—N12.7 (5)C27—C26—C40—N20.5 (5)
C21—C16—C17—C180.6 (5)C46—C41—C42—C430.3 (5)
N1—C16—C17—C18175.7 (3)N2—C41—C42—C43178.5 (3)
C16—C17—C18—C190.6 (6)C41—C42—C43—C440.0 (6)
C17—C18—C19—C200.8 (6)C42—C43—C44—C450.1 (5)
C17—C18—C19—C22179.6 (3)C42—C43—C44—C47179.3 (3)
C18—C19—C20—C210.3 (5)C43—C44—C45—C460.7 (5)
C22—C19—C20—C21179.4 (3)C47—C44—C45—C46178.8 (3)
C18—C19—C20—O3177.9 (3)C43—C44—C45—O6180.0 (3)
C22—C19—C20—O32.5 (5)C47—C44—C45—O60.6 (5)
C19—C20—C21—C161.5 (6)C44—C45—C46—C411.0 (6)
O3—C20—C21—C16176.8 (3)O6—C45—C46—C41179.6 (3)
C17—C16—C21—C201.6 (5)C42—C41—C46—C450.8 (5)
N1—C16—C21—C20175.0 (3)N2—C41—C46—C45178.1 (3)
C20—C19—C22—C232.7 (5)C45—C44—C47—C480.6 (5)
C18—C19—C22—C23177.6 (4)C43—C44—C47—C48180.0 (4)
C20—C19—C22—C25176.6 (3)C45—C44—C47—C50179.7 (3)
C18—C19—C22—C253.1 (5)C43—C44—C47—C500.3 (5)
C19—C22—C23—C240.2 (6)C44—C47—C48—C490.3 (6)
C25—C22—C23—C24179.1 (3)C50—C47—C48—C49179.4 (3)
C22—C23—C24—O2177.2 (4)C47—C48—C49—O5178.6 (4)
C22—C23—C24—O32.6 (6)C47—C48—C49—O61.2 (6)
C1—C15—N1—C16173.4 (3)C26—C40—N2—C41178.4 (3)
C21—C16—N1—C15178.4 (4)C46—C41—N2—C40177.2 (4)
C17—C16—N1—C152.0 (6)C42—C41—N2—C403.9 (6)
O2—C24—O3—C20176.9 (4)O5—C49—O6—C45178.6 (4)
C23—C24—O3—C202.9 (5)C48—C49—O6—C451.2 (5)
C19—C20—O3—C240.5 (5)C46—C45—O6—C49179.8 (3)
C21—C20—O3—C24177.8 (3)C44—C45—O6—C490.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C26–C31 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.802.538 (4)149
O4—H4A···N20.821.802.537 (4)149
C25—H25B···Cg10.962.733.536 (4)143
C50—H50A···Cg2i0.962.803.571 (4)138
C50—H50B···Cg1ii0.962.913.569 (4)136
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H29NO3
Mr391.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.6067 (14), 9.6853 (5), 27.237 (3)
β (°) 109.832 (6)
V3)4369.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.20 × 0.05
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29259, 8242, 3118
Rint0.072
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.146, 0.84
No. of reflections8242
No. of parameters524
No. of restraints84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C26–C31 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.802.538 (4)149.2
O4—H4A···N20.821.802.537 (4)149.2
C25—H25B···Cg10.962.7253.536 (4)142.54
C50—H50A···Cg2i0.962.8033.571 (4)137.54
C50—H50B···Cg1ii0.962.9133.569 (4)136.24
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge King Abdulaziz University for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAazam, E. S., El Husseiny, A. F., Al-Amri, H. M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAazam, E. S., El Husseiny, A. F., Hitchcock, P. B. & Al Shehary, J. (2008). Centr. Eur. J. Chem. 6, 319–323.  Web of Science CSD CrossRef CAS Google Scholar
First citationAazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285–o4287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCreaven, B. S., Devereux, M., Karcz, D., Kellett, A., McCann, M., Noble, A. & Walsh, M. (2009). J. Inorg. Biochem. 103, 1196–1203.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEl Husseiny, A. F., Aazam, E. S. & Al Shehary, J. (2008). ICAIJ, 3, 64–68.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHonda, T., Fujii, I., Hirayama, N., Aoyama, N. & Miike, A. (1996). Acta Cryst. C52, 899–901.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKachkovski, O. D., Tolmachev, O. I., Kobryn, L. O., Bila, E. E. & Ganushchak, M. I. (2004). Dyes Pigm. 63, 203–211.  CrossRef CAS Google Scholar
First citationKulkarni, A., Patil, S. A. & Badami, P. S. (2009). Eur. J. Med. Chem., pp. 1–9.  Google Scholar
First citationRonad, P., Dharbamalla, S., Hunshal, R. & Maddi, V. (2008). Arch. Pharm. Chem. Life Sci. 341, 696–700.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie, (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYoussef, N. S., El-Zahany, E., El-Seidy, A. M. A., Caselli, A. & Cenini, S. (2009). J. Mol. Catal. A, pp. 159–168.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2587-o2588
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds