organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2487-o2488

1-(2-Hy­dr­oxy­eth­yl)-3-(3-meth­­oxy­phen­yl)thio­urea

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 24 August 2010; accepted 28 August 2010; online 4 September 2010)

In the title compound, C10H14N2O3S, the 3-meth­oxy­phenyl unit is almost planar, with an r.m.s. deviation of 0.013 Å. The dihedral angle between the benzene ring and the plane of the thio­urea unit is 62.57 (4)°. In the crystal, N—H⋯O and O—H⋯S hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to melanin, see: Ha et al. (2007[Ha, Y. M., Chung, S. W., Song, S. H., Lee, H. J., Suh, H. S. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711-1715.]). For the development of potent inhibitory agents of tyrosinase, see: Kojima et al. (1995[Kojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull. 18, 1076-1080.]); Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Casanola-Martin et al. (2006[Casanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324-330.]); Son et al. (2000[Son, S. M., Moon, K. D. & Lee, C. Y. (2000). J. Agric. Food Chem. 48, 2071-2074.]); Iida et al. (1995[Iida, K., Hase, K., Shimomura, K., Sudo, S. & Kadota, S. (1995). Planta Med. 61, 425-428.]). For thio­urea derivatives, see: Thanigaimalai et al. (2010[Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991-2993.]); Klabunde et al. (1998[Klabunde, T., Eicken, C. & Sacchettini, J. C. (1998). Nat. Struct. Biol. 5, 1084-1090.]); Criton (2006[Criton, M. (2006). FR Patent 2880022.]); Daniel (2006[Daniel, J. (2006). US Patent 2006135618.]); Yi et al. (2009[Yi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273-1277.]); Liu et al. (2009[Liu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773-1778.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N2O2S

  • Mr = 226.29

  • Monoclinic, P 21 /n

  • a = 10.9894 (3) Å

  • b = 8.0759 (2) Å

  • c = 12.8067 (4) Å

  • β = 102.920 (1)°

  • V = 1107.81 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.37 × 0.21 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 8965 measured reflections

  • 2478 independent reflections

  • 2013 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.08

  • 2478 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O13i 0.824 (19) 2.059 (19) 2.8619 (16) 164.6 (17)
N10—H10⋯O14ii 0.817 (19) 2.316 (19) 3.0877 (17) 157.8 (15)
O13—H13⋯S9iii 0.81 (2) 2.47 (2) 3.2532 (14) 163 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Melanin is the pigment responsible for the color of human skin and it is formed through a series of oxidative reactions in the presence of key enzyme tyrosinase (Ha et al., 2007) that converts tyrosine into melanin. It is secreted by melanocyte cells distributed in the basal layer of the dermis. Its role is to protect the skin from ultraviolet (UV) damage by absorbing the UV sunlight and removing reactive oxygen species. Therefore, its inhibitors are target molecules for developing anti-pigmentation agents. Numerous potential tyrosinase inhibitors have been discovered from natural and synthetic sources, such as ascorbic acid (Kojima et al., 1995), kojic acid (Cabanes et al., 1994), arbutin (Casanola-Martin et al., 2006) and tropolone (Son et al., 2000; Iida et al., 1995). Some thiourea derivatives, such as phenylthiourea (Thanigaimalai et al., 2010; Klabunde et al., 1998; Criton, 2006), alkylthiourea (Daniel, 2006), thiosemicarbazone (Yi et al., 2009) and thiosemicarbazide (Liu et al., 2009) have been also described. However, only few of the reported compounds are used in medicinal and cosmetic products because of their lower activities, poor skin penetration, or serious side effects. Consequently, there is still a need to search and develop novel tyrosinase inhibitors with better activities together with lower side effects. To complement the inadequacy of current whitening agents and maximize the effect of inhibition of melanin creation, we have synthesized the title compound, (I), from the reaction of 3-methoxyphenyl isothiocyanate and ethanolamine under ambient condition. Here, the crystal structure of (I) is described (Fig. 1).

The 3-methoxyphenyl unit is essentially planar, with a r.m.s. deviation of 0.013 Å from the corresponding least-squares plane defined by the eight constituent atoms. The dihedral angle between the benzene ring and the plane of the thiourea moiety is 62.57 (4) °. In the crystal, N—H···O and O—H···S hydrogen bonds link the molecules into a 3-D network (Fig. 2, Table 1). The H atoms of the NH groups of thiourea are positioned anti to each other.

Related literature top

For general background to melanin, see: Ha et al. (2007). For the development of potent inhibitory agents of tyrosinase, see: Kojima et al. (1995); Cabanes et al. (1994); Casanola-Martin et al. (2006); Son et al. (2000); Iida et al. (1995). For thiourea derivatives, see: Thanigaimalai et al. (2010); Klabunde et al. (1998); Criton (2006); Daniel (2006); Yi et al. (2009); Liu et al. (2009).

Experimental top

Ethanolamine and 3-methoxyphenyl isothiocyanate were purchased from Sigma Chemical Co. Solvents used for organic synthesis were distilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound (I) was prepared from the reaction of 3-methoxyphenyl isothiocyanate (0.4 ml, 1 mmol) with ethanolamine (0.2 ml, 1.2 mmol) in acetonitrile (6 ml). The reaction was completed within 30 min at room temperature. The reaction mixture was filtered and washed with dry n-hexane. Removal of the solvent under vacuum gave a white solid (80%, m.p. 398 K). Single crystals were obtained by slow evaporation of the ethanol solution held at room temperature.

Refinement top

The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic- and methylene-H, and 1.5Ueq(C) for methyl-H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I), connections between molecules by intermolecular N—H···O and O—H···S hydrogen bonds (dashed lines).
1-(2-Hydroxyethyl)-3-(3-methoxyphenyl)thiourea top
Crystal data top
C10H14N2O2SF(000) = 480
Mr = 226.29Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4441 reflections
a = 10.9894 (3) Åθ = 2.8–28.1°
b = 8.0759 (2) ŵ = 0.27 mm1
c = 12.8067 (4) ÅT = 296 K
β = 102.920 (1)°Block, colorless
V = 1107.81 (5) Å30.37 × 0.21 × 0.2 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.059
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
8965 measured reflectionsh = 1014
2478 independent reflectionsk = 410
2013 reflections with I > 2σ(I)l = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0837P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.22 e Å3
2478 reflectionsΔρmin = 0.36 e Å3
148 parameters
Crystal data top
C10H14N2O2SV = 1107.81 (5) Å3
Mr = 226.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9894 (3) ŵ = 0.27 mm1
b = 8.0759 (2) ÅT = 296 K
c = 12.8067 (4) Å0.37 × 0.21 × 0.2 mm
β = 102.920 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2013 reflections with I > 2σ(I)
8965 measured reflectionsRint = 0.059
2478 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
2478 reflectionsΔρmin = 0.36 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47197 (11)0.63459 (15)0.77190 (10)0.0330 (3)
C20.46149 (11)0.49103 (15)0.83014 (10)0.0330 (3)
H20.51240.40010.82680.04*
C30.37377 (11)0.48652 (16)0.89296 (10)0.0350 (3)
C40.29844 (13)0.62354 (19)0.89796 (13)0.0463 (4)
H40.24090.6210.94130.056*
C50.30915 (14)0.7629 (2)0.83859 (14)0.0532 (4)
H50.25760.85340.84120.064*
C60.39582 (13)0.76975 (19)0.77507 (13)0.0464 (4)
H60.40270.8640.73510.056*
N70.55784 (11)0.64047 (14)0.70312 (10)0.0377 (3)
H70.5267 (16)0.658 (2)0.6393 (16)0.051 (5)*
C80.68277 (12)0.62256 (14)0.73143 (11)0.0341 (3)
S90.76633 (4)0.61967 (5)0.63478 (3)0.05057 (15)
N100.73496 (11)0.60801 (14)0.83569 (10)0.0364 (3)
H100.6920 (16)0.6201 (17)0.8796 (14)0.040 (4)*
C110.86769 (12)0.57980 (18)0.87843 (13)0.0426 (3)
H11A0.90140.51850.82620.051*
H11B0.87820.51240.94250.051*
C120.94037 (12)0.73800 (18)0.90533 (12)0.0443 (3)
H12A1.02890.71270.92430.053*
H12B0.92530.80910.84270.053*
O130.90658 (11)0.82309 (17)0.99133 (9)0.0553 (3)
H130.865 (2)0.906 (3)0.973 (2)0.092 (8)*
O140.35374 (10)0.35339 (12)0.95322 (9)0.0469 (3)
C150.40934 (16)0.1998 (2)0.93648 (14)0.0546 (4)
H15A0.38790.11780.98360.082*
H15B0.49840.21230.95110.082*
H15C0.37930.16550.86350.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0284 (6)0.0451 (7)0.0251 (7)0.0024 (5)0.0048 (5)0.0000 (5)
C20.0314 (6)0.0387 (6)0.0299 (7)0.0006 (5)0.0092 (5)0.0023 (5)
C30.0319 (6)0.0455 (7)0.0283 (7)0.0063 (5)0.0079 (5)0.0037 (5)
C40.0348 (7)0.0624 (9)0.0460 (9)0.0024 (6)0.0182 (6)0.0052 (6)
C50.0439 (8)0.0553 (9)0.0624 (11)0.0153 (7)0.0162 (7)0.0019 (7)
C60.0431 (7)0.0482 (7)0.0479 (9)0.0066 (6)0.0099 (6)0.0096 (6)
N70.0354 (6)0.0528 (7)0.0256 (7)0.0022 (5)0.0084 (5)0.0063 (5)
C80.0372 (7)0.0328 (6)0.0348 (8)0.0040 (5)0.0134 (6)0.0013 (5)
S90.0494 (2)0.0667 (3)0.0431 (3)0.01090 (17)0.02646 (18)0.00218 (16)
N100.0307 (5)0.0481 (6)0.0321 (7)0.0006 (4)0.0105 (5)0.0030 (5)
C110.0339 (7)0.0469 (7)0.0472 (9)0.0064 (5)0.0092 (6)0.0105 (6)
C120.0313 (6)0.0598 (8)0.0420 (8)0.0017 (6)0.0089 (6)0.0081 (6)
O130.0546 (7)0.0724 (8)0.0347 (6)0.0015 (6)0.0011 (5)0.0046 (5)
O140.0517 (6)0.0520 (6)0.0440 (6)0.0067 (4)0.0255 (5)0.0017 (4)
C150.0634 (10)0.0484 (8)0.0561 (11)0.0017 (7)0.0223 (8)0.0085 (7)
Geometric parameters (Å, º) top
C1—C61.3815 (18)C8—S91.6983 (14)
C1—C21.3972 (17)N10—C111.4567 (17)
C1—N71.4284 (18)N10—H100.817 (19)
C2—C31.3874 (18)C11—C121.505 (2)
C2—H20.93C11—H11A0.97
C3—O141.3696 (16)C11—H11B0.97
C3—C41.392 (2)C12—O131.4163 (19)
C4—C51.378 (2)C12—H12A0.97
C4—H40.93C12—H12B0.97
C5—C61.385 (2)O13—H130.81 (2)
C5—H50.93O14—C151.4200 (19)
C6—H60.93C15—H15A0.96
N7—C81.3471 (17)C15—H15B0.96
N7—H70.824 (19)C15—H15C0.96
C8—N101.3353 (18)
C6—C1—C2121.14 (12)C8—N10—C11124.03 (13)
C6—C1—N7118.68 (12)C8—N10—H10119.6 (12)
C2—C1—N7120.10 (11)C11—N10—H10116.3 (12)
C3—C2—C1118.83 (11)N10—C11—C12112.87 (11)
C3—C2—H2120.6N10—C11—H11A109
C1—C2—H2120.6C12—C11—H11A109
O14—C3—C2124.57 (12)N10—C11—H11B109
O14—C3—C4115.21 (12)C12—C11—H11B109
C2—C3—C4120.22 (13)H11A—C11—H11B107.8
C5—C4—C3119.92 (14)O13—C12—C11111.83 (12)
C5—C4—H4120O13—C12—H12A109.2
C3—C4—H4120C11—C12—H12A109.2
C4—C5—C6120.77 (14)O13—C12—H12B109.2
C4—C5—H5119.6C11—C12—H12B109.2
C6—C5—H5119.6H12A—C12—H12B107.9
C1—C6—C5119.10 (14)C12—O13—H13113.9 (18)
C1—C6—H6120.5C3—O14—C15118.15 (11)
C5—C6—H6120.5O14—C15—H15A109.5
C8—N7—C1127.20 (12)O14—C15—H15B109.5
C8—N7—H7117.2 (13)H15A—C15—H15B109.5
C1—N7—H7115.6 (13)O14—C15—H15C109.5
N10—C8—N7117.55 (13)H15A—C15—H15C109.5
N10—C8—S9123.11 (10)H15B—C15—H15C109.5
N7—C8—S9119.34 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O13i0.824 (19)2.059 (19)2.8619 (16)164.6 (17)
N10—H10···O14ii0.817 (19)2.316 (19)3.0877 (17)157.8 (15)
O13—H13···S9iii0.81 (2)2.47 (2)3.2532 (14)163 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H14N2O2S
Mr226.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.9894 (3), 8.0759 (2), 12.8067 (4)
β (°) 102.920 (1)
V3)1107.81 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.37 × 0.21 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8965, 2478, 2013
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.08
No. of reflections2478
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.36

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O13i0.824 (19)2.059 (19)2.8619 (16)164.6 (17)
N10—H10···O14ii0.817 (19)2.316 (19)3.0877 (17)157.8 (15)
O13—H13···S9iii0.81 (2)2.47 (2)3.2532 (14)163 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work is the result of a study performed under the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Technology (MEST) and the National Research Foundation of Korea (NRF).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationCasanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCriton, M. (2006). FR Patent 2880022.  Google Scholar
First citationDaniel, J. (2006). US Patent 2006135618.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHa, Y. M., Chung, S. W., Song, S. H., Lee, H. J., Suh, H. S. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711–1715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIida, K., Hase, K., Shimomura, K., Sudo, S. & Kadota, S. (1995). Planta Med. 61, 425–428.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKlabunde, T., Eicken, C. & Sacchettini, J. C. (1998). Nat. Struct. Biol. 5, 1084–1090.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull. 18, 1076–1080.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773–1778.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, S. M., Moon, K. D. & Lee, C. Y. (2000). J. Agric. Food Chem. 48, 2071–2074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273–1277.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2487-o2488
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds