organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Nitro­anilino)-4,5,6,7-tetra­hydro­benzo[b]thio­phene-3-carbo­nitrile

aLaboratório de Síntese e Vetorização de Moléculas Bioativas, Universidade Estadual da Paraíba, 58020-540 João Pessoa, PB, Brazil, bLaboratório de Síntese e Planejamento de Fármacos, Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-910 Recife, PE, Brazil, and cDepartamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
*Correspondence e-mail: casimone@ifsc.usp.br

(Received 20 August 2010; accepted 2 September 2010; online 11 September 2010)

The title compound, C15H13N3O2S, was synthesized by the reaction of 2-amino-5,6,7,8-tetra­hydro-4H-cyclo­hepta­[b]thio­phene-3-carbonitrile and o-fluoro­nitro­benzene. The dihedral angle between the thio­phene and nitro­phenyl rings is 75.15 (2)°. In the crystal, inter­molecular N—H⋯N and C—H⋯O inter­actions lead to the formation of a supra­molecular chain extending along the c-axis direction.

Related literature

For background to 2-substituted thio­phenes, see: Puterová et al. (2009[Puterová, Z., Krutosiková, A. & Végh, D. (2009). Nova Biotech. 9, 167-173.]). For the biological activity of 2-amino-benzo[b]thio­phene derivatives, see: Fakhr et al. (2008[Fakhr, I. M. I., Radwan, M. A. A., El-Batran, S., El-Salam, O. M. E. A. & El-Shenawy, S. M. (2008). Eur. J. Med. Chem. 44, 1718-1725.]); Baraldi et al. (2006[Baraldi, P. G., Pavani, M. G., Leung, E., Moorman, A. R., Varani, K., Vicenzi, F., Borea, P. A. & Romagnoli, R. (2006). Bioorg. Med. Chem. Lett. 16, 1402-1404.]). For the synthesis of 2-amino thio­phenes, see: Gewald et al. (1966[Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 99-100.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O2S

  • Mr = 299.34

  • Monoclinic, P 21 /c

  • a = 13.2764 (4) Å

  • b = 13.4447 (7) Å

  • c = 8.2237 (4) Å

  • β = 106.794 (2)°

  • V = 1405.30 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.27 × 0.19 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 9590 measured reflections

  • 3241 independent reflections

  • 2351 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.174

  • S = 1.06

  • 3241 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.48 3.093 (3) 129
C11—H11⋯O1ii 0.93 2.56 3.351 (3) 143
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The various uses of 2-substituted thiophenes have been well documented (Puterová et al., 2009). Amongst these applications, some 2-substituted benzo[b]thiophenes derivatives present anti-inflammatory and analgesic activities (Fakhr et al., 2008), and others are adenosine A1 allosteric enhancers (Baraldi et al., 2006). In this work, we report the structure of the title compound prepared by the reaction of 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile and o-fluoro-nitrobenzene.

In the title compound, Fig. 1, the dihedral angle between least-squares planes passing through atoms of thiophene and nitrophenyl rings is 75.15 (2) °. The cyclohexane ring adopts a half-chair conformation with calculated puckering parameters of: q2 = 0.285 (5) Å, q3 = -0.240 (3) Å, QT = 0.373 (4) Å, θ = 130.2 (3) °, ϕ = -27.5 (6) ° (Cremer & Pople, 1975). In the packing, intermolecular N–H···N and C—H··· O interactions lead to the formation a supramolecular polymeric chain that extends along the c direction; Table 2 & Fig.2.

Related literature top

For background to 2-substituted thiophenes, see: Puterová et al. (2009). For the biological activity of 2-amino-benzo[b]thiophene derivatives, see: Fakhr et al. (2008); Baraldi et al. (2006). For the synthesis of 2-amino thiophenes, see: Gewald et al. (1966). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Under nitrogen and at 273 K, a dry THF solution (80 ml) of 2-amino-4,5,6,7- tetrahydro-4H-benzo[b]thiophene-3-carbonitrile (0.07 mol) and o-fluoro-nitrobenzene (0.07 mol) was added drop wise to a stirred suspension of NaH (0.105 mol) in dry THF (20 ml). The reaction mixture was stirred at room temperature for 24 h. The resulting mixture was adjusted to pH = 5 with 2 N HCl and then extracted with CHCl3. The extract was washed with aqueous Na2CO3 and water, dried over CaCl2, and evaporated under reduced pressure. The dark-red solid obtained was purified by recrystallization from absolute ethanol, affording the title compound as red crystals; yield 11.72 g (56%), m.pt 275–276 K (Gewald et al., 1966). Crystals were grown by evaporation at room temperature of its dichloromethane solution.

NMR 1H (200 MHz, CDCl3) δ: 1.84–1.87 (m, 4H), 2.63–2.73 (m, 4H), 6.91 (dt, 1H, J = 8.6, 1.4 Hz), 7.18 (dd, 1H, J = 8.6, 1.0 Hz), 7.51 (dt, 1H, J = 8.6, 8.2, 7.4 Hz), 8.22 (dd, 1H, J = 8.4, 1.4 Hz), 9.6 (s, 1H) p.p.m.

Refinement top

All H atoms attached were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Projection of C15H13N3O2S, showing atom labelling and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the packing along b axis showing intermolecular interactions as blue dashed lines.
2-(2-Nitroanilino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile top
Crystal data top
C15H13N3O2SF(000) = 624
Mr = 299.34Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4953 reflections
a = 13.2764 (4) Åθ = 2.9–27.5°
b = 13.4447 (7) ŵ = 0.24 mm1
c = 8.2237 (4) ÅT = 295 K
β = 106.794 (2)°Prism, yellow
V = 1405.30 (11) Å30.27 × 0.19 × 0.17 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2351 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.051
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 1717
CCD rotation images,thick slices scansk = 1717
9590 measured reflectionsl = 910
3241 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.1015P)2 + 0.2662P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3241 reflectionsΔρmax = 0.45 e Å3
192 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.133 (13)
Crystal data top
C15H13N3O2SV = 1405.30 (11) Å3
Mr = 299.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2764 (4) ŵ = 0.24 mm1
b = 13.4447 (7) ÅT = 295 K
c = 8.2237 (4) Å0.27 × 0.19 × 0.17 mm
β = 106.794 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2351 reflections with I > 2σ(I)
9590 measured reflectionsRint = 0.051
3241 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.06Δρmax = 0.45 e Å3
3241 reflectionsΔρmin = 0.38 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22931 (15)0.11377 (16)0.8690 (3)0.0489 (5)
C20.17013 (15)0.19140 (16)0.7859 (2)0.0470 (5)
C30.06070 (15)0.16847 (17)0.7171 (3)0.0494 (5)
C40.02377 (17)0.2391 (2)0.6205 (3)0.0620 (6)
H4A0.00090.27170.53220.074*
H4B0.03520.28980.69720.074*
C50.1254 (2)0.1846 (3)0.5417 (5)0.1058 (12)
H5A0.12310.15860.43280.127*
H5B0.18230.23250.51960.127*
C60.1505 (2)0.1041 (3)0.6378 (6)0.1056 (13)
H6A0.16670.13190.73620.127*
H6B0.21380.07200.56860.127*
C70.06661 (19)0.0251 (2)0.6990 (4)0.0700 (7)
H7A0.07050.02250.60880.084*
H7B0.07830.01020.79480.084*
C80.04015 (15)0.07297 (18)0.7510 (3)0.0540 (5)
C90.41366 (15)0.11662 (14)0.8689 (3)0.0449 (5)
C100.38494 (18)0.10942 (18)0.6915 (3)0.0560 (6)
H100.31420.10310.63140.067*
C110.4588 (2)0.1114 (2)0.6043 (3)0.0649 (6)
H110.43740.10620.48650.078*
C120.5649 (2)0.1210 (2)0.6897 (4)0.0703 (7)
H120.61450.12290.62980.084*
C130.59545 (18)0.12779 (18)0.8620 (4)0.0622 (6)
H130.66650.13380.92020.075*
C140.52138 (16)0.12570 (15)0.9526 (3)0.0486 (5)
C150.21465 (15)0.28666 (18)0.7727 (3)0.0519 (5)
N10.25004 (17)0.36281 (16)0.7606 (3)0.0673 (6)
N20.33714 (13)0.11309 (15)0.9523 (2)0.0524 (5)
H20.35690.11031.06140.063*
N30.56173 (15)0.13233 (14)1.1361 (3)0.0572 (5)
O10.49971 (14)0.12880 (15)1.2218 (2)0.0713 (5)
O20.65641 (14)0.14080 (17)1.2012 (3)0.0866 (6)
S10.15219 (4)0.01029 (5)0.86321 (8)0.0610 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (10)0.0626 (12)0.0490 (11)0.0004 (8)0.0119 (8)0.0021 (9)
C20.0348 (9)0.0602 (12)0.0452 (10)0.0001 (8)0.0105 (8)0.0005 (9)
C30.0342 (10)0.0649 (12)0.0479 (10)0.0015 (8)0.0103 (8)0.0039 (9)
C40.0414 (11)0.0756 (15)0.0637 (13)0.0065 (10)0.0066 (10)0.0019 (12)
C50.0452 (15)0.113 (3)0.134 (3)0.0006 (15)0.0129 (17)0.017 (2)
C60.0401 (14)0.111 (3)0.155 (4)0.0094 (14)0.0110 (17)0.012 (2)
C70.0415 (11)0.0811 (17)0.0843 (17)0.0116 (11)0.0133 (11)0.0086 (14)
C80.0371 (10)0.0652 (13)0.0598 (12)0.0011 (9)0.0140 (9)0.0044 (10)
C90.0365 (9)0.0465 (10)0.0504 (10)0.0035 (7)0.0104 (8)0.0042 (8)
C100.0433 (11)0.0699 (14)0.0537 (12)0.0050 (10)0.0123 (9)0.0017 (10)
C110.0588 (14)0.0817 (17)0.0590 (13)0.0141 (12)0.0246 (11)0.0063 (12)
C120.0552 (14)0.0834 (18)0.0825 (18)0.0101 (12)0.0363 (13)0.0121 (14)
C130.0391 (11)0.0643 (14)0.0836 (17)0.0018 (9)0.0182 (11)0.0075 (12)
C140.0375 (10)0.0461 (10)0.0590 (12)0.0030 (8)0.0088 (9)0.0038 (9)
C150.0373 (10)0.0654 (13)0.0502 (11)0.0030 (9)0.0081 (8)0.0052 (10)
N10.0534 (11)0.0684 (13)0.0759 (13)0.0033 (10)0.0121 (10)0.0102 (10)
N20.0335 (8)0.0765 (12)0.0444 (9)0.0030 (8)0.0069 (7)0.0035 (8)
N30.0420 (9)0.0574 (11)0.0631 (11)0.0020 (8)0.0010 (8)0.0018 (9)
O10.0580 (10)0.0953 (14)0.0540 (9)0.0013 (9)0.0056 (8)0.0017 (9)
O20.0413 (9)0.1135 (16)0.0871 (13)0.0028 (9)0.0099 (9)0.0141 (11)
S10.0445 (4)0.0594 (4)0.0757 (5)0.0014 (2)0.0119 (3)0.0052 (3)
Geometric parameters (Å, º) top
C1—C21.365 (3)C7—H7B0.9700
C1—N21.397 (2)C8—S11.727 (2)
C1—S11.720 (2)C9—N21.381 (2)
C2—C151.428 (3)C9—C101.401 (3)
C2—C31.432 (3)C9—C141.402 (3)
C3—C81.358 (3)C10—C111.372 (3)
C3—C41.508 (3)C10—H100.9300
C4—C51.507 (4)C11—C121.386 (4)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.360 (4)
C5—C61.436 (5)C12—H120.9300
C5—H5A0.9700C13—C141.395 (3)
C5—H5B0.9700C13—H130.9300
C6—C71.516 (4)C14—N31.451 (3)
C6—H6A0.9700C15—N11.143 (3)
C6—H6B0.9700N2—H20.8600
C7—C81.502 (3)N3—O21.221 (3)
C7—H7A0.9700N3—O11.230 (3)
C2—C1—N2127.62 (19)C6—C7—H7B109.7
C2—C1—S1110.65 (15)H7A—C7—H7B108.2
N2—C1—S1121.72 (16)C3—C8—C7125.1 (2)
C1—C2—C15122.20 (18)C3—C8—S1112.21 (15)
C1—C2—C3113.87 (19)C7—C8—S1122.6 (2)
C15—C2—C3123.92 (19)N2—C9—C10119.80 (18)
C8—C3—C2111.30 (19)N2—C9—C14123.48 (19)
C8—C3—C4122.69 (19)C10—C9—C14116.71 (19)
C2—C3—C4126.0 (2)C11—C10—C9121.5 (2)
C5—C4—C3111.0 (2)C11—C10—H10119.2
C5—C4—H4A109.4C9—C10—H10119.2
C3—C4—H4A109.4C10—C11—C12120.8 (2)
C5—C4—H4B109.4C10—C11—H11119.6
C3—C4—H4B109.4C12—C11—H11119.6
H4A—C4—H4B108.0C13—C12—C11119.2 (2)
C6—C5—C4116.8 (3)C13—C12—H12120.4
C6—C5—H5A108.1C11—C12—H12120.4
C4—C5—H5A108.1C12—C13—C14120.7 (2)
C6—C5—H5B108.1C12—C13—H13119.6
C4—C5—H5B108.1C14—C13—H13119.6
H5A—C5—H5B107.3C13—C14—C9121.1 (2)
C5—C6—C7116.4 (3)C13—C14—N3116.7 (2)
C5—C6—H6A108.2C9—C14—N3122.25 (19)
C7—C6—H6A108.2N1—C15—C2179.4 (2)
C5—C6—H6B108.2C9—N2—C1123.57 (17)
C7—C6—H6B108.2C9—N2—H2118.2
H6A—C6—H6B107.3C1—N2—H2118.2
C8—C7—C6109.7 (2)O2—N3—O1121.8 (2)
C8—C7—H7A109.7O2—N3—C14119.0 (2)
C6—C7—H7A109.7O1—N3—C14119.12 (18)
C8—C7—H7B109.7C1—S1—C891.95 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.483.093 (3)129
C11—H11···O1ii0.932.563.351 (3)143
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O2S
Mr299.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.2764 (4), 13.4447 (7), 8.2237 (4)
β (°) 106.794 (2)
V3)1405.30 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.27 × 0.19 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9590, 3241, 2351
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.174, 1.06
No. of reflections3241
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: COLLECT (Nonius, 1997), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.483.093 (3)129
C11—H11···O1ii0.932.563.351 (3)143
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

This work has received partial support from CNPq, CAPES, FACEPE and FINEP.

References

First citationBaraldi, P. G., Pavani, M. G., Leung, E., Moorman, A. R., Varani, K., Vicenzi, F., Borea, P. A. & Romagnoli, R. (2006). Bioorg. Med. Chem. Lett. 16, 1402–1404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFakhr, I. M. I., Radwan, M. A. A., El-Batran, S., El-Salam, O. M. E. A. & El-Shenawy, S. M. (2008). Eur. J. Med. Chem. 44, 1718–1725.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 99–100.  Google Scholar
First citationNonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPuterová, Z., Krutosiková, A. & Végh, D. (2009). Nova Biotech. 9, 167–173.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds