organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Disulfanedi­yl)di­benzoic acid–2,9-di­methyl­phenanthroline–tetra­hydro­furan (1/2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 September 2010; accepted 16 September 2010; online 25 September 2010)

The asymmetric unit of the title co-crystal solvate, C14H10O4S2·2C14H12N2·C4H8O, comprises a 2,2′-(disulfanedi­yl)dibenzoic acid mol­ecule, two mol­ecules of 2,9-dimethyl­phenanthroline and a tetra­hydro­furan (THF) solvent mol­ecule. Each end of the twisted diacid [dihedral angle between the benzene rings = 74.33 (17)°] forms a strong O—H⋯N hydrogen bond with a 2,9-dimethyl­phenanthroline mol­ecule, forming a trimeric aggregate. The crystal structure comprises layers of acid and THF mol­ecules, and layers of 2,9-dimethyl­phenanthroline mol­ecules that alternate along the a axis, the main connections between them being of the type C—H⋯O.

Related literature

For related studies on co-crystal formation involving 2-[(2-carb­oxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.], 2010[Broker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]). For a co-crystal involving 2,9-dimethyl­phenanthroline, see: Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O4S2·2C14H12N2·C4H8O

  • Mr = 794.96

  • Monoclinic, P 21

  • a = 14.011 (4) Å

  • b = 8.516 (3) Å

  • c = 17.403 (5) Å

  • β = 109.637 (6)°

  • V = 1955.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 98 K

  • 0.26 × 0.21 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 13023 measured reflections

  • 8637 independent reflections

  • 7988 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.169

  • S = 1.05

  • 8637 reflections

  • 499 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3550 Friedel pairs

  • Flack parameter: 0.01 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯N1i 0.85 (4) 1.91 (4) 2.734 (4) 163 (4)
O2—H2o⋯N2i 0.85 (4) 2.46 (4) 2.982 (5) 121 (4)
O4—H4o⋯N4ii 0.84 (4) 1.86 (3) 2.691 (4) 170 (4)
C19—H19⋯O1iii 0.95 2.59 3.448 (5) 150
C22—H22⋯O5 0.95 2.52 3.383 (7) 150
C23—H23⋯O3 0.95 2.56 3.345 (5) 140
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of studies into the phenomenon of co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Broker & Tiekink, 2007; Broker et al., 2008; Broker & Tiekink, 2010; Arman et al., 2010), the co-crystallization of this dithiodibenzoic acid and 2,9-dimethylphenanthroline was investigated. This lead to the isolation of the title co-crystal Tetrahydrofuran (thf) solvate.

The crystallographic asymmetric unit of the title compound comprises one molecule of dithiodibenzoic acid (Fig. 1), two molecules of 2,9-dimethylphenanthroline (Figs. 2 and 3), and a solvent thf molecule. The acid adopts the expected conformation (Broker & Tiekink, 2007), stabilized in part by two close S···O(carbonyl) interactions, i.e. S1···O1 = 2.713 (3) Å and S2···O3 = 2.711 (3) Å; the dihedral angle formed between the benzene rings = 74.33 (17) °. Each carboxylic acid-H forms a close hydrogen bond to a phenanthroline-N (Table 1), and in the case of the N1-phenanthroline molecule, a weaker O2—H···N2 interaction is noted; the equivalent O4—H···N4 contact is longer than 2.66 Å. These interactions result in the formation of a trimeric aggregate, Fig. 4.

In the crystal packing the dithiodibenzoic acid and tetrahydrofuran molecules assemble into layers in the bc plane interspersed by layers of 2,9-dimethylphenanthroline molecules, with the most prominent interactions between them being of the type C—H···O (see Fig. 5 and Table 1).

Related literature top

For related studies on co-crystal formation involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid, see: Broker & Tiekink (2007, 2010); Broker et al. (2008). For a co-crystal involving 2,9-dimethylphenanthroline, see: Arman et al. (2010).

Experimental top

Gold coloured crystals of the title compound were obtained by the co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Fluka, 0.02 mmol) and 2,9-dimethylphenanthroline (ACROS, 0.02 mmol) in tetrahydrofuran. Crystals were obtained by slow evaporation.

Refinement top

The O-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of O–H 0.84 (1) Å, and with Uiso(H) = 1.5Ueq(O). C-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: C–H 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and 1.2 for all other H-atoms. High thermal motion was associated with the tetrahydrofuran molecule but an alternate conformation could not be resolved. The constituent atoms were refined isotropically with O—C and C—C distance restraints of 1.43 (1) and 1.50 (1) Å, respectively. In the final refinement a low angle reflection evidently effected by the beam stop was omitted, i.e. (101).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid found in the title co-crystal solvate, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of first independent molecule of 2,9-dimethylphenanthroline found in the title co-crystal solvate, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Molecular structure of second independent molecule of 2,9-dimethylphenanthroline found in the title co-crystal solvate, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. The trimeric aggregate, comprising a molecule of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid and the two independent molecules of 2,9-dimethylphenanthroline, sustained by O—H···N hydrogen bonds (dashed lines) in the structure of the title co-crystal solvate [see Table 1 for details].
[Figure 5] Fig. 5. Stacking of alternating layers along the a axis in the title co-crystal solvate. The O—H···N hydrogen bonding and C—H···O interactions are shown as orange and blue dashed lines, respectively [see Table 1 for details. Hydrogen atoms not involved in intermolecular interactions have been removed for reasons of clarity].
2,2'-(Disulfanediyl)dibenzoic acid–2,9-dimethylphenanthroline–tetrahydrofuran (1/2/1) top
Crystal data top
C14H10O4S2·2C14H12N2·C4H8OF(000) = 836
Mr = 794.96Dx = 1.350 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8113 reflections
a = 14.011 (4) Åθ = 2.3–40.2°
b = 8.516 (3) ŵ = 0.19 mm1
c = 17.403 (5) ÅT = 98 K
β = 109.637 (6)°Block, gold
V = 1955.7 (10) Å30.26 × 0.21 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7988 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 1518
13023 measured reflectionsk = 1011
8637 independent reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0751P)2 + 1.2802P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
8637 reflectionsΔρmax = 0.83 e Å3
499 parametersΔρmin = 0.85 e Å3
8 restraintsAbsolute structure: Flack (1983), 3550 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C14H10O4S2·2C14H12N2·C4H8OV = 1955.7 (10) Å3
Mr = 794.96Z = 2
Monoclinic, P21Mo Kα radiation
a = 14.011 (4) ŵ = 0.19 mm1
b = 8.516 (3) ÅT = 98 K
c = 17.403 (5) Å0.26 × 0.21 × 0.10 mm
β = 109.637 (6)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7988 reflections with I > 2σ(I)
13023 measured reflectionsRint = 0.048
8637 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169Δρmax = 0.83 e Å3
S = 1.05Δρmin = 0.85 e Å3
8637 reflectionsAbsolute structure: Flack (1983), 3550 Friedel pairs
499 parametersAbsolute structure parameter: 0.01 (9)
8 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42365 (6)0.42502 (11)0.23785 (5)0.02513 (19)
S20.57129 (6)0.34896 (10)0.26918 (6)0.02557 (19)
O10.24189 (19)0.5734 (3)0.19397 (16)0.0292 (6)
O20.2027 (2)0.7481 (3)0.27555 (17)0.0333 (6)
H2o0.154 (3)0.776 (6)0.234 (2)0.050*
O30.76279 (19)0.2507 (3)0.29142 (16)0.0289 (6)
O40.80075 (19)0.0087 (3)0.25967 (17)0.0283 (6)
H4o0.855 (2)0.053 (5)0.261 (3)0.042*
C10.4064 (2)0.4616 (4)0.3339 (2)0.0239 (7)
C20.3269 (2)0.5589 (4)0.3380 (2)0.0230 (7)
C30.3127 (3)0.5853 (5)0.4125 (2)0.0279 (8)
H30.25850.65020.41460.034*
C40.3771 (3)0.5176 (5)0.4835 (2)0.0314 (8)
H40.36730.53590.53420.038*
C50.4560 (3)0.4227 (5)0.4797 (2)0.0294 (8)
H50.49980.37500.52800.035*
C60.4715 (2)0.3967 (4)0.4064 (2)0.0242 (7)
H60.52710.33400.40520.029*
C70.2529 (2)0.6278 (4)0.2614 (2)0.0233 (7)
C80.5633 (3)0.1399 (4)0.2802 (2)0.0243 (7)
C90.6461 (3)0.0442 (4)0.2825 (2)0.0228 (7)
C100.6392 (3)0.1175 (4)0.2914 (2)0.0273 (8)
H100.69400.18270.29090.033*
C110.5540 (3)0.1847 (5)0.3008 (2)0.0323 (8)
H110.55160.29460.30940.039*
C120.4721 (3)0.0905 (5)0.2977 (2)0.0308 (8)
H120.41270.13630.30280.037*
C130.4766 (3)0.0702 (4)0.2872 (2)0.0272 (8)
H130.41990.13370.28470.033*
C140.7423 (3)0.1115 (4)0.2779 (2)0.0236 (7)
N11.0745 (2)0.8741 (3)0.13399 (18)0.0244 (6)
N20.9787 (3)0.7029 (4)0.21862 (19)0.0282 (7)
C151.1222 (3)0.9556 (4)0.0924 (2)0.0276 (8)
C161.0706 (3)1.0298 (4)0.0182 (2)0.0280 (7)
H161.10701.08780.00950.034*
C170.9668 (3)1.0182 (4)0.0142 (2)0.0289 (8)
H170.93111.06820.06440.035*
C180.9138 (3)0.9315 (4)0.0276 (2)0.0260 (7)
C190.8062 (3)0.9126 (5)0.0028 (2)0.0313 (8)
H190.76780.95920.05330.038*
C200.7588 (3)0.8293 (5)0.0396 (2)0.0323 (8)
H200.68730.81800.01820.039*
C210.8140 (3)0.7573 (5)0.1164 (2)0.0311 (8)
C220.7672 (3)0.6662 (5)0.1615 (3)0.0338 (9)
H220.69580.65180.14240.041*
C230.8265 (3)0.5986 (5)0.2336 (3)0.0360 (9)
H230.79620.53840.26530.043*
C240.9327 (3)0.6194 (4)0.2602 (2)0.0309 (8)
C250.9211 (3)0.7715 (4)0.1483 (2)0.0239 (7)
C260.9722 (3)0.8614 (4)0.1026 (2)0.0242 (7)
C271.2360 (3)0.9665 (5)0.1295 (3)0.0362 (9)
H27A1.25480.99210.18760.054*
H27B1.26101.04880.10170.054*
H27C1.26630.86560.12330.054*
C280.9995 (4)0.5427 (5)0.3367 (3)0.0404 (10)
H28A1.07020.57120.34590.061*
H28B0.99190.42840.33130.061*
H28C0.98010.57810.38290.061*
N31.0152 (2)0.4436 (4)0.59852 (18)0.0247 (6)
N41.0154 (2)0.6163 (4)0.73176 (19)0.0246 (6)
C291.0161 (3)0.3580 (5)0.5358 (2)0.0269 (7)
C300.9254 (3)0.3064 (4)0.4751 (2)0.0274 (7)
H300.92810.24100.43160.033*
C310.8345 (3)0.3520 (5)0.4802 (2)0.0284 (7)
H310.77340.32040.43930.034*
C320.8309 (3)0.4456 (4)0.5455 (2)0.0266 (7)
C330.7390 (3)0.5060 (5)0.5519 (3)0.0345 (9)
H330.67660.48030.51090.041*
C340.7386 (3)0.5989 (5)0.6146 (2)0.0306 (8)
H340.67610.63890.61660.037*
C350.8316 (3)0.6379 (4)0.6785 (2)0.0256 (7)
C360.8348 (3)0.7342 (4)0.7439 (2)0.0304 (8)
H360.77390.77630.74810.036*
C370.9266 (3)0.7683 (5)0.8025 (2)0.0309 (8)
H370.92940.83230.84790.037*
C381.0165 (3)0.7075 (4)0.7948 (2)0.0263 (7)
C390.9249 (3)0.5806 (4)0.6737 (2)0.0234 (7)
C400.9247 (3)0.4860 (4)0.6051 (2)0.0229 (7)
C411.1178 (3)0.3183 (5)0.5301 (3)0.0333 (9)
H41A1.16600.40230.55520.050*
H41B1.11190.30740.47260.050*
H41C1.14200.21920.55870.050*
C421.1181 (3)0.7423 (5)0.8571 (2)0.0313 (8)
H42A1.15620.64430.87340.047*
H42B1.10880.79150.90500.047*
H42C1.15570.81380.83360.047*
O50.5266 (4)0.6646 (6)0.0293 (3)0.0881 (15)*
C430.4873 (6)0.6959 (12)0.0568 (5)0.106 (3)*
H43A0.52050.78960.07010.127*
H43B0.49940.60530.08790.127*
C440.3809 (5)0.7227 (10)0.0764 (4)0.089 (2)*
H44A0.34290.62320.09270.106*
H44B0.35630.79820.12210.106*
C450.3658 (5)0.7886 (8)0.0006 (4)0.0757 (18)*
H45A0.36260.90470.00230.091*
H45B0.30340.74680.00640.091*
C460.4594 (5)0.7317 (10)0.0663 (4)0.086 (2)*
H46A0.49280.82050.10180.103*
H46B0.44060.65210.10010.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0238 (4)0.0282 (4)0.0225 (4)0.0022 (3)0.0066 (3)0.0010 (3)
S20.0232 (4)0.0245 (4)0.0300 (5)0.0000 (3)0.0103 (3)0.0003 (3)
O10.0279 (13)0.0325 (14)0.0231 (13)0.0051 (11)0.0031 (10)0.0004 (11)
O20.0331 (14)0.0318 (14)0.0282 (14)0.0131 (12)0.0013 (10)0.0029 (12)
O30.0247 (13)0.0295 (13)0.0332 (14)0.0019 (11)0.0105 (10)0.0017 (11)
O40.0208 (12)0.0308 (14)0.0338 (15)0.0012 (10)0.0100 (11)0.0037 (11)
C10.0205 (15)0.0267 (17)0.0247 (18)0.0008 (13)0.0078 (13)0.0005 (13)
C20.0181 (15)0.0241 (17)0.0249 (17)0.0001 (12)0.0049 (12)0.0004 (13)
C30.0241 (17)0.0323 (19)0.0251 (18)0.0027 (15)0.0053 (13)0.0032 (15)
C40.0263 (18)0.044 (2)0.0239 (19)0.0037 (16)0.0084 (14)0.0019 (16)
C50.0250 (17)0.0366 (19)0.0228 (17)0.0004 (15)0.0029 (13)0.0014 (16)
C60.0162 (14)0.0308 (19)0.0239 (17)0.0011 (12)0.0043 (12)0.0010 (13)
C70.0193 (15)0.0226 (16)0.0272 (18)0.0007 (13)0.0068 (13)0.0005 (14)
C80.0256 (17)0.0248 (17)0.0214 (17)0.0037 (13)0.0063 (13)0.0030 (13)
C90.0228 (16)0.0272 (17)0.0168 (16)0.0022 (13)0.0045 (12)0.0016 (13)
C100.0261 (17)0.0273 (19)0.0257 (18)0.0025 (13)0.0048 (13)0.0003 (13)
C110.0299 (19)0.0268 (19)0.035 (2)0.0048 (14)0.0034 (15)0.0009 (15)
C120.0277 (17)0.0354 (19)0.0283 (18)0.0086 (15)0.0083 (14)0.0029 (16)
C130.0217 (16)0.0313 (19)0.0252 (18)0.0025 (14)0.0035 (13)0.0005 (14)
C140.0224 (16)0.0287 (18)0.0191 (16)0.0014 (13)0.0062 (12)0.0014 (13)
N10.0277 (14)0.0212 (14)0.0230 (15)0.0033 (11)0.0067 (11)0.0009 (11)
N20.0391 (18)0.0235 (15)0.0240 (16)0.0011 (13)0.0134 (13)0.0011 (12)
C150.0317 (19)0.0226 (17)0.0290 (19)0.0001 (14)0.0109 (14)0.0020 (14)
C160.0353 (19)0.0247 (17)0.0277 (18)0.0009 (14)0.0154 (15)0.0027 (14)
C170.038 (2)0.0249 (18)0.0220 (18)0.0016 (15)0.0077 (15)0.0010 (14)
C180.0264 (17)0.0234 (17)0.0243 (17)0.0017 (14)0.0035 (13)0.0030 (14)
C190.0314 (19)0.0303 (18)0.0266 (18)0.0046 (16)0.0026 (14)0.0062 (16)
C200.0268 (18)0.033 (2)0.033 (2)0.0011 (15)0.0049 (14)0.0031 (16)
C210.035 (2)0.0244 (17)0.036 (2)0.0039 (15)0.0147 (15)0.0015 (15)
C220.030 (2)0.0266 (19)0.048 (2)0.0044 (15)0.0171 (17)0.0074 (17)
C230.050 (2)0.029 (2)0.039 (2)0.0038 (18)0.0269 (19)0.0044 (17)
C240.044 (2)0.0213 (17)0.031 (2)0.0006 (15)0.0175 (16)0.0005 (15)
C250.0318 (18)0.0192 (16)0.0221 (17)0.0008 (13)0.0108 (13)0.0007 (13)
C260.0314 (17)0.0207 (15)0.0204 (16)0.0041 (14)0.0086 (13)0.0019 (13)
C270.0285 (19)0.039 (2)0.040 (2)0.0000 (16)0.0105 (16)0.0030 (17)
C280.062 (3)0.035 (2)0.026 (2)0.001 (2)0.0163 (19)0.0050 (17)
N30.0235 (14)0.0261 (15)0.0256 (15)0.0019 (12)0.0099 (11)0.0006 (12)
N40.0258 (14)0.0224 (14)0.0271 (15)0.0008 (11)0.0111 (11)0.0022 (12)
C290.0271 (17)0.0280 (17)0.0263 (18)0.0003 (15)0.0097 (13)0.0024 (15)
C300.0296 (18)0.0293 (18)0.0236 (18)0.0045 (14)0.0092 (14)0.0013 (14)
C310.0284 (17)0.0299 (17)0.0253 (18)0.0022 (15)0.0068 (13)0.0008 (15)
C320.0244 (16)0.0262 (18)0.0286 (18)0.0032 (14)0.0081 (13)0.0023 (14)
C330.0212 (18)0.044 (2)0.036 (2)0.0018 (16)0.0069 (15)0.0039 (18)
C340.0222 (17)0.0341 (19)0.035 (2)0.0004 (15)0.0086 (14)0.0037 (16)
C350.0261 (17)0.0228 (16)0.0296 (19)0.0042 (13)0.0118 (14)0.0078 (14)
C360.0304 (19)0.0273 (18)0.036 (2)0.0088 (15)0.0144 (15)0.0049 (16)
C370.037 (2)0.0285 (19)0.031 (2)0.0044 (16)0.0167 (15)0.0021 (15)
C380.0301 (18)0.0248 (17)0.0248 (18)0.0017 (14)0.0103 (14)0.0029 (14)
C390.0242 (16)0.0200 (16)0.0285 (18)0.0017 (13)0.0120 (13)0.0038 (13)
C400.0234 (16)0.0211 (16)0.0257 (18)0.0009 (13)0.0101 (13)0.0020 (13)
C410.0319 (19)0.037 (2)0.032 (2)0.0035 (16)0.0118 (15)0.0070 (16)
C420.034 (2)0.0302 (18)0.029 (2)0.0022 (16)0.0102 (15)0.0015 (16)
Geometric parameters (Å, º) top
S1—C11.795 (4)C23—H230.9500
S1—S22.0586 (13)C24—C281.496 (6)
S2—C81.798 (4)C25—C261.455 (5)
O1—C71.222 (4)C27—H27A0.9800
O2—C71.312 (4)C27—H27B0.9800
O2—H2o0.85 (4)C27—H27C0.9800
O3—C141.224 (5)C28—H28A0.9800
O4—C141.309 (4)C28—H28B0.9800
O4—H4o0.84 (4)C28—H28C0.9800
C1—C61.398 (5)N3—C291.316 (5)
C1—C21.409 (5)N3—C401.360 (4)
C2—C31.395 (5)N4—C381.340 (5)
C2—C71.506 (5)N4—C391.365 (4)
C3—C41.387 (5)C29—C301.423 (5)
C3—H30.9500C29—C411.500 (5)
C4—C51.389 (5)C30—C311.362 (5)
C4—H40.9500C30—H300.9500
C5—C61.382 (5)C31—C321.404 (5)
C5—H50.9500C31—H310.9500
C6—H60.9500C32—C401.417 (5)
C8—C131.393 (5)C32—C331.424 (5)
C8—C91.408 (5)C33—C341.351 (6)
C9—C101.392 (5)C33—H330.9500
C9—C141.490 (5)C34—C351.439 (5)
C10—C111.383 (5)C34—H340.9500
C10—H100.9500C35—C361.391 (5)
C11—C121.386 (6)C35—C391.425 (5)
C11—H110.9500C36—C371.378 (6)
C12—C131.385 (6)C36—H360.9500
C12—H120.9500C37—C381.409 (5)
C13—H130.9500C37—H370.9500
N1—C151.333 (5)C38—C421.502 (5)
N1—C261.357 (4)C39—C401.439 (5)
N2—C241.326 (5)C41—H41A0.9800
N2—C251.351 (5)C41—H41B0.9800
C15—C161.401 (5)C41—H41C0.9800
C15—C271.509 (5)C42—H42A0.9800
C16—C171.375 (5)C42—H42B0.9800
C16—H160.9500C42—H42C0.9800
C17—C181.411 (5)O5—C461.426 (7)
C17—H170.9500O5—C431.436 (7)
C18—C261.417 (5)C43—C441.432 (7)
C18—C191.429 (5)C43—H43A0.9900
C19—C201.348 (6)C43—H43B0.9900
C19—H190.9500C44—C451.512 (7)
C20—C211.437 (5)C44—H44A0.9900
C20—H200.9500C44—H44B0.9900
C21—C221.413 (6)C45—C461.511 (7)
C21—C251.419 (5)C45—H45A0.9900
C22—C231.377 (6)C45—H45B0.9900
C22—H220.9500C46—H46A0.9900
C23—C241.413 (6)C46—H46B0.9900
C1—S1—S2104.22 (12)H27A—C27—H27B109.5
C8—S2—S1104.28 (13)C15—C27—H27C109.5
C7—O2—H2O113 (4)H27A—C27—H27C109.5
C14—O4—H4O109 (3)H27B—C27—H27C109.5
C6—C1—C2118.3 (3)C24—C28—H28A109.5
C6—C1—S1121.3 (3)C24—C28—H28B109.5
C2—C1—S1120.3 (3)H28A—C28—H28B109.5
C3—C2—C1120.3 (3)C24—C28—H28C109.5
C3—C2—C7119.3 (3)H28A—C28—H28C109.5
C1—C2—C7120.4 (3)H28B—C28—H28C109.5
C4—C3—C2120.5 (3)C29—N3—C40119.1 (3)
C4—C3—H3119.7C38—N4—C39119.2 (3)
C2—C3—H3119.7N3—C29—C30122.1 (3)
C3—C4—C5119.3 (4)N3—C29—C41117.0 (3)
C3—C4—H4120.4C30—C29—C41120.8 (3)
C5—C4—H4120.4C31—C30—C29119.0 (4)
C6—C5—C4120.8 (3)C31—C30—H30120.5
C6—C5—H5119.6C29—C30—H30120.5
C4—C5—H5119.6C30—C31—C32120.3 (3)
C5—C6—C1120.8 (3)C30—C31—H31119.9
C5—C6—H6119.6C32—C31—H31119.9
C1—C6—H6119.6C31—C32—C40116.9 (3)
O1—C7—O2125.0 (3)C31—C32—C33123.2 (3)
O1—C7—C2122.0 (3)C40—C32—C33119.8 (4)
O2—C7—C2113.0 (3)C34—C33—C32121.6 (4)
C13—C8—C9119.1 (3)C34—C33—H33119.2
C13—C8—S2121.2 (3)C32—C33—H33119.2
C9—C8—S2119.7 (3)C33—C34—C35120.7 (4)
C10—C9—C8119.2 (3)C33—C34—H34119.6
C10—C9—C14118.9 (3)C35—C34—H34119.6
C8—C9—C14121.9 (3)C36—C35—C39118.2 (3)
C11—C10—C9121.2 (3)C36—C35—C34122.7 (3)
C11—C10—H10119.4C39—C35—C34119.0 (4)
C9—C10—H10119.4C37—C36—C35119.7 (4)
C10—C11—C12119.5 (4)C37—C36—H36120.2
C10—C11—H11120.3C35—C36—H36120.2
C12—C11—H11120.3C36—C37—C38119.6 (4)
C13—C12—C11120.2 (4)C36—C37—H37120.2
C13—C12—H12119.9C38—C37—H37120.2
C11—C12—H12119.9N4—C38—C37121.8 (3)
C12—C13—C8120.8 (3)N4—C38—C42116.9 (3)
C12—C13—H13119.6C37—C38—C42121.3 (4)
C8—C13—H13119.6N4—C39—C35121.5 (3)
O3—C14—O4124.6 (3)N4—C39—C40118.8 (3)
O3—C14—C9121.3 (3)C35—C39—C40119.7 (3)
O4—C14—C9114.0 (3)N3—C40—C32122.4 (3)
C15—N1—C26118.5 (3)N3—C40—C39118.5 (3)
C24—N2—C25118.3 (3)C32—C40—C39119.0 (3)
N1—C15—C16122.5 (3)C29—C41—H41A109.5
N1—C15—C27116.8 (3)C29—C41—H41B109.5
C16—C15—C27120.8 (4)H41A—C41—H41B109.5
C17—C16—C15119.6 (4)C29—C41—H41C109.5
C17—C16—H16120.2H41A—C41—H41C109.5
C15—C16—H16120.2H41B—C41—H41C109.5
C16—C17—C18119.6 (3)C38—C42—H42A109.5
C16—C17—H17120.2C38—C42—H42B109.5
C18—C17—H17120.2H42A—C42—H42B109.5
C17—C18—C26117.0 (3)C38—C42—H42C109.5
C17—C18—C19122.7 (3)H42A—C42—H42C109.5
C26—C18—C19120.3 (3)H42B—C42—H42C109.5
C20—C19—C18120.6 (4)C46—O5—C43108.4 (6)
C20—C19—H19119.7C44—C43—O5106.4 (6)
C18—C19—H19119.7C44—C43—H43A110.5
C19—C20—C21121.5 (4)O5—C43—H43A110.5
C19—C20—H20119.2C44—C43—H43B110.5
C21—C20—H20119.2O5—C43—H43B110.5
C22—C21—C25117.1 (4)H43A—C43—H43B108.6
C22—C21—C20123.1 (4)C43—C44—C45106.8 (6)
C25—C21—C20119.7 (4)C43—C44—H44A110.4
C23—C22—C21119.1 (4)C45—C44—H44A110.4
C23—C22—H22120.5C43—C44—H44B110.4
C21—C22—H22120.5C45—C44—H44B110.4
C22—C23—C24119.4 (4)H44A—C44—H44B108.6
C22—C23—H23120.3C46—C45—C44102.4 (6)
C24—C23—H23120.3C46—C45—H45A111.3
N2—C24—C23122.7 (4)C44—C45—H45A111.3
N2—C24—C28116.5 (4)C46—C45—H45B111.3
C23—C24—C28120.7 (4)C44—C45—H45B111.3
N2—C25—C21123.4 (3)H45A—C45—H45B109.2
N2—C25—C26118.0 (3)O5—C46—C45108.3 (6)
C21—C25—C26118.7 (3)O5—C46—H46A110.0
N1—C26—C18122.8 (3)C45—C46—H46A110.0
N1—C26—C25118.0 (3)O5—C46—H46B110.0
C18—C26—C25119.2 (3)C45—C46—H46B110.0
C15—C27—H27A109.5H46A—C46—H46B108.4
C15—C27—H27B109.5
C1—S1—S2—C888.74 (17)C24—N2—C25—C26179.3 (3)
S2—S1—C1—C618.7 (3)C22—C21—C25—N20.1 (5)
S2—S1—C1—C2160.5 (2)C20—C21—C25—N2177.7 (3)
C6—C1—C2—C31.8 (5)C22—C21—C25—C26178.6 (3)
S1—C1—C2—C3179.0 (3)C20—C21—C25—C261.0 (5)
C6—C1—C2—C7178.2 (3)C15—N1—C26—C180.2 (5)
S1—C1—C2—C72.6 (4)C15—N1—C26—C25179.7 (3)
C1—C2—C3—C40.7 (6)C17—C18—C26—N10.5 (5)
C7—C2—C3—C4177.1 (3)C19—C18—C26—N1179.3 (3)
C2—C3—C4—C50.1 (6)C17—C18—C26—C25179.7 (3)
C3—C4—C5—C60.7 (6)C19—C18—C26—C250.5 (5)
C4—C5—C6—C11.9 (6)N2—C25—C26—N11.4 (5)
C2—C1—C6—C52.4 (5)C21—C25—C26—N1179.9 (3)
S1—C1—C6—C5178.4 (3)N2—C25—C26—C18178.5 (3)
C3—C2—C7—O1157.5 (4)C21—C25—C26—C180.2 (5)
C1—C2—C7—O119.0 (5)C40—N3—C29—C300.9 (5)
C3—C2—C7—O221.9 (5)C40—N3—C29—C41178.2 (3)
C1—C2—C7—O2161.7 (3)N3—C29—C30—C312.7 (6)
S1—S2—C8—C1315.5 (3)C41—C29—C30—C31176.5 (4)
S1—S2—C8—C9165.0 (2)C29—C30—C31—C321.5 (6)
C13—C8—C9—C100.2 (5)C30—C31—C32—C401.1 (5)
S2—C8—C9—C10179.7 (3)C30—C31—C32—C33175.7 (4)
C13—C8—C9—C14178.0 (3)C31—C32—C33—C34178.3 (4)
S2—C8—C9—C141.4 (4)C40—C32—C33—C341.5 (6)
C8—C9—C10—C112.3 (5)C32—C33—C34—C351.1 (6)
C14—C9—C10—C11176.0 (3)C33—C34—C35—C36179.4 (4)
C9—C10—C11—C122.9 (6)C33—C34—C35—C391.6 (6)
C10—C11—C12—C131.6 (6)C39—C35—C36—C371.5 (5)
C11—C12—C13—C80.5 (6)C34—C35—C36—C37179.3 (4)
C9—C8—C13—C121.1 (5)C35—C36—C37—C381.2 (6)
S2—C8—C13—C12178.4 (3)C39—N4—C38—C370.4 (5)
C10—C9—C14—O3160.7 (3)C39—N4—C38—C42179.7 (3)
C8—C9—C14—O317.6 (5)C36—C37—C38—N40.2 (6)
C10—C9—C14—O418.5 (5)C36—C37—C38—C42179.7 (4)
C8—C9—C14—O4163.2 (3)C38—N4—C39—C350.0 (5)
C26—N1—C15—C160.7 (5)C38—N4—C39—C40178.4 (3)
C26—N1—C15—C27179.9 (3)C36—C35—C39—N40.9 (5)
N1—C15—C16—C170.6 (6)C34—C35—C39—N4178.8 (3)
C27—C15—C16—C17179.9 (4)C36—C35—C39—C40177.4 (3)
C15—C16—C17—C180.1 (5)C34—C35—C39—C400.4 (5)
C16—C17—C18—C260.6 (5)C29—N3—C40—C321.9 (5)
C16—C17—C18—C19179.2 (4)C29—N3—C40—C39179.5 (3)
C17—C18—C19—C20179.6 (4)C31—C32—C40—N33.0 (5)
C26—C18—C19—C200.6 (6)C33—C32—C40—N3174.0 (3)
C18—C19—C20—C210.2 (6)C31—C32—C40—C39179.4 (3)
C19—C20—C21—C22178.5 (4)C33—C32—C40—C393.6 (5)
C19—C20—C21—C251.0 (6)N4—C39—C40—N33.7 (5)
C25—C21—C22—C230.9 (6)C35—C39—C40—N3174.7 (3)
C20—C21—C22—C23178.5 (4)N4—C39—C40—C32178.6 (3)
C21—C22—C23—C241.1 (6)C35—C39—C40—C323.0 (5)
C25—N2—C24—C230.4 (5)C46—O5—C43—C4423.0 (9)
C25—N2—C24—C28178.7 (3)O5—C43—C44—C4528.7 (9)
C22—C23—C24—N20.4 (6)C43—C44—C45—C4622.9 (9)
C22—C23—C24—C28177.8 (4)C43—O5—C46—C458.1 (9)
C24—N2—C25—C210.6 (5)C44—C45—C46—O58.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···N1i0.85 (4)1.91 (4)2.734 (4)163 (4)
O2—H2o···N2i0.85 (4)2.46 (4)2.982 (5)121 (4)
O4—H4o···N4ii0.84 (4)1.86 (3)2.691 (4)170 (4)
C19—H19···O1iii0.952.593.448 (5)150
C22—H22···O50.952.523.383 (7)150
C23—H23···O30.952.563.345 (5)140
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1; (iii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H10O4S2·2C14H12N2·C4H8O
Mr794.96
Crystal system, space groupMonoclinic, P21
Temperature (K)98
a, b, c (Å)14.011 (4), 8.516 (3), 17.403 (5)
β (°) 109.637 (6)
V3)1955.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.26 × 0.21 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13023, 8637, 7988
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.169, 1.05
No. of reflections8637
No. of parameters499
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.85
Absolute structureFlack (1983), 3550 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···N1i0.85 (4)1.91 (4)2.734 (4)163 (4)
O2—H2o···N2i0.85 (4)2.46 (4)2.982 (5)121 (4)
O4—H4o···N4ii0.84 (4)1.86 (3)2.691 (4)170 (4)
C19—H19···O1iii0.952.593.448 (5)150
C22—H22···O50.952.523.383 (7)150
C23—H23···O30.952.563.345 (5)140
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1; (iii) x+1, y+1/2, z.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds