organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(1,3-Benzodioxol-5-yl)-1-(3-bromo-2-thien­yl)prop-2-en-1-one

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 10 August 2010; accepted 31 August 2010; online 4 September 2010)

In the title mol­ecule, C14H9BrO3S, the the prop-2-en-1-one (enone) fragment is close to planar [C—C—C—O = 2.5 (7)°] and it subtends dihedral angles of 12.5 (3) and 5.3 (4)° with respect to the thio­phene and benzene rings, respectively. The dihedral angle between the aromatic ring systems is 12.60 (18)°. Two C—H⋯O inter­actions help to consolidate the non-centrosymmetic crystal packing, which features undulating (100) sheets incorporating C(11) and C(12) chain motifs.

Related literature

For related structures, see: Butcher et al. (2007[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1430-o1431.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164-o4165.], 2007[Harrison, W. T. A., Ashalatha, B. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4183.]); Yathirajan et al. (2006a[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. & Bolte, M. (2006a). Acta Cryst. E62, o3964-o3965.],b[Yathirajan, H., Sarojini, B., Narayana, B., Bindya, S. & Bolte, M. (2006b). Acta Cryst. E62, o4048-o4049.],c[Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2006c). Acta Cryst. E62, o5010-o5012.]). For background to chalcone derivatives as non-linear optical materials, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9BrO3S

  • Mr = 337.18

  • Monoclinic, P 21

  • a = 4.0013 (3) Å

  • b = 11.0211 (9) Å

  • c = 14.6931 (11) Å

  • β = 95.781 (2)°

  • V = 644.65 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 291 K

  • 0.48 × 0.16 × 0.09 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.296, Tmax = 0.753

  • 4452 measured reflections

  • 2684 independent reflections

  • 2180 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 0.94

  • 2684 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1127 Friedel pairs

  • Flack parameter: 0.057 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.93 2.51 3.420 (6) 167
C14—H14A⋯O1ii 0.97 2.44 3.400 (6) 171
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (Fig. 1), was prepared as part of our ongoing synthetic and structural studies of molecules containing thienyl and aromatic rings linked by an enone bridge as possible non-linear optical materials (Sarojini et al., 2006). The crystal structures of (2E)-1-(3-bromo-2-thienyl)-3-(4,5-dimethoxy-2-nitrophenyl)prop-2-en-1-one (Yathirajan et al., 2006a), (2E)-1-(3-bromo-2-thienyl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one (Yathirajan et al., 2006b), (2E)-1-(3-bromo-2-thienyl)-3-(4-methoxy-2,3,6-trimethylphenyl)prop-2-en-1-one (Yathirajan et al., 2006c), (2E)-1-(3-bromo-2-thienyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Harrison et al., 2006), 1-(3-bromo-2-thienyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (Butcher et al., 2007), (2E)-1-(3-bromo-2-thienyl)-3-(4-nitrophenyl)prop-2-en-1-one (Harrison et al., 2007) have been reported previously.

The C4—C3—Br1 angle in the title molecule of 127.0 (3)° is significantly larger than angle C2—C3—Br1 [118.3 (3)°], perhaps due to steric repulsion between atoms Br1 and H6 (H···Br = 2.75 Å), as also seen in a related structure (Harrison et al., 2007). Br1 is displaced from the C1—C4/S1 ring mean plane by 0.047 (6) Å.

The enone fragment is close to planar [O1—C5—C6—C7 = 2.5 (7)°] and it subtends dihedral angles of 12.5 (3)° and 5.3 (4)°, respectively, with respect to the adjacent thienyl (C1—C4/S1) and benzene (C8—C13) rings. The O and S atoms are in a syn conformation [S1—C4—C5—O1 = 11.0 (5)°]. The dihedral angle between the thienyl and benzene ring systems is 12.60 (18)°. The five-membered C11/C12/C14/O2/O3 ring is almost planar (r.m.s. deviation = 0.003 Å) and it subtends a dihedral angle of 0.6 (3)° with ring C8–C13, i.e. the rings are statistically co-planar.

In the crystal of the title compound, two weak C—H···O interactions occur (Table 1). The bond involving atom H1 leads to C(12) chains propagating in [001], and that involving atom H14A to zigzag C(11) chains in [010]. Taken together, (100) sheets (Fig. 2) arise, in which unusual R44(31) loops are apparent.

Related literature top

For related structures, see: Butcher et al. (2007); Harrison et al. (2006, 2007); Yathirajan et al. (2006a,b,c). For background to chalcone derivatives as non-linear optical materials, see: Sarojini et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

To 1-(3-Bromo-2-thienyl)ethanone (2.0 g, 0.01 mol) and 1,3-benzodioxole-5-carbaldehyde (1.5 g, 0.01 mol) in 25 ml of methanol, 5 ml of 10% KOH solution was slowly added with stirring at 278 K, and the stirring was continued for 4 h at RT. The solid separated was filtered out and washed with cold methanol. Recrystallization from methanol yielded the pure compound in 90% yield. Pale yellow bar-like crystals of the title compound were obtained by slow evaporation of a solution in acetone (m.p.: 419–421 K).

Refinement top

The H-atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title molecule showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View approximately down [100] of part of a (100) sheet in the crystal structure of the title compound, with C—H···O interactions indicated by double-dashed lines [Symmetry codes: (i) x, y, z + 1; (ii) 1–x, y–1/2, 1–z].
(2E)-3-(1,3-Benzodioxol-5-yl)-1-(3-bromo-2-thienyl)prop-2-en-1-one top
Crystal data top
C14H9BrO3SF(000) = 336
Mr = 337.18Dx = 1.737 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2038 reflections
a = 4.0013 (3) Åθ = 2.3–26.0°
b = 11.0211 (9) ŵ = 3.35 mm1
c = 14.6931 (11) ÅT = 291 K
β = 95.781 (2)°Bar, pale yellow
V = 644.65 (9) Å30.48 × 0.16 × 0.09 mm
Z = 2
Data collection top
Bruker SMART1000 CCD
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 55
Tmin = 0.296, Tmax = 0.753k = 1413
4452 measured reflectionsl = 1419
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0549P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2684 reflectionsΔρmax = 0.48 e Å3
172 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 1127 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.057 (11)
Crystal data top
C14H9BrO3SV = 644.65 (9) Å3
Mr = 337.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.0013 (3) ŵ = 3.35 mm1
b = 11.0211 (9) ÅT = 291 K
c = 14.6931 (11) Å0.48 × 0.16 × 0.09 mm
β = 95.781 (2)°
Data collection top
Bruker SMART1000 CCD
diffractometer
2684 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2180 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.753Rint = 0.032
4452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.48 e Å3
S = 0.94Δρmin = 0.43 e Å3
2684 reflectionsAbsolute structure: Flack (1983), 1127 Friedel pairs
172 parametersAbsolute structure parameter: 0.057 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2722 (13)0.4301 (5)1.0496 (3)0.0542 (12)
H10.25660.43471.11220.065*
C20.1769 (12)0.3322 (4)0.9984 (3)0.0454 (10)
H20.09560.26061.02160.054*
C30.2158 (10)0.3519 (4)0.9061 (3)0.0382 (9)
C40.3482 (10)0.4619 (4)0.8875 (3)0.0372 (9)
C50.4449 (11)0.5265 (4)0.8055 (3)0.0417 (9)
C60.3357 (11)0.4825 (4)0.7134 (3)0.0448 (10)
H60.20240.41340.70600.054*
C70.4251 (10)0.5406 (4)0.6393 (3)0.0420 (9)
H70.56710.60670.65120.050*
C80.3315 (10)0.5148 (4)0.5429 (3)0.0375 (9)
C90.4268 (11)0.5987 (4)0.4795 (3)0.0451 (10)
H90.54450.66760.50070.054*
C100.3519 (12)0.5833 (4)0.3846 (3)0.0472 (11)
H100.41550.63940.34240.057*
C110.1795 (11)0.4802 (4)0.3591 (3)0.0419 (10)
C120.0810 (11)0.3961 (4)0.4208 (3)0.0409 (9)
C130.1519 (11)0.4098 (4)0.5127 (3)0.0426 (10)
H130.08500.35260.55380.051*
C140.0909 (13)0.3301 (5)0.2780 (3)0.0560 (12)
H14A0.02160.26690.24670.067*
H14B0.32120.33600.25060.067*
O10.6119 (9)0.6200 (3)0.8178 (2)0.0626 (10)
O20.0773 (10)0.4431 (3)0.2707 (2)0.0610 (9)
O30.0837 (11)0.3020 (3)0.3741 (2)0.0673 (10)
S10.4233 (3)0.54359 (10)0.98785 (7)0.0466 (3)
Br10.10081 (12)0.22426 (4)0.82175 (3)0.05698 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.075 (3)0.052 (3)0.036 (2)0.008 (2)0.010 (2)0.003 (2)
C20.053 (3)0.038 (2)0.046 (2)0.001 (2)0.013 (2)0.0039 (18)
C30.039 (2)0.034 (2)0.041 (2)0.0020 (17)0.0000 (17)0.0001 (17)
C40.037 (2)0.034 (2)0.039 (2)0.0027 (17)0.0029 (17)0.0007 (16)
C50.044 (2)0.042 (3)0.039 (2)0.0031 (19)0.0028 (17)0.0072 (18)
C60.051 (2)0.041 (3)0.042 (2)0.002 (2)0.0050 (18)0.0025 (19)
C70.045 (2)0.038 (2)0.044 (2)0.0024 (19)0.0048 (18)0.0061 (19)
C80.043 (2)0.035 (2)0.035 (2)0.0075 (17)0.0028 (17)0.0020 (16)
C90.054 (3)0.036 (2)0.046 (2)0.0042 (19)0.006 (2)0.0061 (18)
C100.057 (3)0.043 (3)0.043 (2)0.003 (2)0.011 (2)0.0155 (19)
C110.045 (2)0.048 (3)0.033 (2)0.008 (2)0.0071 (17)0.0012 (18)
C120.048 (2)0.031 (2)0.045 (2)0.0013 (18)0.0104 (18)0.0029 (17)
C130.051 (3)0.036 (2)0.043 (2)0.0033 (19)0.0157 (19)0.0091 (18)
C140.063 (3)0.057 (3)0.048 (3)0.004 (2)0.004 (2)0.010 (2)
O10.084 (3)0.047 (2)0.055 (2)0.0276 (18)0.0008 (18)0.0074 (16)
O20.088 (3)0.058 (2)0.0364 (17)0.0052 (19)0.0062 (16)0.0002 (15)
O30.104 (3)0.047 (2)0.051 (2)0.019 (2)0.0081 (19)0.0067 (16)
S10.0637 (7)0.0337 (6)0.0415 (6)0.0011 (5)0.0013 (5)0.0049 (4)
Br10.0737 (3)0.0409 (2)0.0554 (3)0.0142 (3)0.00161 (19)0.0071 (3)
Geometric parameters (Å, º) top
C1—C21.348 (7)C8—C91.394 (6)
C1—S11.692 (5)C8—C131.410 (6)
C1—H10.9300C9—C101.406 (6)
C2—C31.397 (6)C9—H90.9300
C2—H20.9300C10—C111.362 (6)
C3—C41.362 (6)C10—H100.9300
C3—Br11.901 (4)C11—C121.382 (6)
C4—C51.483 (6)C11—O21.383 (5)
C4—S11.728 (4)C12—C131.361 (6)
C5—O11.232 (6)C12—O31.374 (5)
C5—C61.463 (6)C13—H130.9300
C6—C71.341 (6)C14—O21.425 (6)
C6—H60.9300C14—O31.442 (6)
C7—C81.456 (6)C14—H14A0.9700
C7—H70.9300C14—H14B0.9700
C2—C1—S1112.9 (3)C8—C9—C10122.5 (4)
C2—C1—H1123.6C8—C9—H9118.7
S1—C1—H1123.6C10—C9—H9118.7
C1—C2—C3111.3 (4)C11—C10—C9115.2 (4)
C1—C2—H2124.3C11—C10—H10122.4
C3—C2—H2124.3C9—C10—H10122.4
C4—C3—C2114.7 (4)C10—C11—C12123.3 (4)
C4—C3—Br1127.0 (3)C10—C11—O2126.8 (4)
C2—C3—Br1118.3 (3)C12—C11—O2109.9 (4)
C3—C4—C5136.8 (4)C13—C12—O3128.4 (4)
C3—C4—S1109.3 (3)C13—C12—C11122.1 (4)
C5—C4—S1113.9 (3)O3—C12—C11109.5 (4)
O1—C5—C6121.3 (4)C12—C13—C8116.9 (4)
O1—C5—C4117.7 (4)C12—C13—H13121.5
C6—C5—C4121.0 (4)C8—C13—H13121.5
C7—C6—C5120.9 (4)O2—C14—O3107.4 (4)
C7—C6—H6119.5O2—C14—H14A110.2
C5—C6—H6119.5O3—C14—H14A110.2
C6—C7—C8129.2 (4)O2—C14—H14B110.2
C6—C7—H7115.4O3—C14—H14B110.2
C8—C7—H7115.4H14A—C14—H14B108.5
C9—C8—C13119.9 (4)C11—O2—C14106.6 (3)
C9—C8—C7117.4 (4)C12—O3—C14106.7 (4)
C13—C8—C7122.6 (4)C1—S1—C491.8 (2)
S1—C1—C2—C32.3 (5)C9—C10—C11—C120.4 (7)
C1—C2—C3—C41.8 (6)C9—C10—C11—O2179.5 (4)
C1—C2—C3—Br1179.3 (3)C10—C11—C12—C130.4 (7)
C2—C3—C4—C5178.6 (4)O2—C11—C12—C13179.5 (4)
Br1—C3—C4—C51.4 (7)C10—C11—C12—O3179.3 (4)
C2—C3—C4—S10.5 (5)O2—C11—C12—O30.6 (5)
Br1—C3—C4—S1177.6 (2)O3—C12—C13—C8178.8 (4)
C3—C4—C5—O1168.1 (5)C11—C12—C13—C80.1 (6)
S1—C4—C5—O111.0 (5)C9—C8—C13—C120.2 (6)
C3—C4—C5—C613.9 (7)C7—C8—C13—C12179.7 (4)
S1—C4—C5—C6167.0 (3)C10—C11—O2—C14179.6 (4)
O1—C5—C6—C72.5 (7)C12—C11—O2—C140.3 (5)
C4—C5—C6—C7179.6 (4)O3—C14—O2—C110.0 (5)
C5—C6—C7—C8177.0 (4)C13—C12—O3—C14179.4 (4)
C6—C7—C8—C9172.3 (5)C11—C12—O3—C140.6 (5)
C6—C7—C8—C137.8 (7)O2—C14—O3—C120.4 (5)
C13—C8—C9—C100.2 (7)C2—C1—S1—C41.8 (4)
C7—C8—C9—C10179.7 (4)C3—C4—S1—C10.7 (3)
C8—C9—C10—C110.1 (7)C5—C4—S1—C1180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.513.420 (6)167
C14—H14A···O1ii0.972.443.400 (6)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H9BrO3S
Mr337.18
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)4.0013 (3), 11.0211 (9), 14.6931 (11)
β (°) 95.781 (2)
V3)644.65 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.35
Crystal size (mm)0.48 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.296, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
4452, 2684, 2180
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 0.94
No. of reflections2684
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.43
Absolute structureFlack (1983), 1127 Friedel pairs
Absolute structure parameter0.057 (11)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.513.420 (6)167
C14—H14A···O1ii0.972.443.400 (6)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1.
 

Acknowledgements

CSC thanks the Department of Studies in Chemistry, University of Mysore, for the provision of research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1430–o1431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ashalatha, B. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164–o4165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2006c). Acta Cryst. E62, o5010–o5012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. & Bolte, M. (2006a). Acta Cryst. E62, o3964–o3965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H., Sarojini, B., Narayana, B., Bindya, S. & Bolte, M. (2006b). Acta Cryst. E62, o4048–o4049.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds