metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{Bis[2-(3,5-di­methyl­pyrazol-1-yl-κN2)eth­yl]amine-κN}chloridopalladium(II) chloride 0.25-hydrate

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Auckland Park 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 17 August 2010; accepted 2 September 2010; online 11 September 2010)

The title compound, [PdCl(C14H23N5)]Cl·0.25H2O, is a pseudopolymorph of the previously reported compound [PdCl(C14H23N5)]Cl·2H2O [de Mendoza et al. (2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]). Acta Cryst. E62, m2934–m2936]. The cationic complex and chloride anion are disordered over two positions each in a 0.584 (4):0.416 (4) ratio. The geometry about the Pd atom is distorted square-planar. The pyrazole rings are almost perpendicular, forming a dihedral angle of 86.6 (6)° to each other, to mitigate steric conflict between their methyl groups.

Related literature

For the previously reported pseudopolymorph, see: de Mendoza et al. (2006[Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.]). For the use of bis­(pyrazol­yl)alkyl­amines as ligands in metal complexes, see: Kunrath et al. (2003[Kunrath, F. A., de Souza, R. F., Casagrandre, O. L. Jr, Brooks, N. R. & Young, V. G. (2003). Organometallics, 22, 4739-4743.]); Ajellal et al. (2006[Ajellal, N., Kuhn, M. C. A., Boff, A. D. G., Horner, M., Thomas, C. M., Carpentier, J.-F. & Casagrandre, O. L. Jr (2006). Organometallics, 25, 1213-1216.]); Zhang et al. (2008[Zhang, J., Braunstein, P. & Hor, T. S. A. (2008). Organometallics, 27, 4277-4279.]); John et al. (2010[John, A., Shaikh, M. M., Butcher, R. J. & Ghosh, P. (2010). Dalton Trans. pp. 7353-7363.]). For geometrical parameter checks, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl(C14H23N5)]Cl·0.25H2O

  • Mr = 443.68

  • Monoclinic, P 21 /n

  • a = 10.5995 (8) Å

  • b = 12.4740 (9) Å

  • c = 13.8168 (10) Å

  • β = 99.865 (1)°

  • V = 1799.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 100 K

  • 0.27 × 0.27 × 0.19 mm

Data collection
  • Bruker CCD 1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.715, Tmax = 0.786

  • 26455 measured reflections

  • 5182 independent reflections

  • 4450 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.057

  • S = 1.01

  • 5182 reflections

  • 415 parameters

  • 691 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl2 0.93 2.24 3.162 (12) 174
N3A—H3B⋯Cl2A 0.93 2.17 3.088 (15) 170

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and FCF_filter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs, Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs, Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Bis(pyrazolyl)alkylamines are frequently used as N^N^N ligands in metal complexes (Kunrath et al., 2003, Ajellal et al., 2006, Zhang et al., 2008), although bis(pyrazolyl)arylamines can act as bidentate N^N ligands (John et al., 2010).

Palladium dichloride reacts with bis(3,5-dimethylpyrazolyl)alkylamine to afford the title compound, in which the ligand acts as a tridentate N^N^N donor. It is a pseudopolymorph of the previously reported complex [PdCl(C14H23N5]Cl.2H2O, which contains two solvent water molecules per ionic complex (de Mendoza et al., 2006).

The title compound consists of discrete [PdCl(C14H23N5)] cations and chloride anions (Fig. 1). The lattice also contains one quarter of a solvent water molecule per ionic complex. The geometry about the central palladium atom is slightly distorted square planar. This distortion is observed in the bond angles about the palladium atom and the deviation from planarity by the palladium and its four coordinating atoms (average r.m.s. of 0.07 (6) Å). The pyrazole rings are almost perpendicular to each other forming an average dihedral angle of 86.6 (6)° required to mitigate steric conflict between the methyl groups C1 and C14. The pyrazole rings are tilted av. 47.2 (11)° relative to the Pd coordination plane. The bond distances and angles are typical, as confirmed by a Mogul structural check (Bruno et al., 2004) and by comparing the values in the title compound to six similar compounds found in the Cambridge Structural Database (CSD, version 5.31, last update May 2010; Allen, 2002).

The cationic complex exhibits a "whole molecule disorder" over two positions, and the chloride anion is also disordered over two positions. The major components of the disordered moieties are present 58.4 (4)% of the time. There is one strong intermolecular hydrogen bond of the type N—H···Cl present in the ionic compound (Table 1). It is likely that when the solvent water molecule is present it participates in a hydrogen bond with atom Cl2A as indicated by the distance of 3.034 (5) Å between the two atoms. Since the hydrogen atoms on the solvent water molecule could not be located, no further information about a possible hydrogen bond can be obtained. The solvent water molecule cannot be present when atom Cl2, the major component of the disordered chloride anion, is present as it would place the O and Cl atoms in prohibitively close proximity.

Related literature top

For the previously reported pseudopolymorph, see: de Mendoza et al. (2006). For the use of bis(pyrazolyl)alkylamines as ligands in metal complexes, see: Kunrath et al. (2003); Ajellal et al. (2006); Zhang et al. (2008); John et al. (2010). For geometrical parameter checks, see: Bruno et al. (2004); Allen (2002).

Experimental top

A solution of [PdCl2(NCMe)2] (0.10 g, 0.39 mmol) and bis(3,5-dimethylpyrazolyl)ethylamine (0.10 g, 0.39 mmol) in dichloromethane (20 ml) was stirred at 233 K for 24 h. The resultant yellowish-orange solution was stored at 269 K for several days to form orange crystals. Yield: 0.06 g (35%). 1H NMR (CDCl3): 2.49 (s, 12H, CH3, pz), 3.62 (t, 3JH—H = 12.3 Hz, 4H, CH2-pz), 4.00 (t, 3JH—H = 12.3 Hz, 4H, CH2—NH), 5.26 (s, 2H, CH, pz).

Refinement top

The cationic palladium complex and chloride anion are disordered over two positions in a 0.584 (4):0.416 (4) ratio. The complexes were refined with similarity restraints. There is also one quarter molecule of a solvent water per molecule of complex. The H-atoms of this solvent water could not be located. All the other H-atoms were placed in idealized locations and refined as riding: N-H = 0.93 Å, C-H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(bearing atom), where k = 1.5 methyl H-atoms and k = 1.2 for all other H–atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compond. The thermal ellipsoids are shown at the 50% probability level. All hydrogen atoms connected to carbon atoms and the minor components of disordered atoms were omitted for clarity. The intermolecular hydrogen bond is shown as a dashed line. The solvent water molecule has an ocupancy of 25%.
{Bis[2-(3,5-dimethylpyrazol-1-yl-κN2)ethyl]amine- κN}chloridopalladium(II) chloride 0.25-hydrate top
Crystal data top
[PdCl(C14H23N5)]Cl·0.25H2OF(000) = 898
Mr = 443.68Dx = 1.636 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11031 reflections
a = 10.5995 (8) Åθ = 2.2–30.0°
b = 12.4740 (9) ŵ = 1.33 mm1
c = 13.8168 (10) ÅT = 100 K
β = 99.865 (1)°Block, yellow
V = 1799.8 (2) Å30.27 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker CCD 1000 area-detector
diffractometer
5182 independent reflections
Radiation source: fine-focus sealed tube4450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
0.30° ω and 0.4 ° ϕ scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.715, Tmax = 0.786k = 1717
26455 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.7513P]
where P = (Fo2 + 2Fc2)/3
5182 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.44 e Å3
691 restraintsΔρmin = 0.28 e Å3
Crystal data top
[PdCl(C14H23N5)]Cl·0.25H2OV = 1799.8 (2) Å3
Mr = 443.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5995 (8) ŵ = 1.33 mm1
b = 12.4740 (9) ÅT = 100 K
c = 13.8168 (10) Å0.27 × 0.27 × 0.19 mm
β = 99.865 (1)°
Data collection top
Bruker CCD 1000 area-detector
diffractometer
5182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4450 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.786Rint = 0.029
26455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023691 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
5182 reflectionsΔρmin = 0.28 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.80405 (12)0.79001 (8)1.01257 (6)0.01812 (12)0.584 (4)
Cl10.72843 (17)0.72421 (12)1.14792 (8)0.0288 (3)0.584 (4)
Cl20.67632 (16)0.72034 (5)0.71803 (7)0.0260 (3)0.584 (4)
N10.7742 (3)0.9419 (3)1.0504 (3)0.0226 (6)0.584 (4)
N20.7043 (4)1.0067 (3)0.9815 (3)0.0227 (7)0.584 (4)
N30.8628 (7)0.8406 (9)0.8864 (7)0.0196 (12)0.584 (4)
H30.81270.80080.83740.024*0.584 (4)
N40.9397 (10)0.6260 (7)0.9251 (9)0.0213 (12)0.584 (4)
N50.8247 (14)0.6423 (8)0.9573 (12)0.0211 (18)0.584 (4)
C10.8615 (4)0.9538 (4)1.2288 (3)0.0343 (8)0.584 (4)
H1A0.81310.89971.25860.051*0.584 (4)
H1B0.88341.01341.27480.051*0.584 (4)
H1C0.94020.92171.21370.051*0.584 (4)
C20.7825 (4)0.9942 (4)1.1371 (3)0.0245 (8)0.584 (4)
C30.7174 (5)1.0910 (5)1.1218 (4)0.0304 (9)0.584 (4)
H3A0.70741.14271.17040.036*0.584 (4)
C40.6704 (5)1.0979 (4)1.0231 (4)0.0266 (8)0.584 (4)
C50.5964 (6)1.1848 (5)0.9651 (5)0.0409 (11)0.584 (4)
H5A0.64691.21440.91820.061*0.584 (4)
H5B0.57771.24161.00950.061*0.584 (4)
H5C0.51601.15560.92920.061*0.584 (4)
C60.7008 (4)0.9829 (4)0.8770 (4)0.0238 (9)0.584 (4)
H6A0.66941.04650.83720.029*0.584 (4)
H6B0.64050.92310.85700.029*0.584 (4)
C70.8313 (5)0.9530 (5)0.8579 (4)0.0235 (9)0.584 (4)
H7A0.83440.96250.78720.028*0.584 (4)
H7B0.89591.00130.89560.028*0.584 (4)
C80.9946 (5)0.8097 (5)0.8785 (4)0.0286 (10)0.584 (4)
H8A1.05320.87000.90080.034*0.584 (4)
H8B0.99960.79500.80880.034*0.584 (4)
C91.0378 (8)0.7104 (5)0.9401 (6)0.0259 (12)0.584 (4)
H9A1.11800.68260.92180.031*0.584 (4)
H9B1.05580.73041.01040.031*0.584 (4)
C101.0477 (4)0.4927 (4)0.8342 (2)0.0369 (8)0.584 (4)
H10A1.05510.53990.77870.055*0.584 (4)
H10B1.03020.41930.81020.055*0.584 (4)
H10C1.12810.49400.88130.055*0.584 (4)
C110.9421 (5)0.5300 (4)0.8827 (4)0.0218 (9)0.584 (4)
C120.8283 (4)0.4817 (4)0.8913 (3)0.0233 (7)0.584 (4)
H120.80090.41230.86850.028*0.584 (4)
C130.7602 (7)0.5541 (6)0.9401 (5)0.0233 (11)0.584 (4)
C140.6270 (4)0.5440 (4)0.9603 (3)0.0325 (8)0.584 (4)
H14A0.62530.56441.02860.049*0.584 (4)
H14B0.59820.46960.94980.049*0.584 (4)
H14C0.57010.59120.91600.049*0.584 (4)
Pd1A0.77404 (15)0.77658 (11)1.00983 (9)0.01597 (15)0.416 (4)
Cl1A0.68638 (18)0.69209 (17)1.13068 (12)0.0258 (3)0.416 (4)
Cl2A0.7350 (3)0.72156 (8)0.69987 (10)0.0311 (5)0.416 (4)
N1A0.7336 (4)0.9221 (4)1.0594 (4)0.0195 (8)0.416 (4)
N2A0.6665 (5)0.9933 (5)0.9944 (4)0.0219 (9)0.416 (4)
N3A0.8351 (11)0.8443 (12)0.8917 (9)0.0164 (12)0.416 (4)
H3B0.79740.80380.83790.020*0.416 (4)
N4A0.9562 (12)0.6458 (9)0.9264 (12)0.0152 (14)0.416 (4)
N5A0.8447 (19)0.6399 (11)0.9623 (16)0.0165 (17)0.416 (4)
C1A0.8271 (5)0.9143 (4)1.2373 (4)0.0289 (10)0.416 (4)
H1D0.77430.85951.26190.043*0.416 (4)
H1E0.85290.96821.28850.043*0.416 (4)
H1F0.90360.88061.21970.043*0.416 (4)
C2A0.7510 (5)0.9674 (5)1.1478 (4)0.0212 (10)0.416 (4)
C3A0.6937 (7)1.0679 (6)1.1386 (6)0.0252 (11)0.416 (4)
H3C0.69091.11751.19040.030*0.416 (4)
C4A0.6421 (6)1.0829 (5)1.0422 (5)0.0238 (11)0.416 (4)
C5A0.5703 (9)1.1756 (7)0.9907 (6)0.0428 (16)0.416 (4)
H5D0.62131.20850.94570.064*0.416 (4)
H5E0.55391.22881.03920.064*0.416 (4)
H5F0.48871.15040.95330.064*0.416 (4)
C6A0.6608 (6)0.9767 (6)0.8892 (5)0.0198 (11)0.416 (4)
H6C0.62341.04070.85270.024*0.416 (4)
H6D0.60530.91440.86720.024*0.416 (4)
C7A0.7925 (6)0.9571 (6)0.8680 (6)0.0190 (12)0.416 (4)
H7C0.85331.00730.90720.023*0.416 (4)
H7D0.79360.97140.79760.023*0.416 (4)
C8A0.9775 (8)0.8360 (6)0.8929 (6)0.0229 (12)0.416 (4)
H8C1.02020.90130.92330.027*0.416 (4)
H8D0.99390.83150.82460.027*0.416 (4)
C9A1.0336 (11)0.7383 (7)0.9498 (9)0.0220 (15)0.416 (4)
H9C1.12020.72430.93480.026*0.416 (4)
H9D1.04240.75301.02110.026*0.416 (4)
C10A1.0903 (4)0.5384 (4)0.8307 (3)0.0243 (8)0.416 (4)
H10D1.08910.58890.77620.036*0.416 (4)
H10E1.09080.46480.80590.036*0.416 (4)
H10F1.16730.55050.87990.036*0.416 (4)
C11A0.9752 (7)0.5549 (6)0.8762 (5)0.0184 (11)0.416 (4)
C12A0.8706 (6)0.4902 (5)0.8755 (4)0.0197 (10)0.416 (4)
H12A0.85950.42040.84780.024*0.416 (4)
C13A0.7836 (8)0.5442 (8)0.9224 (7)0.0197 (14)0.416 (4)
C14A0.6521 (5)0.5147 (5)0.9364 (4)0.0298 (11)0.416 (4)
H14D0.64950.50921.00680.045*0.416 (4)
H14E0.62850.44560.90470.045*0.416 (4)
H14F0.59170.56990.90700.045*0.416 (4)
O1W0.5114 (4)0.7644 (3)0.8052 (3)0.0239 (8)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0221 (3)0.0185 (2)0.01357 (11)0.00310 (19)0.0024 (2)0.00027 (12)
Cl10.0386 (6)0.0284 (5)0.0217 (4)0.0100 (4)0.0115 (4)0.0077 (3)
Cl20.0367 (6)0.0176 (3)0.0212 (3)0.0021 (3)0.0023 (3)0.0008 (2)
N10.0281 (18)0.0243 (14)0.0150 (11)0.0044 (12)0.0020 (12)0.0012 (9)
N20.025 (2)0.0190 (14)0.0216 (15)0.0028 (13)0.0026 (12)0.0003 (10)
N30.019 (3)0.0227 (17)0.0169 (13)0.001 (2)0.0025 (16)0.0033 (11)
N40.021 (2)0.022 (3)0.0189 (14)0.0030 (17)0.0023 (15)0.002 (2)
N50.018 (4)0.0246 (19)0.020 (2)0.0068 (17)0.002 (3)0.0044 (14)
C10.0361 (19)0.048 (3)0.0175 (13)0.0009 (15)0.0020 (12)0.0069 (15)
C20.0242 (19)0.029 (2)0.0202 (15)0.0046 (13)0.0044 (12)0.0081 (13)
C30.031 (2)0.023 (2)0.039 (2)0.0032 (15)0.0121 (15)0.0087 (16)
C40.022 (2)0.0230 (18)0.037 (2)0.0017 (13)0.0088 (14)0.0004 (14)
C50.040 (2)0.0256 (18)0.061 (3)0.0132 (15)0.0178 (19)0.009 (2)
C60.028 (3)0.0209 (14)0.0195 (16)0.0031 (18)0.0034 (16)0.0009 (11)
C70.032 (3)0.0215 (15)0.0156 (16)0.0040 (19)0.0001 (16)0.0030 (11)
C80.0254 (19)0.033 (3)0.028 (2)0.0020 (18)0.0088 (13)0.0016 (17)
C90.0310 (17)0.027 (3)0.0191 (19)0.002 (2)0.0020 (13)0.002 (2)
C100.0388 (19)0.053 (2)0.0182 (12)0.0216 (16)0.0019 (12)0.0002 (14)
C110.025 (3)0.022 (3)0.0175 (14)0.0099 (17)0.0012 (16)0.0002 (16)
C120.031 (2)0.0193 (15)0.0172 (16)0.0045 (16)0.0035 (13)0.0013 (12)
C130.034 (3)0.0192 (16)0.017 (2)0.0105 (16)0.0048 (14)0.0032 (14)
C140.0299 (18)0.033 (2)0.034 (2)0.0002 (14)0.0056 (13)0.0060 (14)
Pd1A0.0168 (4)0.0158 (3)0.01479 (16)0.0016 (2)0.0015 (2)0.00192 (15)
Cl1A0.0246 (6)0.0282 (7)0.0266 (5)0.0077 (5)0.0097 (5)0.0115 (5)
Cl2A0.0471 (11)0.0213 (5)0.0215 (5)0.0048 (5)0.0038 (5)0.0035 (3)
N1A0.016 (2)0.025 (2)0.0169 (15)0.0068 (14)0.0022 (14)0.0038 (13)
N2A0.020 (2)0.023 (2)0.0231 (19)0.0004 (17)0.0029 (16)0.0017 (14)
N3A0.014 (4)0.0178 (19)0.016 (2)0.000 (2)0.0004 (19)0.0007 (15)
N4A0.016 (3)0.015 (3)0.0155 (19)0.001 (2)0.005 (2)0.004 (2)
N5A0.012 (4)0.015 (2)0.021 (3)0.0065 (18)0.003 (3)0.0012 (17)
C1A0.035 (3)0.033 (3)0.0186 (17)0.0070 (18)0.0032 (17)0.0008 (18)
C2A0.021 (2)0.023 (3)0.0217 (18)0.0015 (17)0.0075 (16)0.0012 (16)
C3A0.028 (3)0.022 (3)0.028 (2)0.0028 (19)0.0124 (18)0.0037 (18)
C4A0.022 (3)0.016 (2)0.037 (3)0.0018 (18)0.0167 (18)0.0000 (18)
C5A0.056 (4)0.031 (3)0.048 (4)0.021 (3)0.028 (3)0.013 (2)
C6A0.018 (3)0.019 (2)0.021 (2)0.0039 (19)0.0006 (18)0.0056 (14)
C7A0.024 (4)0.0173 (19)0.015 (2)0.003 (2)0.002 (2)0.0025 (14)
C8A0.032 (3)0.017 (3)0.020 (2)0.0082 (19)0.0079 (18)0.0021 (18)
C9A0.022 (2)0.016 (3)0.026 (3)0.002 (2)0.0006 (17)0.004 (2)
C10A0.025 (2)0.027 (2)0.0230 (17)0.0089 (15)0.0092 (14)0.0037 (15)
C11A0.024 (3)0.017 (3)0.0131 (17)0.0023 (17)0.0006 (18)0.0052 (16)
C12A0.026 (3)0.017 (2)0.0171 (19)0.003 (2)0.0065 (19)0.0016 (14)
C13A0.019 (3)0.024 (3)0.016 (3)0.001 (2)0.0010 (19)0.001 (2)
C14A0.025 (2)0.036 (3)0.028 (3)0.0013 (19)0.0044 (17)0.0051 (19)
O1W0.0207 (18)0.024 (2)0.028 (2)0.0029 (14)0.0055 (15)0.0101 (15)
Geometric parameters (Å, º) top
Pd1—N12.005 (4)Pd1A—N1A2.013 (5)
Pd1—N52.021 (8)Pd1A—N5A2.017 (10)
Pd1—N32.048 (6)Pd1A—N3A2.039 (8)
Pd1—Cl12.3079 (12)Pd1A—Cl1A2.3009 (16)
N1—C21.353 (5)N1A—C2A1.328 (8)
N1—N21.367 (6)N1A—N2A1.372 (8)
N2—C41.350 (7)N2A—C4A1.345 (10)
N2—C61.468 (6)N2A—C6A1.460 (9)
N3—C81.471 (7)N3A—C7A1.497 (14)
N3—C71.479 (11)N3A—C8A1.511 (11)
N3—H30.9300N3A—H3B0.9300
N4—C111.335 (9)N4A—N5A1.360 (19)
N4—N51.381 (14)N4A—C11A1.362 (13)
N4—C91.470 (9)N4A—C9A1.421 (12)
N5—C131.296 (14)N5A—C13A1.423 (17)
C1—C21.483 (6)C1A—C2A1.510 (8)
C1—H1A0.9800C1A—H1D0.9800
C1—H1B0.9800C1A—H1E0.9800
C1—H1C0.9800C1A—H1F0.9800
C2—C31.388 (8)C2A—C3A1.390 (10)
C3—C41.372 (8)C3A—C4A1.364 (11)
C3—H3A0.9500C3A—H3C0.9500
C4—C51.489 (8)C4A—C5A1.496 (11)
C5—H5A0.9800C5A—H5D0.9800
C5—H5B0.9800C5A—H5E0.9800
C5—H5C0.9800C5A—H5F0.9800
C6—C71.500 (5)C6A—C7A1.495 (7)
C6—H6A0.9900C6A—H6C0.9900
C6—H6B0.9900C6A—H6D0.9900
C7—H7A0.9900C7A—H7C0.9900
C7—H7B0.9900C7A—H7D0.9900
C8—C91.528 (9)C8A—C9A1.515 (12)
C8—H8A0.9900C8A—H8C0.9900
C8—H8B0.9900C8A—H8D0.9900
C9—H9A0.9900C9A—H9C0.9900
C9—H9B0.9900C9A—H9D0.9900
C10—C111.476 (6)C10A—C11A1.479 (8)
C10—H10A0.9800C10A—H10D0.9800
C10—H10B0.9800C10A—H10E0.9800
C10—H10C0.9800C10A—H10F0.9800
C11—C121.372 (5)C11A—C12A1.371 (6)
C12—C131.399 (5)C12A—C13A1.389 (7)
C12—H120.9500C12A—H12A0.9500
C13—C141.490 (7)C13A—C14A1.486 (9)
C14—H14A0.9800C14A—H14D0.9800
C14—H14B0.9800C14A—H14E0.9800
C14—H14C0.9800C14A—H14F0.9800
N1—Pd1—N5172.9 (5)C7A—N3A—C8A109.2 (9)
N1—Pd1—N390.9 (3)C7A—N3A—Pd1A116.1 (6)
N5—Pd1—N383.7 (5)C8A—N3A—Pd1A114.6 (7)
N1—Pd1—Cl191.86 (10)C7A—N3A—H3B105.2
N5—Pd1—Cl193.3 (4)C8A—N3A—H3B105.2
N3—Pd1—Cl1175.9 (4)Pd1A—N3A—H3B105.2
C2—N1—N2106.1 (4)N5A—N4A—C11A110.8 (8)
C2—N1—Pd1134.2 (3)N5A—N4A—C9A117.7 (11)
N2—N1—Pd1117.9 (3)C11A—N4A—C9A131.4 (9)
C4—N2—N1110.7 (4)N4A—N5A—C13A105.7 (9)
C4—N2—C6128.7 (4)N4A—N5A—Pd1A117.8 (11)
N1—N2—C6119.0 (4)C13A—N5A—Pd1A131.7 (12)
C8—N3—C7113.7 (6)C2A—C1A—H1D109.5
C8—N3—Pd1114.5 (5)C2A—C1A—H1E109.5
C7—N3—Pd1115.5 (5)H1D—C1A—H1E109.5
C8—N3—H3103.7C2A—C1A—H1F109.5
C7—N3—H3103.7H1D—C1A—H1F109.5
Pd1—N3—H3103.7H1E—C1A—H1F109.5
C11—N4—N5110.9 (7)N1A—C2A—C3A108.1 (6)
C11—N4—C9129.6 (8)N1A—C2A—C1A122.5 (5)
N5—N4—C9119.5 (8)C3A—C2A—C1A129.4 (6)
C13—N5—N4106.5 (6)C4A—C3A—C2A107.9 (7)
C13—N5—Pd1139.0 (8)C4A—C3A—H3C126.0
N4—N5—Pd1114.5 (8)C2A—C3A—H3C126.0
N1—C2—C3109.2 (4)N2A—C4A—C3A106.7 (7)
N1—C2—C1122.3 (4)N2A—C4A—C5A122.3 (7)
C3—C2—C1128.2 (4)C3A—C4A—C5A131.0 (7)
C4—C3—C2107.0 (5)C4A—C5A—H5D109.5
C4—C3—H3A126.5C4A—C5A—H5E109.5
C2—C3—H3A126.5H5D—C5A—H5E109.5
N2—C4—C3107.0 (5)C4A—C5A—H5F109.5
N2—C4—C5122.5 (5)H5D—C5A—H5F109.5
C3—C4—C5130.5 (5)H5E—C5A—H5F109.5
N2—C6—C7110.8 (4)N2A—C6A—C7A109.7 (5)
N2—C6—H6A109.5N2A—C6A—H6C109.7
C7—C6—H6A109.5C7A—C6A—H6C109.7
N2—C6—H6B109.5N2A—C6A—H6D109.7
C7—C6—H6B109.5C7A—C6A—H6D109.7
H6A—C6—H6B108.1H6C—C6A—H6D108.2
N3—C7—C6111.2 (4)C6A—C7A—N3A111.5 (6)
N3—C7—H7A109.4C6A—C7A—H7C109.3
C6—C7—H7A109.4N3A—C7A—H7C109.3
N3—C7—H7B109.4C6A—C7A—H7D109.3
C6—C7—H7B109.4N3A—C7A—H7D109.3
H7A—C7—H7B108.0H7C—C7A—H7D108.0
N3—C8—C9111.6 (6)N3A—C8A—C9A111.3 (8)
N3—C8—H8A109.3N3A—C8A—H8C109.4
C9—C8—H8A109.3C9A—C8A—H8C109.4
N3—C8—H8B109.3N3A—C8A—H8D109.4
C9—C8—H8B109.3C9A—C8A—H8D109.4
H8A—C8—H8B108.0H8C—C8A—H8D108.0
N4—C9—C8111.4 (7)N4A—C9A—C8A112.0 (10)
N4—C9—H9A109.3N4A—C9A—H9C109.2
C8—C9—H9A109.3C8A—C9A—H9C109.2
N4—C9—H9B109.3N4A—C9A—H9D109.2
C8—C9—H9B109.3C8A—C9A—H9D109.2
H9A—C9—H9B108.0H9C—C9A—H9D107.9
N4—C11—C12105.8 (5)C11A—C10A—H10D109.5
N4—C11—C10123.8 (5)C11A—C10A—H10E109.5
C12—C11—C10130.4 (4)H10D—C10A—H10E109.5
C11—C12—C13107.0 (5)C11A—C10A—H10F109.5
C11—C12—H12126.5H10D—C10A—H10F109.5
C13—C12—H12126.5H10E—C10A—H10F109.5
N5—C13—C12109.7 (6)N4A—C11A—C12A107.7 (7)
N5—C13—C14121.7 (6)N4A—C11A—C10A122.5 (6)
C12—C13—C14128.2 (6)C12A—C11A—C10A129.8 (7)
N1A—Pd1A—N5A170.5 (6)C11A—C12A—C13A108.2 (7)
N1A—Pd1A—N3A90.8 (4)C11A—C12A—H12A125.9
N5A—Pd1A—N3A84.5 (7)C13A—C12A—H12A125.9
N1A—Pd1A—Cl1A91.72 (13)C12A—C13A—N5A107.1 (8)
N5A—Pd1A—Cl1A93.9 (6)C12A—C13A—C14A130.8 (7)
N3A—Pd1A—Cl1A173.5 (4)N5A—C13A—C14A122.1 (8)
C2A—N1A—N2A107.5 (5)C13A—C14A—H14D109.5
C2A—N1A—Pd1A133.8 (4)C13A—C14A—H14E109.5
N2A—N1A—Pd1A118.5 (4)H14D—C14A—H14E109.5
C4A—N2A—N1A109.8 (6)C13A—C14A—H14F109.5
C4A—N2A—C6A128.9 (6)H14D—C14A—H14F109.5
N1A—N2A—C6A119.3 (6)H14E—C14A—H14F109.5
N3—Pd1—N1—C2148.4 (4)N3A—Pd1A—N1A—C2A138.0 (6)
Cl1—Pd1—N1—C234.7 (4)Cl1A—Pd1A—N1A—C2A48.0 (4)
N3—Pd1—N1—N249.4 (3)N3A—Pd1A—N1A—N2A47.0 (5)
Cl1—Pd1—N1—N2127.5 (2)Cl1A—Pd1A—N1A—N2A127.0 (3)
C2—N1—N2—C40.6 (4)C2A—N1A—N2A—C4A0.0 (5)
Pd1—N1—N2—C4167.4 (2)Pd1A—N1A—N2A—C4A176.2 (3)
C2—N1—N2—C6167.5 (3)C2A—N1A—N2A—C6A165.0 (4)
Pd1—N1—N2—C625.7 (4)Pd1A—N1A—N2A—C6A18.7 (5)
N1—Pd1—N3—C8120.0 (8)N1A—Pd1A—N3A—C7A18.1 (9)
N5—Pd1—N3—C864.6 (9)N5A—Pd1A—N3A—C7A170.2 (11)
N1—Pd1—N3—C715.0 (7)N1A—Pd1A—N3A—C8A110.8 (9)
N5—Pd1—N3—C7160.4 (8)N5A—Pd1A—N3A—C8A60.9 (11)
C11—N4—N5—C133.8 (17)C11A—N4A—N5A—C13A7 (2)
C9—N4—N5—C13176.5 (11)C9A—N4A—N5A—C13A176.1 (14)
C11—N4—N5—Pd1175.1 (8)C11A—N4A—N5A—Pd1A165.3 (12)
C9—N4—N5—Pd14.6 (18)C9A—N4A—N5A—Pd1A18 (2)
N3—Pd1—N5—C13129.7 (19)N3A—Pd1A—N5A—N4A39.0 (17)
Cl1—Pd1—N5—C1347.5 (18)Cl1A—Pd1A—N5A—N4A147.3 (17)
N3—Pd1—N5—N448.7 (12)N3A—Pd1A—N5A—C13A113 (2)
Cl1—Pd1—N5—N4134.1 (12)Cl1A—Pd1A—N5A—C13A61 (2)
N2—N1—C2—C30.2 (4)N2A—N1A—C2A—C3A0.4 (5)
Pd1—N1—C2—C3163.5 (3)Pd1A—N1A—C2A—C3A175.0 (4)
N2—N1—C2—C1174.3 (3)N2A—N1A—C2A—C1A177.0 (4)
Pd1—N1—C2—C122.0 (5)Pd1A—N1A—C2A—C1A7.6 (7)
N1—C2—C3—C40.9 (4)N1A—C2A—C3A—C4A0.6 (6)
C1—C2—C3—C4173.2 (4)C1A—C2A—C3A—C4A176.5 (5)
N1—N2—C4—C31.2 (4)N1A—N2A—C4A—C3A0.4 (6)
C6—N2—C4—C3166.4 (4)C6A—N2A—C4A—C3A163.6 (5)
N1—N2—C4—C5178.4 (4)N1A—N2A—C4A—C5A179.9 (5)
C6—N2—C4—C513.1 (6)C6A—N2A—C4A—C5A16.7 (9)
C2—C3—C4—N21.2 (4)C2A—C3A—C4A—N2A0.6 (6)
C2—C3—C4—C5178.2 (4)C2A—C3A—C4A—C5A179.7 (6)
C4—N2—C6—C7121.7 (5)C4A—N2A—C6A—C7A112.8 (7)
N1—N2—C6—C742.5 (5)N1A—N2A—C6A—C7A49.0 (7)
C8—N3—C7—C6174.3 (6)N2A—C6A—C7A—N3A78.9 (9)
Pd1—N3—C7—C639.0 (8)C8A—N3A—C7A—C6A166.3 (7)
N2—C6—C7—N379.1 (7)Pd1A—N3A—C7A—C6A34.8 (11)
C7—N3—C8—C9160.3 (6)C7A—N3A—C8A—C9A160.0 (7)
Pd1—N3—C8—C924.4 (9)Pd1A—N3A—C8A—C9A27.7 (12)
C11—N4—C9—C8112.6 (12)N5A—N4A—C9A—C8A73.7 (19)
N5—N4—C9—C867.0 (14)C11A—N4A—C9A—C8A109.9 (16)
N3—C8—C9—N446.6 (9)N3A—C8A—C9A—N4A44.1 (12)
N5—N4—C11—C122.5 (13)N5A—N4A—C11A—C12A2.8 (18)
C9—N4—C11—C12177.9 (11)C9A—N4A—C11A—C12A179.4 (15)
N5—N4—C11—C10175.0 (9)N5A—N4A—C11A—C10A178.8 (13)
C9—N4—C11—C104.6 (16)C9A—N4A—C11A—C10A2 (2)
N4—C11—C12—C130.3 (8)N4A—C11A—C12A—C13A2.6 (11)
C10—C11—C12—C13177.0 (5)C10A—C11A—C12A—C13A175.7 (8)
N4—N5—C13—C123.6 (15)C11A—C12A—C13A—N5A6.7 (14)
Pd1—N5—C13—C12174.9 (14)C11A—C12A—C13A—C14A175.5 (9)
N4—N5—C13—C14176.6 (9)N4A—N5A—C13A—C12A8 (2)
Pd1—N5—C13—C142 (2)Pd1A—N5A—C13A—C12A162.4 (15)
C11—C12—C13—N52.2 (11)N4A—N5A—C13A—C14A173.8 (13)
C11—C12—C13—C14174.6 (6)Pd1A—N5A—C13A—C14A20 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl20.932.243.162 (12)174
N3A—H3B···Cl2A0.932.173.088 (15)170

Experimental details

Crystal data
Chemical formula[PdCl(C14H23N5)]Cl·0.25H2O
Mr443.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.5995 (8), 12.4740 (9), 13.8168 (10)
β (°) 99.865 (1)
V3)1799.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.27 × 0.27 × 0.19
Data collection
DiffractometerBruker CCD 1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.715, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
26455, 5182, 4450
Rint0.029
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.01
No. of reflections5182
No. of parameters415
No. of restraints691
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.28

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and FCF_filter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2009), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl20.932.243.162 (12)173.5
N3A—H3B···Cl2A0.932.173.088 (15)170.0
 

References

First citationAjellal, N., Kuhn, M. C. A., Boff, A. D. G., Horner, M., Thomas, C. M., Carpentier, J.-F. & Casagrandre, O. L. Jr (2006). Organometallics, 25, 1213–1216.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuzei, I. A. (2007). In-house Crystallographic Programs, Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationJohn, A., Shaikh, M. M., Butcher, R. J. & Ghosh, P. (2010). Dalton Trans. pp. 7353–7363.  Web of Science CSD CrossRef Google Scholar
First citationKunrath, F. A., de Souza, R. F., Casagrandre, O. L. Jr, Brooks, N. R. & Young, V. G. (2003). Organometallics, 22, 4739–4743.  Web of Science CSD CrossRef CAS Google Scholar
First citationMendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934–m2936.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Braunstein, P. & Hor, T. S. A. (2008). Organometallics, 27, 4277–4279.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds