metal-organic compounds
Poly[[hexaaquatris[μ2-2,5-dihydroxy-1,4-benzoquinonato(2−)]diholmium(III)] octadecahydrate]
aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp
In the polymeric title compound, {[Ho2(C6H2O4)3(H2O)6]·18H2O}n, the HoIII ion is nine-coordinated by six O atoms derived from three bidentate 2,5-dihydroxy-1,4-benzoquinonate (DHBQ2−) ligands and three O atoms from three water molecules. The HoIII ions are connected via three ligands, resulting in the formation of a two-dimensional honeycomb layer parallel to the ab plane. The layer is racemic in which Δ- and Λ-coordination geometries around HoIII ions are alternately arranged. The comprises a third of a HoIII ion, located on a threefold axis, one-half of a DHBQ2− ion, located on a centre of inversion, one coordinated water molecule and three uncoordinated water molecules.
Related literature
For general background, see: Kitagawa & Kawata (2002); Nakabayashi & Ohkoshi (2009); Ohkoshi et al. (2001). For details of the synthesis, see: Weider et al. (1985). For related structures, see: Robl & Sheldrick (1988); Weiss et al. (1986).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2007); software used to prepare material for publication: CrystalStructure.
Supporting information
10.1107/S1600536810028989/tk2691sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810028989/tk2691Isup2.hkl
Under air, aqueous solutions of 0.1 M Ho(NO3)3 and 0.4 M 1,2,4,5-tetrahydroxybenzene (THB) (Weider et al., 1985) mixed. THB was gradually oxidized to 2,5-dihydroxy-1,4-benzoquinone (DHBQ) in the mixed solution, and slow complexation of Ho(NO3)3 and DHBQ) produced red crystals of the title polymer in 24% yield within a week. The obtained polycrystalline compound was dried under air. Elemental analysis indicated the formula was [Ho2(C6H2O4)3(H2O)6].17H2O, C18H52O35Ho2, calcd. Ho, 28.18%; C, 18.47%; H, 4.49%, found. Ho, 28.29%; C, 18.23%; H, 4.64%. There is a slight difference of zeolitic water molecules between the elemental analysis and the crystallographic formulation because zeolitic water molecules are easy to be lost from the crystals and their number depends on the drying processes.
The H atoms were placed in their calculated positions,with C—H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2007); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).[Ho2(C6H2O4)3(H2O)6]·18H2O | Dx = 1.796 Mg m−3 |
Mr = 1176.46 | Mo Kα radiation, λ = 0.71075 Å |
Trigonal, R3 | Cell parameters from 9640 reflections |
Hall symbol: -R 3 | θ = 3.4–27.5° |
a = 14.1407 (3) Å | µ = 3.88 mm−1 |
c = 18.0629 (5) Å | T = 90 K |
V = 3127.93 (12) Å3 | Platelet, red |
Z = 3 | 0.10 × 0.10 × 0.04 mm |
F(000) = 1608.00 |
Rigaku R-AXIS RAPID diffractometer | 1525 reflections with F2 > 2σ(F2) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 27.5° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −18→18 |
Tmin = 0.704, Tmax = 0.856 | k = −18→18 |
11262 measured reflections | l = −23→23 |
1594 independent reflections |
Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0248P)2 + 19.995P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.063 | (Δ/σ)max = 0.002 |
S = 1.23 | Δρmax = 0.65 e Å−3 |
1594 reflections | Δρmin = −0.30 e Å−3 |
86 parameters |
[Ho2(C6H2O4)3(H2O)6]·18H2O | Z = 3 |
Mr = 1176.46 | Mo Kα radiation |
Trigonal, R3 | µ = 3.88 mm−1 |
a = 14.1407 (3) Å | T = 90 K |
c = 18.0629 (5) Å | 0.10 × 0.10 × 0.04 mm |
V = 3127.93 (12) Å3 |
Rigaku R-AXIS RAPID diffractometer | 1594 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1525 reflections with F2 > 2σ(F2) |
Tmin = 0.704, Tmax = 0.856 | Rint = 0.025 |
11262 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0248P)2 + 19.995P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | Δρmax = 0.65 e Å−3 |
1594 reflections | Δρmin = −0.30 e Å−3 |
86 parameters |
Geometry. loop_ _Bond lengths and angles Ho1 - Distance Angles O1_$1 2.3715 (0.0023) O1 2.3715 (0.0024) 78.04 (0.09) O1_$2 2.3715 (0.0023) 78.05 (0.09) 78.05 (0.09) O3_$2 2.3851 (0.0025) 138.54 (0.09) 85.02 (0.10) 134.88 (0.09) O3_$1 2.3851 (0.0025) 134.88 (0.09) 138.54 (0.09) 85.02 (0.10) 80.68 (0.11) O3 2.3852 (0.0025) 85.02 (0.10) 134.88 (0.09) 138.54 (0.09) 80.68 (0.11) 80.68 (0.11) O2_$1 2.4626 (0.0024) 65.01 (0.08) 134.82 (0.08) 69.90 (0.08) 140.07 (0.09) 69.92 (0.09) 68.65 (0.09) O2 2.4626 (0.0023) 69.90 (0.08) 65.01 (0.08) 134.82 (0.08) 68.65 (0.09) 140.07 (0.09) 69.92 (0.08) 119.91 (0.01) O2_$2 2.4626 (0.0023) 134.82 (0.08) 69.90 (0.08) 65.01 (0.08) 69.92 (0.08) 68.65 (0.09) 140.07 (0.09) 119.91 (0.01) Ho1 - O1_$1 O1 O1_$2 O3_$2 O3_$1 O3 O2_$1 O1 - Distance Angles C1 1.2764 (0.0041) Ho1 2.3715 (0.0023) 123.38 (0.21) O1 - C1 O2 - Distance Angles C2 1.2739 (0.0041) Ho1 2.4626 (0.0023) 119.92 (0.21) O2 - C2 O3 - Distance Angles Ho1 2.3852 (0.0025) O3 - C1 - Distance Angles O1 1.2764 (0.0041) C3 1.3846 (0.0049) 125.21 (0.32) C2 1.5290 (0.0046) 114.26 (0.29) 120.50 (0.30) C1 - O1 C3 C3 - Distance Angles C1 1.3846 (0.0049) C2_$3 1.3982 (0.0048) 119.67 (0.32) H3 0.9500 120.16 120.16 C3 - C1 C2_$3 C2 - Distance Angles O2 1.2739 (0.0041) C3_$3 1.3982 (0.0048) 124.89 (0.31) C1 1.5290 (0.0046) 115.30 (0.29) 119.80 (0.30) C2 - O2 C3_$3 |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Ho1 | 0.0000 | 0.0000 | 0.754297 (13) | 0.01802 (8) | |
O1 | −0.1198 (2) | −0.12391 (19) | 0.66415 (13) | 0.0270 (5) | |
O2 | −0.00678 (19) | −0.17736 (19) | 0.75023 (13) | 0.0252 (4) | |
O3 | 0.1248 (2) | −0.0026 (2) | 0.84201 (15) | 0.0366 (6) | |
O4 | 0.1390 (2) | −0.1541 (2) | 0.93023 (18) | 0.0481 (7) | |
O5 | 0.2672 (2) | 0.1817 (2) | 0.92192 (19) | 0.0508 (7) | |
O6 | −0.1882 (2) | −0.0598 (2) | 0.54192 (17) | 0.0474 (7) | |
C1 | −0.1492 (2) | −0.2252 (2) | 0.66312 (19) | 0.0246 (6) | |
C3 | −0.2332 (2) | −0.3039 (2) | 0.6206 (2) | 0.0283 (7) | |
C2 | −0.0802 (2) | −0.2555 (2) | 0.71218 (18) | 0.0237 (6) | |
H3 | −0.2770 | −0.2850 | 0.5912 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ho1 | 0.01630 (11) | 0.01630 (11) | 0.02146 (14) | 0.00815 (5) | 0.0000 | 0.0000 |
O1 | 0.0310 (13) | 0.0178 (11) | 0.0320 (12) | 0.0121 (10) | −0.0067 (9) | −0.0020 (9) |
O2 | 0.0240 (11) | 0.0194 (11) | 0.0316 (12) | 0.0103 (9) | −0.0047 (9) | −0.0032 (9) |
O3 | 0.0363 (14) | 0.0309 (14) | 0.0405 (14) | 0.0154 (12) | −0.0164 (11) | −0.0020 (11) |
O4 | 0.0455 (18) | 0.0513 (18) | 0.0552 (18) | 0.0299 (15) | −0.0062 (14) | 0.0051 (15) |
O5 | 0.0490 (18) | 0.0453 (18) | 0.0558 (19) | 0.0218 (15) | −0.0121 (15) | −0.0078 (14) |
O6 | 0.0528 (19) | 0.0470 (18) | 0.0418 (16) | 0.0244 (15) | −0.0105 (13) | 0.0015 (13) |
C1 | 0.0241 (16) | 0.0227 (15) | 0.0271 (15) | 0.0116 (13) | 0.0016 (12) | 0.0014 (12) |
C3 | 0.0274 (17) | 0.0235 (17) | 0.0334 (17) | 0.0122 (14) | −0.0049 (13) | 0.0001 (13) |
C2 | 0.0228 (15) | 0.0236 (16) | 0.0241 (15) | 0.0111 (13) | 0.0019 (12) | 0.0005 (12) |
Ho1—O1 | 2.371 (2) | Ho1—O3ii | 2.385 (2) |
Ho1—O1i | 2.371 (2) | O1—C1 | 1.276 (4) |
Ho1—O1ii | 2.371 (2) | O2—C2 | 1.274 (3) |
Ho1—O2 | 2.463 (2) | C1—C3 | 1.385 (4) |
Ho1—O2i | 2.4625 (19) | C1—C2 | 1.529 (6) |
Ho1—O2ii | 2.463 (3) | C3—C2iii | 1.398 (5) |
Ho1—O3 | 2.385 (3) | C3—H3 | 0.950 |
Ho1—O3i | 2.385 (3) | ||
Ho1···C1 | 3.253 (3) | O6···C1 | 3.444 (5) |
Ho1···C1i | 3.253 (3) | O6···C1ii | 3.369 (4) |
Ho1···C1ii | 3.253 (4) | O6···C3 | 3.485 (5) |
Ho1···C2 | 3.289 (3) | O6···C3xi | 3.326 (5) |
Ho1···C2i | 3.289 (2) | C1···Ho1 | 3.253 (3) |
Ho1···C2ii | 3.289 (4) | C1···O1i | 3.592 (3) |
O1···O1i | 2.986 (3) | C1···O2 | 2.372 (4) |
O1···O1ii | 2.986 (3) | C1···O3ii | 3.481 (4) |
O1···O2 | 2.599 (4) | C1···O6 | 3.444 (5) |
O1···O2ii | 2.770 (4) | C1···O6i | 3.369 (4) |
O1···O3ii | 3.214 (3) | C1···C1iii | 2.847 (5) |
O1···O4iv | 3.464 (4) | C1···C3iii | 2.533 (6) |
O1···O6 | 2.740 (4) | C1···C2iii | 2.406 (4) |
O1···O6i | 3.390 (4) | C3···O1 | 2.363 (3) |
O1···C1ii | 3.592 (5) | C3···O2iii | 2.370 (4) |
O1···C3 | 2.363 (3) | C3···O6 | 3.485 (5) |
O1···C2 | 2.360 (5) | C3···O6xii | 3.326 (4) |
O1···C2ii | 3.458 (5) | C3···C1iii | 2.533 (6) |
O2···O1 | 2.599 (4) | C3···C3iii | 2.927 (6) |
O2···O1i | 2.770 (3) | C3···C2 | 2.531 (5) |
O2···O3 | 2.778 (3) | C2···Ho1 | 3.289 (3) |
O2···O3ii | 2.734 (4) | C2···O1 | 2.360 (5) |
O2···O4v | 2.868 (5) | C2···O1i | 3.458 (3) |
O2···O5ii | 3.325 (4) | C2···O3ii | 3.254 (5) |
O2···C1 | 2.372 (4) | C2···O4v | 3.499 (5) |
O2···C3iii | 2.370 (4) | C2···C1iii | 2.406 (4) |
O3···O1i | 3.214 (3) | C2···C3 | 2.531 (5) |
O3···O2 | 2.778 (3) | C2···C2iii | 2.855 (4) |
O3···O2i | 2.734 (3) | O1···H3 | 2.608 |
O3···O3i | 3.088 (5) | O2···H3iii | 2.614 |
O3···O3ii | 3.088 (4) | O4···H3ix | 3.259 |
O3···O4 | 2.757 (5) | O4···H3vi | 3.484 |
O3···O5 | 2.772 (3) | O5···H3ix | 3.135 |
O3···C1i | 3.481 (4) | O6···H3 | 2.918 |
O3···C2i | 3.254 (3) | O6···H3xi | 3.032 |
O4···O1vi | 3.464 (5) | C1···H3 | 2.035 |
O4···O2v | 2.868 (5) | C1···H3iii | 3.400 |
O4···O3 | 2.757 (5) | C2···H3 | 3.396 |
O4···O5ii | 2.753 (4) | C2···H3iii | 2.048 |
O4···O5vii | 2.802 (4) | H3···O1 | 2.608 |
O4···C2v | 3.499 (5) | H3···O2iii | 2.614 |
O5···O2i | 3.325 (4) | H3···O4x | 3.259 |
O5···O3 | 2.772 (3) | H3···O4iv | 3.484 |
O5···O4i | 2.753 (6) | H3···O5x | 3.135 |
O5···O4viii | 2.802 (4) | H3···O6 | 2.918 |
O5···O6ix | 2.728 (4) | H3···O6xii | 3.032 |
O6···O1 | 2.740 (4) | H3···C1 | 2.035 |
O6···O1ii | 3.390 (3) | H3···C1iii | 3.400 |
O6···O5x | 2.728 (4) | H3···C2 | 3.396 |
O6···O6xi | 2.801 (4) | H3···C2iii | 2.048 |
O6···O6xii | 2.801 (5) | ||
O1—Ho1—O1i | 78.04 (8) | O2—Ho1—O3i | 140.07 (9) |
O1—Ho1—O1ii | 78.04 (8) | O2—Ho1—O3ii | 68.65 (10) |
O1—Ho1—O2 | 65.01 (9) | O2i—Ho1—O2ii | 119.91 (9) |
O1—Ho1—O2i | 134.81 (7) | O2i—Ho1—O3 | 68.65 (8) |
O1—Ho1—O2ii | 69.90 (9) | O2i—Ho1—O3i | 69.92 (8) |
O1—Ho1—O3 | 134.88 (10) | O2i—Ho1—O3ii | 140.07 (8) |
O1—Ho1—O3i | 138.54 (11) | O2ii—Ho1—O3 | 140.07 (9) |
O1—Ho1—O3ii | 85.02 (8) | O2ii—Ho1—O3i | 68.65 (9) |
O1i—Ho1—O1ii | 78.04 (10) | O2ii—Ho1—O3ii | 69.92 (10) |
O1i—Ho1—O2 | 69.90 (8) | O3—Ho1—O3i | 80.68 (11) |
O1i—Ho1—O2i | 65.01 (8) | O3—Ho1—O3ii | 80.68 (9) |
O1i—Ho1—O2ii | 134.81 (8) | O3i—Ho1—O3ii | 80.68 (9) |
O1i—Ho1—O3 | 85.02 (10) | Ho1—O1—C1 | 123.4 (2) |
O1i—Ho1—O3i | 134.88 (7) | Ho1—O2—C2 | 119.9 (2) |
O1i—Ho1—O3ii | 138.54 (10) | O1—C1—C3 | 125.2 (4) |
O1ii—Ho1—O2 | 134.81 (8) | O1—C1—C2 | 114.3 (2) |
O1ii—Ho1—O2i | 69.90 (8) | C3—C1—C2 | 120.5 (3) |
O1ii—Ho1—O2ii | 65.01 (8) | C1—C3—C2iii | 119.7 (4) |
O1ii—Ho1—O3 | 138.54 (7) | O2—C2—C1 | 115.3 (3) |
O1ii—Ho1—O3i | 85.02 (9) | O2—C2—C3iii | 124.9 (3) |
O1ii—Ho1—O3ii | 134.88 (11) | C1—C2—C3iii | 119.8 (2) |
O2—Ho1—O2i | 119.91 (9) | C1—C3—H3 | 120.2 |
O2—Ho1—O2ii | 119.91 (7) | C2iii—C3—H3 | 120.2 |
O2—Ho1—O3 | 69.92 (9) | ||
O1—Ho1—O1i—C1i | 166.8 (3) | O3—Ho1—O1ii—C1ii | −125.1 (2) |
O1i—Ho1—O1—C1 | 86.7 (2) | O3i—Ho1—O1ii—C1ii | −55.3 (2) |
O1—Ho1—O1ii—C1ii | 86.7 (2) | O3ii—Ho1—O1ii—C1ii | 16.3 (2) |
O1ii—Ho1—O1—C1 | 166.8 (2) | O2—Ho1—O2i—C2i | 34.3 (2) |
O1—Ho1—O2—C2 | −10.8 (2) | O2i—Ho1—O2—C2 | −139.8 (2) |
O2—Ho1—O1—C1 | 13.5 (2) | O2—Ho1—O2ii—C2ii | −139.8 (2) |
O1—Ho1—O2i—C2i | −49.0 (3) | O2ii—Ho1—O2—C2 | 34.3 (2) |
O2i—Ho1—O1—C1 | 121.7 (2) | O3—Ho1—O2—C2 | 171.3 (2) |
O1—Ho1—O2ii—C2ii | −96.6 (2) | O3i—Ho1—O2—C2 | 126.2 (2) |
O2ii—Ho1—O1—C1 | −125.7 (2) | O3ii—Ho1—O2—C2 | 83.8 (2) |
O3—Ho1—O1—C1 | 16.3 (3) | O2i—Ho1—O2ii—C2ii | 34.3 (2) |
O3i—Ho1—O1—C1 | −125.1 (2) | O2ii—Ho1—O2i—C2i | −139.8 (2) |
O3ii—Ho1—O1—C1 | −55.3 (2) | O3—Ho1—O2i—C2i | 83.8 (2) |
O1i—Ho1—O1ii—C1ii | 166.8 (2) | O3i—Ho1—O2i—C2i | 171.3 (2) |
O1ii—Ho1—O1i—C1i | 86.7 (3) | O3ii—Ho1—O2i—C2i | 126.2 (2) |
O1i—Ho1—O2—C2 | −96.6 (2) | O3—Ho1—O2ii—C2ii | 126.2 (2) |
O2—Ho1—O1i—C1i | −125.7 (3) | O3i—Ho1—O2ii—C2ii | 83.8 (2) |
O1i—Ho1—O2i—C2i | −10.8 (2) | O3ii—Ho1—O2ii—C2ii | 171.3 (2) |
O2i—Ho1—O1i—C1i | 13.5 (3) | Ho1—O1—C1—C3 | 167.6 (2) |
O1i—Ho1—O2ii—C2ii | −49.0 (2) | Ho1—O1—C1—C2 | −14.4 (4) |
O2ii—Ho1—O1i—C1i | 121.7 (3) | Ho1—O2—C2—C1 | 8.1 (3) |
O3—Ho1—O1i—C1i | −55.3 (3) | Ho1—O2—C2—C3iii | −171.9 (2) |
O3i—Ho1—O1i—C1i | 16.3 (3) | O1—C1—C3—C2iii | 176.2 (3) |
O3ii—Ho1—O1i—C1i | −125.1 (3) | O1—C1—C2—O2 | 3.4 (4) |
O1ii—Ho1—O2—C2 | −49.0 (2) | O1—C1—C2—C3iii | −176.5 (3) |
O2—Ho1—O1ii—C1ii | 121.7 (2) | C3—C1—C2—O2 | −178.4 (3) |
O1ii—Ho1—O2i—C2i | −96.6 (2) | C3—C1—C2—C3iii | 1.7 (5) |
O2i—Ho1—O1ii—C1ii | −125.7 (2) | C2—C1—C3—C2iii | −1.7 (5) |
O1ii—Ho1—O2ii—C2ii | −10.8 (2) | C1—C3—C2iii—O2iii | −178.5 (3) |
O2ii—Ho1—O1ii—C1ii | 13.5 (2) | C1—C3—C2iii—C1iii | 1.6 (5) |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z; (iii) −x−1/3, −y−2/3, −z+4/3; (iv) x−y−2/3, x−1/3, −z+5/3; (v) −x+1/3, −y−1/3, −z+5/3; (vi) y+1/3, −x+y−1/3, −z+5/3; (vii) y, −x+y, −z+2; (viii) x−y, x, −z+2; (ix) x+2/3, y+1/3, z+1/3; (x) x−2/3, y−1/3, z−1/3; (xi) y, −x+y, −z+1; (xii) x−y, x, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ho2(C6H2O4)3(H2O)6]·18H2O |
Mr | 1176.46 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 90 |
a, c (Å) | 14.1407 (3), 18.0629 (5) |
V (Å3) | 3127.93 (12) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 3.88 |
Crystal size (mm) | 0.10 × 0.10 × 0.04 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.704, 0.856 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 11262, 1594, 1525 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.063, 1.23 |
No. of reflections | 1594 |
No. of parameters | 86 |
No. of restraints | ? |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0248P)2 + 19.995P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.65, −0.30 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2007).
Acknowledgements
We are thankful for a Grant-in-Aid for Young Scientists (S) from JSPS, the Global COE Program, "Chemistry Innovation through Cooperation of Science and Engineering" from MEXT Japan, the Photon Frontier Network Program from MEXT, the Izumi Science and Technology Foundation and Asahi Glass Foundation. We also thank the Cryogenic Research Center and the Center for Nano Lithography & Analysis, The University of Tokyo, supported by MEXT Japan. This work has been approved by the Photon Factory Program Advisory Committee (Proposal 2009 G678).
References
DeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34. Web of Science CrossRef CAS Google Scholar
Nakabayashi, K. & Ohkoshi, S. (2009). Inorg. Chem. 48, 8647–8649. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ohkoshi, S., Hozumi, T. & Hashimoto, K. (2001). Phys. Rev. B, 64, 132404–4. Web of Science CrossRef Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Robl, C. & Sheldrick, G. M. (1988). Z. Naturforsch. Teil B, 43, 733–738. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weider, P. R., Hegedus, L. S., Asada, H. & D'Andreq, S. V. (1985). J. Org. Chem. 50, 4276–4281. CrossRef CAS Web of Science Google Scholar
Weiss, A., Riegler, C. & Robl, C. (1986). Z. Naturforsch. Teil B, 41, 1501–1505. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Lanthanide complexes have attracted attention as magnetic and luminescent materials due to the properties of the 4f orbitals in lanthanide ions. Although the magnetism of mononuclear lanthanide complexes are well understood, studies on polynuclear lanthanide complexes are much less advanced (Ohkoshi et al., 2001). The dimensionality of complexes and coordination geometry around lanthanide ions are key factors to control their magnetic properties. From this viewpoint, constructing polynuclear lanthanide complexes with various topologies are interesting. In our previous work, we reported the 3-D monometallic lanthanide metal assembly, Na5[{Ho(THB4-)2}.7H2O]n (THB = 1,2,4,5-tetrahydroxybenzene) (Nakabayashi et al., 2009). In this work, we synthesized a 2-D honeycomb network composed of holmium ions (HoIII) and 2,5-dihydroxy-1,4-benzoquinonate, [{Ho2 (DHBQ2-)3 (H2O)6}.18H2O]n (Kitagawa et al., 2002; Robl et al., 1988).
The asymmetric unit comprises a third of a HoIII ion, being located on a three-fold axis, one-half of a DHBQ2- ion, being disposed about a centre of inversion, one coordinated water molecule, and three zeolitic water molecules.
The C—O distances of 1.276 (4) Å (C1—O1) and 1.274 (3) Å (C2—O2) in this compound agree with those of the DHBQ2- ligands which were previously reported, e.g. 1.276 (6) Å (Weiss et al. 1986). In the coordination geometry, a HoIII ion is coordinated to six O atoms from three bidentate DHBQ2- ligands and three O atoms from three water molecules (Fig. 1 and Table 1). The HoIII ion is connected via three ligands, which results in a two-dimensional honeycomb layer with a diameter of 16.6 Å. The layer has a racemic structure in which Δ- and Λ-coordination geometries around HoIII ions are alternately arranged (Fig. 2). The zeolitic water molecules occupy regions between the layers.
The product of the molar magnetic susceptibility (χM) and temperature (T), χMT, values at room temperature was 13.6 cm3 K mol-1. This value nearly corresponds to the expected value of 13.9 cm3 K mol-1 due to HoIII ions (J = 8, L = 6, S = 2, and g = 5/4).
All known compounds of this type have two specific structures, honeycomb or racemic, and show paramagnetism. Mixing lanthanide ions, the chiral lanthanide assemblies with Δ- or Λ-coordination geometries are targeted for synthesis, which should show a magneto-chiral dichroism. A study to clarify this hypotheses, work is currently under way.