organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Ethyl-3-(4-Fluoro­phenyl­sulfon­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 9 September 2010; accepted 11 September 2010; online 18 September 2010)

In the title mol­ecule, C17H15FO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 74.06 (4)° with the mean plane of the benzofuran fragment. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯π inter­actions. The crystal structure also exhibits aromatic ππ inter­actions between the benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.629 (2) Å].

Related literature

For the crystal structures of similar 3-(4-fluoro­phenyl­sulfonyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813.]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FO3S

  • Mr = 318.35

  • Triclinic, [P \overline 1]

  • a = 8.0042 (1) Å

  • b = 9.7114 (2) Å

  • c = 11.3741 (2) Å

  • α = 66.487 (1)°

  • β = 82.998 (1)°

  • γ = 67.964 (1)°

  • V = 751.10 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.31 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.946

  • 13998 measured reflections

  • 3722 independent reflections

  • 3264 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.04

  • 3722 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.40 3.3143 (17) 161
C11—H11CCgii 0.98 2.66 3.491 (2) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran ring show important biological properties such as, antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) activities. These compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1) the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring makes a dihedral angle of 74.06 (4)° with the mean plane of the benzofuran fragment.

The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the O SO unit[ C13–H13···O2i; see Table 1], and by an intermolecular C–H···π interaction between a methyl H-atom and the benzene ring of a neighbouring molecule [C11–H11C···Cgii ; see Table 1]. The molecular packing (Fig. 2) is further stabilized by an aromatic π···π interaction between the benzene rings of neighbouring molecules, with a Cg···Cgiii distance of 3.629 (2) Å (Cg is the centroid of the C2-C7 benzene ring; see Table 1).

Related literature top

For the crystal structures of similar 3-(4-fluorophenylsulfony)l-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

77% 3-chloroperoxybenzoic acid (381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-ethyl-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (229 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, benzene) to afford the title compound as a colorless solid [yield 82%, m.p. 377-378 K; Rf = 0.68 (benzene)]. Single crystals, suitable for X-ray diffraction, were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement top

All the H-atoms were positioned geometrically and refined using a riding model: C–H = 0.95 Å for aryl, 0.99 Å for methylene and 0.98 Å for methyl H atoms, with Uiso(H) = k × Ueq(C), where k = 1.2 for aryl and methylene H-atoms, and 1.5 for methyl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O, C–H..π and π···π interactions (dotted lines) in the crystal structure of the title compound. [Cg denotes the centroid of benzene ring C2-C7; Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y + 2, - z + 1; (iii) - x, - y + 2, - z + 1; (iv) x - 1, y, z.]
5-Ethyl-3-(4-Fluorophenylsulfonyl)-2-methyl-1-benzofuran top
Crystal data top
C17H15FO3SZ = 2
Mr = 318.35F(000) = 332
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0042 (1) ÅCell parameters from 6492 reflections
b = 9.7114 (2) Åθ = 2.5–28.2°
c = 11.3741 (2) ŵ = 0.24 mm1
α = 66.487 (1)°T = 173 K
β = 82.998 (1)°Block, colourless
γ = 67.964 (1)°0.31 × 0.25 × 0.24 mm
V = 751.10 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3722 independent reflections
Radiation source: rotating anode3264 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.929, Tmax = 0.946l = 1515
13998 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2601P]
where P = (Fo2 + 2Fc2)/3
3722 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C17H15FO3Sγ = 67.964 (1)°
Mr = 318.35V = 751.10 (2) Å3
Triclinic, P1Z = 2
a = 8.0042 (1) ÅMo Kα radiation
b = 9.7114 (2) ŵ = 0.24 mm1
c = 11.3741 (2) ÅT = 173 K
α = 66.487 (1)°0.31 × 0.25 × 0.24 mm
β = 82.998 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3264 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.946Rint = 0.027
13998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3722 reflectionsΔρmin = 0.38 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53064 (4)0.61417 (4)0.69284 (3)0.02667 (10)
F10.02306 (15)0.28696 (12)0.93170 (10)0.0495 (3)
O10.26044 (14)1.07835 (12)0.57702 (10)0.0326 (2)
O20.61844 (14)0.55702 (13)0.59437 (10)0.0352 (2)
O30.63741 (14)0.59481 (13)0.79503 (10)0.0354 (2)
C10.39955 (18)0.81537 (16)0.61842 (12)0.0255 (3)
C20.29794 (17)0.88735 (16)0.49822 (12)0.0261 (3)
C30.26704 (18)0.83239 (17)0.40981 (13)0.0290 (3)
H30.32210.72210.42200.035*
C40.15386 (19)0.94248 (19)0.30318 (13)0.0331 (3)
C50.0762 (2)1.10491 (19)0.28633 (15)0.0381 (3)
H50.00071.17880.21260.046*
C60.1050 (2)1.16199 (18)0.37250 (15)0.0371 (3)
H60.05171.27240.36000.045*
C70.21583 (18)1.04904 (17)0.47799 (13)0.0295 (3)
C80.37157 (18)0.93495 (17)0.66117 (13)0.0285 (3)
C90.1224 (2)0.8853 (2)0.20518 (15)0.0438 (4)
H9A0.00200.95500.16320.053*
H9B0.12250.77450.24960.053*
C100.2631 (2)0.8871 (2)0.10352 (16)0.0450 (4)
H10A0.25960.99750.05620.067*
H10B0.23810.84620.04410.067*
H10C0.38280.81870.14440.067*
C110.4355 (2)0.9415 (2)0.77493 (15)0.0372 (3)
H11A0.49090.83200.83830.056*
H11B0.33311.00270.81270.056*
H11C0.52460.99420.74910.056*
C120.37463 (18)0.51746 (15)0.76302 (12)0.0267 (3)
C130.3061 (2)0.45940 (16)0.69364 (13)0.0314 (3)
H130.34150.47290.60810.038*
C140.1857 (2)0.38180 (17)0.75030 (15)0.0358 (3)
H140.13570.34250.70440.043*
C150.1402 (2)0.36313 (17)0.87531 (15)0.0350 (3)
C160.2084 (2)0.41710 (18)0.94653 (14)0.0344 (3)
H160.17580.39971.03300.041*
C170.32586 (19)0.49745 (17)0.88873 (13)0.0302 (3)
H170.37290.53870.93460.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02624 (17)0.02837 (17)0.02451 (17)0.00613 (13)0.00164 (12)0.01197 (13)
F10.0537 (6)0.0503 (6)0.0491 (6)0.0316 (5)0.0016 (5)0.0115 (5)
O10.0343 (5)0.0282 (5)0.0366 (5)0.0118 (4)0.0075 (4)0.0151 (4)
O20.0347 (5)0.0364 (5)0.0325 (5)0.0060 (4)0.0044 (4)0.0186 (4)
O30.0327 (5)0.0419 (6)0.0319 (5)0.0118 (4)0.0074 (4)0.0135 (4)
C10.0258 (6)0.0270 (6)0.0248 (6)0.0096 (5)0.0020 (5)0.0112 (5)
C20.0233 (6)0.0285 (6)0.0239 (6)0.0093 (5)0.0032 (5)0.0082 (5)
C30.0272 (6)0.0331 (7)0.0258 (6)0.0113 (5)0.0014 (5)0.0101 (5)
C40.0253 (6)0.0458 (8)0.0250 (6)0.0145 (6)0.0023 (5)0.0093 (6)
C50.0264 (7)0.0427 (8)0.0291 (7)0.0079 (6)0.0000 (5)0.0020 (6)
C60.0296 (7)0.0283 (7)0.0391 (8)0.0049 (6)0.0051 (6)0.0050 (6)
C70.0270 (6)0.0294 (7)0.0300 (7)0.0111 (5)0.0064 (5)0.0101 (5)
C80.0270 (6)0.0324 (7)0.0300 (7)0.0134 (5)0.0074 (5)0.0151 (5)
C90.0389 (8)0.0638 (11)0.0297 (8)0.0213 (8)0.0046 (6)0.0146 (7)
C100.0487 (9)0.0479 (9)0.0336 (8)0.0118 (8)0.0014 (7)0.0161 (7)
C110.0411 (8)0.0454 (8)0.0375 (8)0.0199 (7)0.0083 (6)0.0262 (7)
C120.0279 (6)0.0235 (6)0.0256 (6)0.0050 (5)0.0036 (5)0.0092 (5)
C130.0392 (8)0.0273 (6)0.0268 (6)0.0077 (6)0.0049 (6)0.0116 (5)
C140.0448 (8)0.0291 (7)0.0369 (8)0.0136 (6)0.0068 (6)0.0135 (6)
C150.0349 (7)0.0283 (7)0.0375 (8)0.0113 (6)0.0043 (6)0.0067 (6)
C160.0341 (7)0.0367 (7)0.0274 (7)0.0094 (6)0.0014 (6)0.0098 (6)
C170.0314 (7)0.0326 (7)0.0264 (6)0.0080 (5)0.0042 (5)0.0128 (5)
Geometric parameters (Å, º) top
S1—O31.4366 (10)C9—C101.512 (2)
S1—O21.4380 (10)C9—H9A0.9900
S1—C11.7302 (13)C9—H9B0.9900
S1—C121.7656 (14)C10—H10A0.9800
F1—C151.3542 (17)C10—H10B0.9800
O1—C81.3642 (17)C10—H10C0.9800
O1—C71.3811 (17)C11—H11A0.9800
C1—C81.3652 (18)C11—H11B0.9800
C1—C21.4496 (18)C11—H11C0.9800
C2—C71.3874 (19)C12—C171.3905 (19)
C2—C31.3947 (19)C12—C131.3909 (19)
C3—C41.3932 (19)C13—C141.385 (2)
C3—H30.9500C13—H130.9500
C4—C51.401 (2)C14—C151.380 (2)
C4—C91.510 (2)C14—H140.9500
C5—C61.380 (2)C15—C161.375 (2)
C5—H50.9500C16—C171.384 (2)
C6—C71.382 (2)C16—H160.9500
C6—H60.9500C17—H170.9500
C8—C111.4802 (19)
O3—S1—O2119.42 (6)C4—C9—H9B109.0
O3—S1—C1109.13 (6)C10—C9—H9B109.0
O2—S1—C1107.67 (6)H9A—C9—H9B107.8
O3—S1—C12107.56 (6)C9—C10—H10A109.5
O2—S1—C12107.33 (6)C9—C10—H10B109.5
C1—S1—C12104.80 (6)H10A—C10—H10B109.5
C8—O1—C7107.11 (10)C9—C10—H10C109.5
C8—C1—C2107.43 (12)H10A—C10—H10C109.5
C8—C1—S1126.92 (11)H10B—C10—H10C109.5
C2—C1—S1125.65 (10)C8—C11—H11A109.5
C7—C2—C3119.46 (13)C8—C11—H11B109.5
C7—C2—C1104.60 (12)H11A—C11—H11B109.5
C3—C2—C1135.93 (13)C8—C11—H11C109.5
C4—C3—C2118.67 (13)H11A—C11—H11C109.5
C4—C3—H3120.7H11B—C11—H11C109.5
C2—C3—H3120.7C17—C12—C13121.14 (14)
C3—C4—C5119.60 (14)C17—C12—S1118.90 (11)
C3—C4—C9119.24 (15)C13—C12—S1119.93 (11)
C5—C4—C9121.12 (14)C14—C13—C12119.42 (13)
C6—C5—C4122.72 (14)C14—C13—H13120.3
C6—C5—H5118.6C12—C13—H13120.3
C4—C5—H5118.6C15—C14—C13118.15 (13)
C5—C6—C7116.07 (14)C15—C14—H14120.9
C5—C6—H6122.0C13—C14—H14120.9
C7—C6—H6122.0F1—C15—C16117.89 (14)
O1—C7—C6125.99 (13)F1—C15—C14118.60 (14)
O1—C7—C2110.55 (12)C16—C15—C14123.51 (14)
C6—C7—C2123.46 (14)C15—C16—C17118.15 (13)
O1—C8—C1110.32 (12)C15—C16—H16120.9
O1—C8—C11115.33 (12)C17—C16—H16120.9
C1—C8—C11134.35 (14)C16—C17—C12119.59 (13)
C4—C9—C10112.95 (14)C16—C17—H17120.2
C4—C9—H9A109.0C12—C17—H17120.2
C10—C9—H9A109.0
O3—S1—C1—C811.72 (15)C7—O1—C8—C10.22 (15)
O2—S1—C1—C8142.73 (12)C7—O1—C8—C11179.75 (11)
C12—S1—C1—C8103.23 (13)C2—C1—C8—O10.33 (15)
O3—S1—C1—C2168.62 (11)S1—C1—C8—O1179.95 (9)
O2—S1—C1—C237.61 (13)C2—C1—C8—C11179.74 (15)
C12—S1—C1—C276.43 (12)S1—C1—C8—C110.6 (2)
C8—C1—C2—C70.31 (14)C3—C4—C9—C1086.77 (18)
S1—C1—C2—C7179.97 (10)C5—C4—C9—C1091.01 (18)
C8—C1—C2—C3178.43 (15)O3—S1—C12—C1724.49 (13)
S1—C1—C2—C31.3 (2)O2—S1—C12—C17154.16 (11)
C7—C2—C3—C40.01 (19)C1—S1—C12—C1791.56 (12)
C1—C2—C3—C4178.61 (14)O3—S1—C12—C13153.99 (11)
C2—C3—C4—C50.9 (2)O2—S1—C12—C1324.32 (13)
C2—C3—C4—C9178.68 (13)C1—S1—C12—C1389.96 (12)
C3—C4—C5—C60.9 (2)C17—C12—C13—C140.7 (2)
C9—C4—C5—C6178.63 (14)S1—C12—C13—C14179.12 (11)
C4—C5—C6—C70.1 (2)C12—C13—C14—C150.9 (2)
C8—O1—C7—C6179.79 (13)C13—C14—C15—F1179.79 (13)
C8—O1—C7—C20.01 (15)C13—C14—C15—C160.1 (2)
C5—C6—C7—O1178.77 (13)F1—C15—C16—C17178.93 (13)
C5—C6—C7—C21.0 (2)C14—C15—C16—C171.4 (2)
C3—C2—C7—O1178.81 (11)C15—C16—C17—C121.6 (2)
C1—C2—C7—O10.18 (14)C13—C12—C17—C160.6 (2)
C3—C2—C7—C61.0 (2)S1—C12—C17—C16177.84 (10)
C1—C2—C7—C6179.99 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.403.3143 (17)161
C11—H11C···Cgii0.982.663.491 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H15FO3S
Mr318.35
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.0042 (1), 9.7114 (2), 11.3741 (2)
α, β, γ (°)66.487 (1), 82.998 (1), 67.964 (1)
V3)751.10 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.31 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.929, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
13998, 3722, 3264
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.04
No. of reflections3722
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.403.3143 (17)161
C11—H11C···Cgii0.982.663.491 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by Blue-Bio Industry RIC at Dongeui University as a RIC program under the Ministry of Knowledge Economy and the city of Busan.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds