metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Dimeth­­oxy-2,2′-[4,5-di­methyl-o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}nickel(II)

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 September 2010; accepted 7 September 2010; online 11 September 2010)

In the title Schiff base complex, [Ni(C24H22N2O4)], the NiII atom has a slightly distorted square-planar coordination environment. The dihedral angles between the central benzene ring and the two outer rings are 7.62 (16) and 9.78 (17)°. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions with a centroid–centroid distance of 3.8218 (19) Å.

Related literature

For background to Schiff base–metal complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]). For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C24H22N2O4)]

  • Mr = 461.15

  • Monoclinic, P 21 /n

  • a = 12.8057 (6) Å

  • b = 12.6514 (5) Å

  • c = 13.0263 (6) Å

  • β = 101.730 (2)°

  • V = 2066.32 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 296 K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.800, Tmax = 0.926

  • 36150 measured reflections

  • 5146 independent reflections

  • 3179 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.03

  • 5146 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O3i 0.96 2.51 3.424 (5) 158
C21—H21⋯O2ii 0.93 2.52 3.340 (4) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and nickel(II) and copper(II) complexes play a major role in both synthetic and structurel research (Elmali et al., 2000; Blower et al., 1998).

The molecular structure of the title molecule is illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The geometry around the NiII atom is square-planar being coordinated by the N2O2 donor atoms of the tetradenate Schiff base ligand. The dihedral angle between the mean planes of the central aromatic ring (C9-C14) with the two outer rings (C1-C6 and C18-C23) are 7.62 (16) and 9.78 (17)°, respectively.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1) and ππ interactions [Cg1···Cg2i = 3.8218 (19)Å; Cg1 and Cg2 are the centroids of the C1-C6 and C9-C14 rings, respectively; symmetry code (i) -x, 2-y, -z].

Related literature top

For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000). For standard values of bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding bis(6-methoxysalicylidene)-4,5-dimethyl phenylenediamine (2 mmol) to a solution of NiCl2.6H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant red solution was filtered. Dark-red plate-like single crystals of the title compound, suitable for X-ray structure analysis, were obtained by slow evaporation at RT of a solution in ethanol over a period of several days.

Refinement top

All the H-atoms were positioned geometrically and included in a riding model approximation: C—H = 0.93 and 0.96 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq (C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 40% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed down the c-axis showing intermolecular interactions as dashed lines.
{6,6'-Dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II) top
Crystal data top
[Ni(C24H22N2O4)]F(000) = 960
Mr = 461.15Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2525 reflections
a = 12.8057 (6) Åθ = 2.5–29.5°
b = 12.6514 (5) ŵ = 0.97 mm1
c = 13.0263 (6) ÅT = 296 K
β = 101.730 (2)°Plate, red
V = 2066.32 (16) Å30.24 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5146 independent reflections
Radiation source: fine-focus sealed tube3179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.800, Tmax = 0.926k = 1616
36150 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.1318P]
where P = (Fo2 + 2Fc2)/3
5146 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C24H22N2O4)]V = 2066.32 (16) Å3
Mr = 461.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8057 (6) ŵ = 0.97 mm1
b = 12.6514 (5) ÅT = 296 K
c = 13.0263 (6) Å0.24 × 0.14 × 0.08 mm
β = 101.730 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5146 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3179 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.926Rint = 0.068
36150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
5146 reflectionsΔρmin = 0.34 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.01614 (3)0.78355 (3)0.17262 (3)0.03619 (14)
O10.07749 (19)0.88142 (16)0.27017 (17)0.0481 (6)
O20.21622 (19)1.12212 (16)0.05147 (18)0.0483 (6)
O30.02481 (18)0.72048 (16)0.28477 (17)0.0453 (5)
O40.2538 (2)0.4558 (2)0.1089 (2)0.0768 (9)
N10.06210 (19)0.84778 (18)0.06261 (19)0.0346 (6)
N20.0465 (2)0.68259 (19)0.07723 (19)0.0364 (6)
C10.1314 (3)0.9655 (2)0.2565 (3)0.0410 (7)
C20.1766 (3)1.0258 (3)0.3455 (3)0.0506 (9)
H20.16751.00470.41150.061*
C30.2336 (3)1.1150 (3)0.3353 (3)0.0528 (9)
H30.26381.15280.39530.063*
C40.2480 (3)1.1515 (3)0.2381 (3)0.0506 (9)
H40.28631.21310.23320.061*
C50.2054 (3)1.0954 (2)0.1504 (3)0.0398 (7)
C60.1472 (2)0.9993 (2)0.1570 (2)0.0365 (7)
C70.2852 (3)1.2086 (3)0.0418 (3)0.0536 (9)
H7A0.25841.27170.06830.080*
H7B0.28801.21840.03070.080*
H7C0.35551.19390.08130.080*
C80.1120 (2)0.9388 (2)0.0659 (2)0.0367 (7)
H80.12520.96520.00310.044*
C90.0357 (2)0.7889 (2)0.0328 (2)0.0349 (7)
C100.0623 (3)0.8146 (2)0.1274 (2)0.0398 (7)
H100.10350.87430.13190.048*
C110.0285 (3)0.7528 (3)0.2154 (3)0.0417 (7)
C120.0325 (3)0.6620 (2)0.2082 (2)0.0407 (7)
C130.0573 (3)0.6355 (2)0.1132 (3)0.0421 (8)
H130.09660.57460.10800.050*
C140.0241 (2)0.6985 (2)0.0250 (2)0.0347 (7)
C150.0579 (3)0.7840 (3)0.3177 (3)0.0583 (10)
H15A0.09720.84910.30860.087*
H15B0.00580.79320.37030.087*
H15C0.10100.72950.33940.087*
C160.0759 (3)0.5964 (3)0.3041 (3)0.0534 (9)
H16A0.10540.53200.28330.080*
H16B0.01940.58000.33990.080*
H16C0.13060.63530.35010.080*
C170.1087 (3)0.6065 (2)0.0954 (2)0.0405 (7)
H170.13820.56320.03930.049*
C180.1353 (3)0.5845 (2)0.1932 (3)0.0406 (7)
C190.2085 (3)0.5008 (3)0.2020 (3)0.0520 (9)
C200.2290 (3)0.4723 (3)0.2968 (3)0.0583 (10)
H200.27670.41800.30160.070*
C210.1776 (3)0.5255 (3)0.3863 (3)0.0554 (10)
H210.19060.50490.45110.067*
C220.1088 (3)0.6069 (3)0.3820 (3)0.0514 (9)
H220.07580.64080.44350.062*
C230.0873 (3)0.6399 (2)0.2851 (3)0.0420 (8)
C240.3272 (5)0.3705 (4)0.1122 (4)0.107 (2)
H24A0.28940.31090.14730.161*
H24B0.36060.35070.04200.161*
H24C0.38080.39280.14950.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0430 (3)0.0344 (2)0.0338 (2)0.00055 (18)0.01401 (17)0.00004 (17)
O10.0676 (16)0.0428 (12)0.0370 (13)0.0083 (11)0.0177 (12)0.0029 (10)
O20.0570 (15)0.0408 (12)0.0511 (15)0.0117 (11)0.0203 (12)0.0070 (10)
O30.0599 (14)0.0443 (12)0.0366 (12)0.0058 (11)0.0210 (11)0.0005 (10)
O40.096 (2)0.0802 (18)0.0535 (17)0.0504 (17)0.0144 (16)0.0106 (15)
N10.0350 (14)0.0370 (13)0.0337 (14)0.0019 (10)0.0117 (11)0.0013 (11)
N20.0425 (15)0.0360 (12)0.0342 (14)0.0006 (11)0.0158 (12)0.0034 (11)
C10.0447 (19)0.0377 (16)0.0426 (19)0.0038 (14)0.0134 (15)0.0060 (14)
C20.066 (2)0.0485 (19)0.038 (2)0.0014 (17)0.0135 (18)0.0058 (15)
C30.058 (2)0.053 (2)0.045 (2)0.0070 (17)0.0061 (18)0.0139 (17)
C40.052 (2)0.0418 (17)0.058 (2)0.0081 (15)0.0113 (18)0.0122 (16)
C50.0378 (18)0.0377 (16)0.046 (2)0.0018 (13)0.0135 (15)0.0065 (14)
C60.0364 (17)0.0322 (14)0.0420 (19)0.0041 (12)0.0108 (14)0.0040 (13)
C70.055 (2)0.0467 (18)0.064 (2)0.0115 (17)0.0230 (19)0.0006 (17)
C80.0363 (17)0.0362 (15)0.0401 (18)0.0016 (13)0.0140 (14)0.0005 (13)
C90.0370 (17)0.0349 (14)0.0345 (16)0.0018 (13)0.0114 (13)0.0044 (13)
C100.0441 (19)0.0398 (16)0.0375 (18)0.0058 (14)0.0129 (15)0.0011 (13)
C110.0430 (19)0.0481 (17)0.0375 (18)0.0019 (14)0.0160 (15)0.0002 (14)
C120.0450 (19)0.0423 (17)0.0376 (18)0.0009 (14)0.0148 (15)0.0058 (14)
C130.045 (2)0.0382 (16)0.047 (2)0.0091 (14)0.0181 (16)0.0056 (14)
C140.0340 (17)0.0364 (15)0.0358 (17)0.0010 (12)0.0117 (13)0.0018 (12)
C150.070 (2)0.065 (2)0.045 (2)0.015 (2)0.0241 (19)0.0027 (18)
C160.059 (2)0.059 (2)0.045 (2)0.0130 (18)0.0163 (18)0.0120 (17)
C170.0442 (19)0.0403 (16)0.0381 (18)0.0054 (14)0.0107 (15)0.0023 (14)
C180.0422 (19)0.0401 (16)0.0425 (19)0.0005 (14)0.0156 (15)0.0092 (14)
C190.058 (2)0.0480 (19)0.052 (2)0.0087 (17)0.0170 (19)0.0094 (17)
C200.061 (2)0.055 (2)0.064 (3)0.0059 (18)0.026 (2)0.0199 (19)
C210.070 (3)0.052 (2)0.054 (2)0.0074 (19)0.034 (2)0.0134 (18)
C220.068 (2)0.0470 (19)0.046 (2)0.0061 (17)0.0270 (19)0.0053 (16)
C230.048 (2)0.0387 (16)0.0425 (19)0.0098 (14)0.0174 (16)0.0082 (14)
C240.139 (5)0.113 (4)0.066 (3)0.090 (4)0.013 (3)0.008 (3)
Geometric parameters (Å, º) top
Ni1—O31.832 (2)C9—C141.391 (4)
Ni1—O11.833 (2)C10—C111.382 (4)
Ni1—N11.845 (2)C10—H100.9300
Ni1—N21.848 (2)C11—C121.402 (4)
O1—C11.299 (4)C11—C151.509 (4)
O2—C51.367 (4)C12—C131.380 (4)
O2—C71.428 (4)C12—C161.509 (4)
O3—C231.297 (4)C13—C141.392 (4)
O4—C191.358 (4)C13—H130.9300
O4—C241.438 (4)C15—H15A0.9600
N1—C81.313 (4)C15—H15B0.9600
N1—C91.430 (4)C15—H15C0.9600
N2—C171.302 (4)C16—H16A0.9600
N2—C141.433 (4)C16—H16B0.9600
C1—C21.410 (4)C16—H16C0.9600
C1—C61.419 (4)C17—C181.411 (4)
C2—C31.365 (5)C17—H170.9300
C2—H20.9300C18—C231.415 (4)
C3—C41.395 (5)C18—C191.434 (4)
C3—H30.9300C19—C201.363 (5)
C4—C51.361 (4)C20—C211.390 (5)
C4—H40.9300C20—H200.9300
C5—C61.437 (4)C21—C221.364 (5)
C6—C81.407 (4)C21—H210.9300
C7—H7A0.9600C22—C231.409 (4)
C7—H7B0.9600C22—H220.9300
C7—H7C0.9600C24—H24A0.9600
C8—H80.9300C24—H24B0.9600
C9—C101.382 (4)C24—H24C0.9600
O3—Ni1—O183.87 (9)C10—C11—C15119.5 (3)
O3—Ni1—N1177.97 (11)C12—C11—C15121.0 (3)
O1—Ni1—N194.67 (10)C13—C12—C11119.4 (3)
O3—Ni1—N294.57 (10)C13—C12—C16119.7 (3)
O1—Ni1—N2178.42 (10)C11—C12—C16120.8 (3)
N1—Ni1—N286.88 (10)C12—C13—C14120.9 (3)
C1—O1—Ni1128.5 (2)C12—C13—H13119.6
C5—O2—C7117.1 (3)C14—C13—H13119.6
C23—O3—Ni1128.4 (2)C9—C14—C13119.4 (3)
C19—O4—C24116.8 (3)C9—C14—N2113.6 (3)
C8—N1—C9120.8 (3)C13—C14—N2127.0 (3)
C8—N1—Ni1126.2 (2)C11—C15—H15A109.5
C9—N1—Ni1112.93 (18)C11—C15—H15B109.5
C17—N2—C14121.3 (3)H15A—C15—H15B109.5
C17—N2—Ni1125.9 (2)C11—C15—H15C109.5
C14—N2—Ni1112.73 (18)H15A—C15—H15C109.5
O1—C1—C2118.1 (3)H15B—C15—H15C109.5
O1—C1—C6123.4 (3)C12—C16—H16A109.5
C2—C1—C6118.5 (3)C12—C16—H16B109.5
C3—C2—C1120.4 (3)H16A—C16—H16B109.5
C3—C2—H2119.8C12—C16—H16C109.5
C1—C2—H2119.8H16A—C16—H16C109.5
C2—C3—C4122.2 (3)H16B—C16—H16C109.5
C2—C3—H3118.9N2—C17—C18125.4 (3)
C4—C3—H3118.9N2—C17—H17117.3
C5—C4—C3119.0 (3)C18—C17—H17117.3
C5—C4—H4120.5C17—C18—C23121.5 (3)
C3—C4—H4120.5C17—C18—C19120.0 (3)
C4—C5—O2124.2 (3)C23—C18—C19118.5 (3)
C4—C5—C6121.0 (3)O4—C19—C20124.9 (3)
O2—C5—C6114.7 (3)O4—C19—C18113.9 (3)
C8—C6—C1121.7 (3)C20—C19—C18121.2 (3)
C8—C6—C5119.4 (3)C19—C20—C21119.1 (3)
C1—C6—C5118.8 (3)C19—C20—H20120.4
O2—C7—H7A109.5C21—C20—H20120.4
O2—C7—H7B109.5C22—C21—C20122.1 (3)
H7A—C7—H7B109.5C22—C21—H21119.0
O2—C7—H7C109.5C20—C21—H21119.0
H7A—C7—H7C109.5C21—C22—C23120.4 (4)
H7B—C7—H7C109.5C21—C22—H22119.8
N1—C8—C6125.1 (3)C23—C22—H22119.8
N1—C8—H8117.5O3—C23—C22118.0 (3)
C6—C8—H8117.5O3—C23—C18123.3 (3)
C10—C9—C14119.8 (3)C22—C23—C18118.7 (3)
C10—C9—N1126.5 (3)O4—C24—H24A109.5
C14—C9—N1113.7 (3)O4—C24—H24B109.5
C9—C10—C11120.9 (3)H24A—C24—H24B109.5
C9—C10—H10119.5O4—C24—H24C109.5
C11—C10—H10119.5H24A—C24—H24C109.5
C10—C11—C12119.5 (3)H24B—C24—H24C109.5
O3—Ni1—O1—C1179.7 (3)C9—C10—C11—C120.8 (5)
N1—Ni1—O1—C11.2 (3)C9—C10—C11—C15179.3 (3)
O1—Ni1—O3—C23173.2 (3)C10—C11—C12—C130.4 (5)
N2—Ni1—O3—C237.1 (3)C15—C11—C12—C13179.5 (3)
O1—Ni1—N1—C85.6 (3)C10—C11—C12—C16176.5 (3)
N2—Ni1—N1—C8174.6 (3)C15—C11—C12—C163.6 (5)
O1—Ni1—N1—C9175.77 (19)C11—C12—C13—C141.1 (5)
N2—Ni1—N1—C94.0 (2)C16—C12—C13—C14175.8 (3)
O3—Ni1—N2—C178.2 (3)C10—C9—C14—C130.6 (4)
N1—Ni1—N2—C17173.2 (3)N1—C9—C14—C13178.5 (3)
O3—Ni1—N2—C14174.79 (19)C10—C9—C14—N2179.4 (3)
N1—Ni1—N2—C143.8 (2)N1—C9—C14—N20.3 (4)
Ni1—O1—C1—C2176.2 (2)C12—C13—C14—C90.6 (5)
Ni1—O1—C1—C63.6 (5)C12—C13—C14—N2177.9 (3)
O1—C1—C2—C3179.7 (3)C17—N2—C14—C9174.4 (3)
C6—C1—C2—C30.4 (5)Ni1—N2—C14—C92.8 (3)
C1—C2—C3—C41.2 (6)C17—N2—C14—C134.3 (5)
C2—C3—C4—C51.1 (5)Ni1—N2—C14—C13178.5 (3)
C3—C4—C5—O2178.6 (3)C14—N2—C17—C18179.8 (3)
C3—C4—C5—C60.7 (5)Ni1—N2—C17—C183.4 (5)
C7—O2—C5—C46.2 (5)N2—C17—C18—C235.6 (5)
C7—O2—C5—C6171.8 (3)N2—C17—C18—C19177.4 (3)
O1—C1—C6—C85.1 (5)C24—O4—C19—C201.2 (6)
C2—C1—C6—C8174.8 (3)C24—O4—C19—C18179.3 (4)
O1—C1—C6—C5178.1 (3)C17—C18—C19—O45.8 (5)
C2—C1—C6—C52.1 (4)C23—C18—C19—O4177.2 (3)
C4—C5—C6—C8174.6 (3)C17—C18—C19—C20174.7 (3)
O2—C5—C6—C83.4 (4)C23—C18—C19—C202.3 (5)
C4—C5—C6—C12.3 (5)O4—C19—C20—C21179.5 (4)
O2—C5—C6—C1179.7 (3)C18—C19—C20—C210.1 (6)
C9—N1—C8—C6175.9 (3)C19—C20—C21—C221.3 (6)
Ni1—N1—C8—C65.6 (4)C20—C21—C22—C230.1 (5)
C1—C6—C8—N10.3 (5)Ni1—O3—C23—C22178.7 (2)
C5—C6—C8—N1177.1 (3)Ni1—O3—C23—C180.8 (4)
C8—N1—C9—C103.6 (5)C21—C22—C23—O3177.2 (3)
Ni1—N1—C9—C10177.7 (3)C21—C22—C23—C182.4 (5)
C8—N1—C9—C14175.4 (3)C17—C18—C23—O37.0 (5)
Ni1—N1—C9—C143.3 (3)C19—C18—C23—O3176.0 (3)
C14—C9—C10—C111.3 (5)C17—C18—C23—C22173.5 (3)
N1—C9—C10—C11177.6 (3)C19—C18—C23—C223.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O3i0.962.513.424 (5)158
C21—H21···O2ii0.932.523.340 (4)147
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C24H22N2O4)]
Mr461.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.8057 (6), 12.6514 (5), 13.0263 (6)
β (°) 101.730 (2)
V3)2066.32 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.800, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
36150, 5146, 3179
Rint0.068
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.03
No. of reflections5146
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O3i0.962.513.424 (5)158
C21—H21···O2ii0.932.523.340 (4)147
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: rkia@srbiau.ac.ir. Thomson Reuters Researcher ID: A-5471-2009.

Acknowledgements

HK and AS thank PNU for financial support. RK thanks the Islamic Azad University. MNT thanks the University of Sargodha, Pakistan, for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds