metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1316-m1317

Bis(9-amino­acridinium) bis­­(pyridine-2,6-di­carboxyl­ato)cuprate(II) trihydrate

aDepartment of Chemistry, Faculty of Sciences, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: attar_jafar@yahoo.com

(Received 20 July 2010; accepted 30 July 2010; online 30 September 2010)

The asymmetric unit of the title compound, (C13H11N2)2[Cu(C7H3NO4)2]·3H2O, consists of one [Cu(pydc)2]2− dianion (pydc is pyridine-2,6-dicarboxyl­ate), two 9-amino­acridinum monocations and three uncoordinated water mol­ecules. The CuII atom is coordinated by two pydc dianions acting as tridentate ligands, and forming five-membered chelate rings with copper(II) as the central atom. The CuII atom is surrounded by four O atoms in the equatorial plane and two pyridine N atoms in axial positions, resulting in a distorted octa­hedral coordination geometry. In the crystal, there are two types of O—H⋯O and N—H⋯O hydrogen-bonding synthons linking the anionic and cationic fragments and the water mol­ecules, namely R44(16), and R42(8). There are also weak C—H⋯O hydrogen bonds, ππ stacking inter­actions [the shortest centroid–centroid distance is 3.350 (2) Å], and a C—O⋯π inter­action [O⋯centroid distance = 3.564 (2) Å], which connect the various components into a three-dimensional network.

Related literature

For complexes containing a copper(II) atom, pyridine-2,6-dicarboxlic acid and various bases, see: Yenikaya et al. (2009[Yenikaya, C., Poyraz, M., Sarı, M., Demirci, F., Ilkimen, H. & Büyükgüngör, O. (2009). Polyhedron, 28, 3526-3532.]); Zafer Yeşilel et al. (2010[Zafer Yeşilel, O., Ilker, I., Refat, M. S. & Ishida, H. (2010). Polyhedron, 29, 2345-2351.]); Du et al. (2006[Du, M., Cai, H. & Zhao, X.-J. (2006). Inorg. Chim. Acta. 359, 673-679.]); Aghabozorg et al. (2006[Aghabozorg, H., Zabihi, F., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2091-m2093.], 2009[Aghabozorg, H., Attar Gharamaleki, J., Olmstead, M. M., Derikvand, Z. & Hooshmand, S. (2009). Acta Cryst. E65, m186-m187.]). For the crystal structure of (aacrH)2[Ni(pydc)2]·3H2O, (aacr = 9-amino­acridine), see: Derikvand & Olmstead (2010[Derikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, m642-m643.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). An independent determination of the title compound is reported in the following paper by Aghabozorg et al. (2010[Aghabozorg, H., Ahmadvand, S., Mirzaei, M. & Khavasi, H. R. (2010). Acta Cryst. E66, m1318-m1319.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11N2)2[Cu(C7H3NO4)2]·3H2O

  • Mr = 838.27

  • Triclinic, [P \overline 1]

  • a = 10.8760 (16) Å

  • b = 13.283 (2) Å

  • c = 13.9820 (19) Å

  • α = 102.056 (12)°

  • β = 103.785 (11)°

  • γ = 105.573 (12)°

  • V = 1807.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 223 K

  • 0.25 × 0.19 × 0.12 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: multi-scan (MULscanABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.845, Tmax = 0.920

  • 19456 measured reflections

  • 6819 independent reflections

  • 4572 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.073

  • S = 0.87

  • 6819 reflections

  • 571 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H40⋯O1W 0.93 (3) 2.04 (3) 2.927 (4) 159 (2)
O2W—H41⋯O6i 0.87 (4) 1.93 (4) 2.796 (3) 177 (4)
N4—H42⋯O4ii 0.86 (3) 1.97 (3) 2.808 (3) 165 (3)
N4—H43⋯O7iii 0.92 (4) 1.99 (4) 2.880 (3) 161 (3)
O3W—H44⋯O2W 0.86 (4) 1.86 (4) 2.720 (4) 176 (3)
N6—H45⋯O6 0.86 (3) 2.18 (3) 2.965 (3) 153 (3)
N5—H46⋯O8iii 0.82 (3) 1.91 (3) 2.719 (3) 173 (3)
O3W—H47⋯O4iv 0.84 (4) 1.95 (4) 2.780 (4) 168 (3)
O1W—H48⋯O5 0.87 (4) 1.97 (4) 2.828 (3) 174 (4)
N3—H49⋯O3W 0.84 (3) 1.86 (3) 2.698 (3) 170 (3)
O1W—H50⋯O2v 0.89 (5) 1.96 (5) 2.847 (4) 176 (4)
O2W—H51⋯O6 0.86 (6) 1.97 (5) 2.812 (4) 167 (4)
C3—H3⋯O2Wv 0.94 2.57 3.266 (4) 131
C10—H10⋯O3vi 0.94 2.51 3.152 (3) 126
C19—H19⋯O4ii 0.94 2.49 3.401 (3) 163
C23—H23⋯O7iii 0.94 2.52 3.262 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z; (iii) x-1, y, z-1; (iv) x-1, y, z; (v) -x+1, -y, -z+1; (vi) -x+2, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A number of complexes containing a copper(II) atom, pyridine-2,6-dicarboxlic acid and various bases have been reported (Yenikaya et al., 2009; Zafer Yeşilel et al., 2010; Du et al., 2006; Aghabozorg et al., 2006, 2009). Herein, we report on the crystal structure of the title compound, that consists of a discrete [Cu(pydc)2]2- dianion, two 9-aminoacridinum monocations and three uncoordinated water molecules (Fig. 1).

The copper(II) atom is coordinated by two pyridine-2,6-dicarboxylate anions (pydc) acting as tridentate ligands, forming five membered chelate rings. The metal center is surrounded by four oxygen atoms (O1, O3, O5 and O7) in the equatorial plane and by two pyridine nitrogen atoms (N1 and N2) in axial positions. In the anionic complex the N1—Cu1—N2 angle of 174.13 (8)° deviates significantly from linearity. The coordination geometry around the copper(II) atom is distorted octahedral (CuN2O4), and the valence angles vary considerabley from the required 90° and 180° in the basal plane i.e. 75.13 (8) - 159.50 (8) °. The (pydc)2– ligands are almost orthogonal, with a dihedral angle involving the pyridine ring mean planes of 83.78 (13)°.

In the crystal two types of O–H···O and N–H···O hydrogen bond synthons are found namely, i [R44 (16)], and ii [R24(8)] (Bernstein et al., 1995) [Table 1]. As shown in Fig. 2 they link the anionic and cationic fragments and the lattice water molecules to form a chain propagating in (110). Other intermolecular interactions are also present and include weak C–H···O hydrogen bonds, ππ stacking interactions [i-vii,ix in Fig. 3; the shortest centroid-to-centroid distance is 3.350 (2) Å], and a C–O···π interaction [viii in Fig. 3; O···centroid distance = 3.564 (2) Å], as shown in Fig. 3.

The crystal structure of the title compound is similar to that of (aacH)2[Ni(pydc)2]. 3H2O, (aacr = 9-aminoacridine) (Derikvand et al. 2010).

Related literature top

For complexes containing a copper(II) atom, pyridine-2,6-dicarboxlic acid and various bases, see: Yenikaya et al. (2009); Zafer Yeşilel et al. (2010); Du et al. (2006); Aghabozorg et al. (2006, 2009). For the crystal structure of (aacrH)2[Ni(pydc)2]. 3H2O, (aacr = 9-aminoacridine), see: Derikvand et al. (2010). An independent determination of the title compound is reported in the following paper by Aghabozorg et al. (2010). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

An aqueous solution of copper(II) nitrate hexahydrate (0.5 mmol, 145 mg) in distilled water (5 ml) was added to a methanolic solution of pyridine-2,6-dicarboxylic acid (1 mmol, 167 mg) in distilled water (20 ml) and 9-aminoacridine (1 mmol, 194 mg) in methanol (5 ml) under stirring at 353 K, in a 1:2:2 molar ratio. The pale-green precipitate produced was dissolved in H2O/DMSO with the volume ratio of 1:4 (2/8 ml). Green plate-like crystals, suitable for X-ray characterization, were obtained after 3 days at room temperature.

Refinement top

The NH, NH2 and water H-atoms were located in difference Fourier maps and were refined freely: N—H = 0.82 (3) - 0.93 (3) Å, O—H = 0.84 (4) - 0.89 (5) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. The one dimensional chain generated by the N—H···O and O—H···O hydrogen bonds (dashed lines) involving the anionic and cationic fragments and the water molecules of crystallization [graph-set i = R44(16), and graph-set ii = R24 (8)]. H atoms not involved in H bonding have been omitted for clarity.
[Figure 3] Fig. 3. A view of the extensive ππ stacking interactions (dashed line) involving the aromatic rings of the 9-aminoacridinium ions, and the C–O···π interaction (viii, dashed line), involving the C6O2 and the centroid of the pyridyl ring of a neighboring pydc ligand [Centroid-to-centroid distances: (i) 3.761 Å; (ii) 3.554 Å; (iii) 3.872 Å; (iv) 3.350 Å; (v) 3.668 Å; (vi) 3.842 Å; (vii) 3.834 Å; (ix) 3.768 Å]. H atoms have been omitted for clarity.
Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate top
Crystal data top
(C13H11N2)2[Cu(C7H3NO4)2]·3H2OZ = 2
Mr = 838.27F(000) = 866
Triclinic, P1Dx = 1.540 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8760 (16) ÅCell parameters from 10347 reflections
b = 13.283 (2) Åθ = 1.6–26.1°
c = 13.9820 (19) ŵ = 0.68 mm1
α = 102.056 (12)°T = 223 K
β = 103.785 (11)°Plate, green
γ = 105.573 (12)°0.25 × 0.19 × 0.12 mm
V = 1807.6 (5) Å3
Data collection top
Stoe IPDS 2
diffractometer
6819 independent reflections
Radiation source: fine-focus sealed tube4572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ + ω scansθmax = 25.8°, θmin = 1.6°
Absorption correction: multi-scan
(MULscanABS; Spek, 2009)
h = 1313
Tmin = 0.845, Tmax = 0.920k = 1615
19456 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
6819 reflections(Δ/σ)max = 0.001
571 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
(C13H11N2)2[Cu(C7H3NO4)2]·3H2Oγ = 105.573 (12)°
Mr = 838.27V = 1807.6 (5) Å3
Triclinic, P1Z = 2
a = 10.8760 (16) ÅMo Kα radiation
b = 13.283 (2) ŵ = 0.68 mm1
c = 13.9820 (19) ÅT = 223 K
α = 102.056 (12)°0.25 × 0.19 × 0.12 mm
β = 103.785 (11)°
Data collection top
Stoe IPDS 2
diffractometer
6819 independent reflections
Absorption correction: multi-scan
(MULscanABS; Spek, 2009)
4572 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.920Rint = 0.060
19456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.38 e Å3
6819 reflectionsΔρmin = 0.40 e Å3
571 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85975 (4)0.23585 (3)0.58073 (2)0.0256 (1)
O10.7445 (2)0.20489 (15)0.67478 (13)0.0360 (6)
O20.5978 (2)0.06732 (17)0.70104 (14)0.0433 (7)
O30.95569 (19)0.20720 (14)0.47238 (12)0.0323 (6)
O40.9737 (2)0.07042 (15)0.35947 (13)0.0382 (6)
O50.69468 (19)0.28229 (14)0.47403 (13)0.0367 (6)
O60.64662 (19)0.43248 (15)0.45922 (13)0.0337 (6)
O71.06223 (19)0.28284 (15)0.70913 (12)0.0332 (6)
O81.2315 (2)0.43696 (17)0.80731 (14)0.0464 (7)
N10.7888 (2)0.08032 (17)0.53178 (14)0.0257 (7)
N20.9302 (2)0.39729 (16)0.61666 (14)0.0223 (6)
C10.6994 (3)0.0270 (2)0.57121 (18)0.0276 (8)
C20.6431 (3)0.0846 (2)0.5344 (2)0.0363 (9)
C30.6827 (3)0.1405 (2)0.4588 (2)0.0392 (10)
C40.7773 (3)0.0835 (2)0.42055 (19)0.0323 (9)
C50.8276 (3)0.0285 (2)0.45818 (17)0.0262 (8)
C60.6768 (3)0.1051 (2)0.65601 (18)0.0312 (9)
C70.9271 (3)0.1077 (2)0.42669 (17)0.0271 (8)
C80.8614 (2)0.45192 (19)0.56787 (16)0.0210 (7)
C90.9172 (3)0.5622 (2)0.58274 (18)0.0258 (8)
C101.0461 (3)0.6180 (2)0.64911 (18)0.0286 (9)
C111.1150 (3)0.5620 (2)0.70013 (18)0.0269 (8)
C121.0549 (3)0.4513 (2)0.68252 (17)0.0237 (8)
C130.7221 (3)0.3827 (2)0.49439 (17)0.0253 (8)
C141.1228 (3)0.3841 (2)0.73790 (18)0.0282 (9)
N30.1654 (2)0.17225 (18)0.11602 (17)0.0297 (8)
N40.0470 (2)0.1067 (2)0.19910 (16)0.0295 (8)
C150.1780 (3)0.0814 (2)0.05922 (18)0.0270 (8)
C160.2329 (3)0.0150 (2)0.1093 (2)0.0325 (9)
C170.2452 (3)0.0764 (2)0.0543 (2)0.0382 (10)
C180.2056 (3)0.1044 (2)0.0542 (2)0.0360 (9)
C190.1536 (3)0.0401 (2)0.1042 (2)0.0292 (8)
C200.1369 (2)0.0542 (2)0.05001 (17)0.0233 (8)
C210.0824 (2)0.1246 (2)0.09795 (17)0.0240 (8)
C220.0633 (2)0.2156 (2)0.03506 (17)0.0232 (8)
C230.0057 (3)0.2806 (2)0.07617 (19)0.0283 (8)
C240.0252 (3)0.3638 (2)0.0140 (2)0.0355 (10)
C250.0242 (3)0.3871 (2)0.0935 (2)0.0400 (10)
C260.0888 (3)0.3254 (2)0.1365 (2)0.0346 (9)
C270.1076 (3)0.2375 (2)0.07306 (18)0.0271 (8)
N50.3572 (2)0.39380 (17)0.02097 (16)0.0264 (7)
N60.5174 (3)0.3113 (2)0.23769 (18)0.0355 (8)
C280.3934 (2)0.3036 (2)0.03271 (18)0.0245 (8)
C290.3761 (3)0.2399 (2)0.13218 (18)0.0299 (9)
C300.4114 (3)0.1489 (2)0.1451 (2)0.0343 (9)
C310.4661 (3)0.1165 (2)0.0593 (2)0.0334 (9)
C320.4863 (3)0.1782 (2)0.03764 (19)0.0302 (9)
C330.4506 (2)0.2735 (2)0.05425 (18)0.0252 (8)
C340.4677 (3)0.3401 (2)0.15506 (18)0.0266 (8)
C350.4295 (3)0.4357 (2)0.16326 (19)0.0291 (8)
C360.4400 (3)0.5062 (2)0.2583 (2)0.0382 (10)
C370.3979 (3)0.5932 (2)0.2626 (2)0.0414 (10)
C380.3422 (3)0.6171 (2)0.1720 (2)0.0375 (10)
C390.3303 (3)0.5512 (2)0.0784 (2)0.0304 (9)
C400.3721 (3)0.4599 (2)0.07257 (17)0.0247 (8)
O1W0.5825 (3)0.1218 (2)0.28006 (17)0.0486 (8)
O2W0.3854 (3)0.36532 (18)0.47401 (17)0.0440 (8)
O3W0.1873 (3)0.2025 (2)0.31711 (16)0.0540 (9)
H20.578600.122600.560300.0440*
H30.645500.217000.433200.0470*
H40.806200.120600.370100.0390*
H90.867900.599400.548000.0310*
H101.086000.693100.659200.0340*
H111.202200.598700.746500.0320*
H160.261300.034200.181600.0390*
H170.280200.121400.088400.0460*
H180.215100.167600.092100.0430*
H190.128400.059300.176500.0350*
H230.038700.266000.148000.0340*
H240.071900.406000.042700.0430*
H250.012500.446200.136200.0480*
H260.120800.341300.208500.0420*
H420.054 (3)0.053 (2)0.241 (2)0.039 (8)*
H430.033 (3)0.162 (3)0.226 (2)0.052 (9)*
H490.182 (3)0.182 (2)0.180 (2)0.048 (9)*
H290.339800.260700.189900.0360*
H300.399400.106900.211800.0410*
H310.488600.052400.069100.0400*
H320.524700.156900.094400.0360*
H360.477200.491900.319800.0460*
H370.405900.638400.326900.0500*
H380.313300.678100.175700.0450*
H390.293800.567300.017800.0360*
H400.538 (3)0.247 (2)0.2337 (19)0.031 (7)*
H450.536 (3)0.358 (3)0.296 (2)0.047 (9)*
H460.317 (3)0.401 (2)0.075 (2)0.040 (9)*
H480.620 (4)0.168 (3)0.341 (3)0.075 (13)*
H500.525 (5)0.062 (4)0.283 (3)0.095 (16)*
H410.372 (4)0.427 (3)0.494 (3)0.064 (12)*
H510.463 (5)0.375 (3)0.465 (3)0.085 (15)*
H440.247 (4)0.254 (3)0.368 (3)0.076 (13)*
H470.126 (4)0.170 (3)0.338 (2)0.052 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0360 (2)0.0211 (2)0.0214 (2)0.0101 (2)0.0108 (1)0.0067 (1)
O10.0498 (13)0.0265 (10)0.0348 (10)0.0111 (10)0.0216 (9)0.0079 (8)
O20.0493 (14)0.0480 (13)0.0409 (11)0.0142 (11)0.0268 (11)0.0181 (10)
O30.0482 (13)0.0225 (10)0.0300 (9)0.0115 (9)0.0195 (9)0.0077 (8)
O40.0485 (13)0.0350 (11)0.0304 (9)0.0109 (10)0.0210 (9)0.0023 (8)
O50.0386 (12)0.0245 (11)0.0364 (10)0.0078 (9)0.0011 (9)0.0054 (8)
O60.0309 (11)0.0356 (11)0.0324 (9)0.0162 (9)0.0014 (8)0.0087 (8)
O70.0445 (12)0.0312 (11)0.0288 (9)0.0182 (10)0.0083 (9)0.0151 (8)
O80.0397 (13)0.0500 (13)0.0382 (11)0.0093 (11)0.0084 (10)0.0211 (10)
N10.0330 (14)0.0251 (12)0.0204 (10)0.0107 (10)0.0074 (10)0.0092 (9)
N20.0285 (13)0.0231 (11)0.0173 (9)0.0108 (10)0.0084 (9)0.0056 (8)
C10.0307 (16)0.0282 (14)0.0244 (12)0.0087 (12)0.0067 (12)0.0122 (11)
C20.0424 (19)0.0287 (15)0.0351 (15)0.0047 (13)0.0123 (14)0.0130 (12)
C30.052 (2)0.0208 (14)0.0337 (15)0.0023 (14)0.0080 (14)0.0046 (12)
C40.0439 (18)0.0249 (14)0.0244 (13)0.0108 (13)0.0087 (12)0.0026 (11)
C50.0333 (16)0.0249 (14)0.0194 (12)0.0113 (12)0.0054 (11)0.0059 (10)
C60.0363 (17)0.0367 (16)0.0246 (13)0.0147 (14)0.0105 (12)0.0130 (12)
C70.0362 (17)0.0272 (14)0.0190 (12)0.0121 (13)0.0077 (11)0.0082 (10)
C80.0255 (14)0.0253 (13)0.0166 (11)0.0130 (11)0.0086 (10)0.0068 (10)
C90.0316 (16)0.0260 (14)0.0254 (12)0.0152 (12)0.0091 (12)0.0116 (11)
C100.0358 (17)0.0238 (14)0.0272 (13)0.0090 (12)0.0110 (12)0.0092 (11)
C110.0258 (15)0.0265 (14)0.0225 (12)0.0045 (12)0.0032 (11)0.0056 (10)
C120.0278 (15)0.0287 (14)0.0162 (11)0.0103 (12)0.0085 (11)0.0072 (10)
C130.0289 (15)0.0268 (14)0.0206 (12)0.0099 (12)0.0077 (11)0.0069 (10)
C140.0355 (18)0.0335 (16)0.0244 (13)0.0168 (14)0.0132 (13)0.0153 (12)
N30.0279 (14)0.0378 (14)0.0209 (11)0.0070 (11)0.0071 (10)0.0095 (10)
N40.0405 (15)0.0293 (13)0.0200 (11)0.0156 (12)0.0081 (10)0.0066 (10)
C150.0163 (14)0.0335 (15)0.0301 (13)0.0035 (12)0.0079 (11)0.0128 (12)
C160.0237 (16)0.0433 (17)0.0334 (14)0.0087 (13)0.0092 (12)0.0203 (13)
C170.0228 (16)0.0460 (18)0.0539 (18)0.0124 (14)0.0101 (14)0.0325 (15)
C180.0275 (16)0.0312 (16)0.0531 (17)0.0115 (13)0.0147 (14)0.0153 (13)
C190.0247 (15)0.0277 (14)0.0335 (14)0.0077 (12)0.0076 (12)0.0089 (11)
C200.0168 (14)0.0279 (14)0.0233 (12)0.0050 (11)0.0049 (10)0.0085 (10)
C210.0188 (14)0.0257 (13)0.0233 (12)0.0024 (11)0.0073 (11)0.0045 (10)
C220.0202 (14)0.0246 (13)0.0229 (12)0.0040 (11)0.0081 (11)0.0059 (10)
C230.0302 (16)0.0267 (14)0.0289 (13)0.0090 (12)0.0113 (12)0.0081 (11)
C240.0381 (18)0.0313 (16)0.0433 (16)0.0149 (14)0.0195 (14)0.0118 (13)
C250.050 (2)0.0316 (16)0.0405 (16)0.0132 (15)0.0256 (15)0.0023 (13)
C260.0396 (18)0.0324 (15)0.0276 (13)0.0051 (14)0.0155 (13)0.0035 (12)
C270.0228 (15)0.0305 (14)0.0257 (12)0.0041 (12)0.0094 (11)0.0079 (11)
N50.0263 (13)0.0301 (13)0.0222 (11)0.0090 (10)0.0043 (10)0.0107 (10)
N60.0403 (16)0.0389 (15)0.0252 (13)0.0163 (13)0.0029 (11)0.0096 (12)
C280.0183 (14)0.0267 (14)0.0282 (12)0.0060 (11)0.0076 (11)0.0092 (11)
C290.0273 (16)0.0387 (16)0.0246 (12)0.0120 (13)0.0078 (11)0.0103 (11)
C300.0324 (17)0.0392 (17)0.0297 (14)0.0126 (14)0.0092 (12)0.0065 (12)
C310.0280 (16)0.0354 (16)0.0407 (15)0.0142 (13)0.0128 (13)0.0122 (13)
C320.0236 (15)0.0363 (16)0.0322 (14)0.0113 (13)0.0078 (12)0.0126 (12)
C330.0171 (14)0.0297 (14)0.0282 (13)0.0066 (12)0.0053 (11)0.0110 (11)
C340.0171 (14)0.0314 (14)0.0270 (13)0.0037 (12)0.0026 (11)0.0107 (11)
C350.0236 (15)0.0313 (15)0.0293 (13)0.0056 (12)0.0070 (11)0.0089 (11)
C360.0406 (19)0.0424 (17)0.0252 (13)0.0116 (15)0.0051 (13)0.0059 (12)
C370.0445 (19)0.0369 (17)0.0322 (15)0.0101 (15)0.0075 (14)0.0017 (13)
C380.0342 (18)0.0298 (15)0.0470 (17)0.0107 (13)0.0126 (14)0.0085 (13)
C390.0278 (16)0.0296 (15)0.0349 (14)0.0104 (12)0.0086 (12)0.0122 (12)
C400.0192 (14)0.0254 (13)0.0253 (12)0.0034 (11)0.0052 (11)0.0062 (11)
O1W0.0624 (17)0.0409 (14)0.0332 (12)0.0100 (13)0.0065 (11)0.0113 (11)
O2W0.0368 (14)0.0343 (13)0.0539 (13)0.0069 (11)0.0122 (11)0.0072 (10)
O3W0.0522 (17)0.0673 (17)0.0235 (11)0.0061 (13)0.0107 (11)0.0096 (11)
Geometric parameters (Å, º) top
Cu1—O12.050 (2)C3—H30.9400
Cu1—O32.063 (2)C4—H40.9400
Cu1—O52.352 (2)C9—H90.9400
Cu1—O72.3178 (19)C10—H100.9400
Cu1—N11.906 (2)C11—H110.9400
Cu1—N21.981 (2)C15—C201.421 (3)
O1—C61.268 (3)C15—C161.402 (4)
O2—C61.243 (4)C16—C171.353 (4)
O3—C71.258 (3)C17—C181.411 (4)
O4—C71.246 (3)C18—C191.363 (4)
O5—C131.239 (3)C19—C201.403 (4)
O6—C131.260 (4)C20—C211.430 (4)
O7—C141.256 (3)C21—C221.434 (3)
O8—C141.247 (3)C22—C271.413 (3)
O1W—H480.87 (4)C22—C231.410 (4)
O1W—H500.89 (5)C23—C241.354 (4)
O2W—H410.87 (4)C24—C251.405 (4)
O2W—H510.86 (6)C25—C261.357 (4)
N1—C11.342 (4)C26—C271.405 (4)
N1—C51.333 (3)C16—H160.9400
N2—C121.345 (4)C17—H170.9400
N2—C81.344 (3)C18—H180.9400
O3W—H470.84 (4)C19—H190.9400
O3W—H440.86 (4)C23—H230.9400
N3—C271.356 (4)C24—H240.9400
N3—C151.359 (4)C25—H250.9400
N4—C211.325 (3)C26—H260.9400
N3—H490.84 (3)C28—C331.415 (3)
N4—H420.86 (3)C28—C291.409 (3)
N4—H430.92 (4)C29—C301.354 (4)
N5—C401.360 (3)C30—C311.411 (4)
N5—C281.349 (3)C31—C321.362 (4)
N6—C341.331 (4)C32—C331.411 (4)
N5—H460.82 (3)C33—C341.439 (3)
N6—H450.86 (3)C34—C351.430 (4)
N6—H400.93 (3)C35—C401.415 (4)
C1—C61.518 (4)C35—C361.416 (4)
C1—C21.372 (4)C36—C371.348 (4)
C2—C31.384 (4)C37—C381.406 (4)
C3—C41.390 (4)C38—C391.370 (4)
C4—C51.374 (4)C39—C401.399 (4)
C5—C71.510 (4)C29—H290.9400
C8—C131.521 (4)C30—H300.9400
C8—C91.376 (4)C31—H310.9400
C9—C101.382 (4)C32—H320.9400
C10—C111.375 (4)C36—H360.9400
C11—C121.381 (4)C37—H370.9400
C12—C141.521 (4)C38—H380.9400
C2—H20.9400C39—H390.9400
O1—Cu1—O3159.50 (8)C12—C11—H11120.00
O1—Cu1—O591.62 (8)C10—C11—H11120.00
O1—Cu1—O794.52 (7)N3—C15—C20120.4 (2)
O1—Cu1—N179.95 (9)C16—C15—C20120.2 (2)
O1—Cu1—N2104.42 (8)N3—C15—C16119.4 (2)
O3—Cu1—O594.79 (7)C15—C16—C17120.5 (2)
O3—Cu1—O789.05 (7)C16—C17—C18120.1 (3)
O3—Cu1—N179.73 (8)C17—C18—C19120.2 (3)
O3—Cu1—N296.04 (8)C18—C19—C20121.3 (2)
O5—Cu1—O7151.63 (7)C15—C20—C21118.4 (2)
O5—Cu1—N1101.04 (8)C19—C20—C21124.0 (2)
O5—Cu1—N275.13 (8)C15—C20—C19117.6 (2)
O7—Cu1—N1107.30 (8)C20—C21—C22119.1 (2)
O7—Cu1—N276.51 (8)N4—C21—C22119.2 (2)
N1—Cu1—N2174.13 (8)N4—C21—C20121.7 (2)
Cu1—O1—C6114.78 (18)C21—C22—C23123.0 (2)
Cu1—O3—C7114.16 (18)C23—C22—C27118.0 (2)
Cu1—O5—C13111.38 (17)C21—C22—C27118.9 (2)
Cu1—O7—C14111.30 (18)C22—C23—C24121.1 (2)
H48—O1W—H50110 (4)C23—C24—C25120.1 (3)
H41—O2W—H51112 (4)C24—C25—C26120.8 (3)
Cu1—N1—C1118.74 (17)C25—C26—C27119.8 (2)
Cu1—N1—C5118.93 (19)N3—C27—C26119.6 (2)
C1—N1—C5122.3 (2)N3—C27—C22120.2 (2)
Cu1—N2—C8120.85 (16)C22—C27—C26120.1 (3)
C8—N2—C12119.7 (2)C17—C16—H16120.00
Cu1—N2—C12119.06 (18)C15—C16—H16120.00
H44—O3W—H47109 (3)C18—C17—H17120.00
C15—N3—C27122.8 (2)C16—C17—H17120.00
C27—N3—H49118 (2)C17—C18—H18120.00
C15—N3—H49118 (2)C19—C18—H18120.00
H42—N4—H43116 (3)C20—C19—H19119.00
C21—N4—H43119.1 (18)C18—C19—H19119.00
C21—N4—H42123.8 (19)C22—C23—H23119.00
C28—N5—C40123.1 (2)C24—C23—H23119.00
C28—N5—H46114 (2)C25—C24—H24120.00
C40—N5—H46123 (2)C23—C24—H24120.00
H40—N6—H45121 (3)C26—C25—H25120.00
C34—N6—H45116 (2)C24—C25—H25120.00
C34—N6—H40123.0 (15)C25—C26—H26120.00
N1—C1—C2119.8 (3)C27—C26—H26120.00
C2—C1—C6128.8 (3)N5—C28—C33120.5 (2)
N1—C1—C6111.5 (2)C29—C28—C33119.8 (2)
C1—C2—C3119.1 (3)N5—C28—C29119.8 (2)
C2—C3—C4120.0 (3)C28—C29—C30120.4 (2)
C3—C4—C5118.4 (3)C29—C30—C31120.6 (2)
N1—C5—C7111.5 (2)C30—C31—C32120.0 (3)
C4—C5—C7128.1 (3)C31—C32—C33121.1 (2)
N1—C5—C4120.3 (3)C28—C33—C32118.2 (2)
O1—C6—O2126.2 (3)C28—C33—C34118.7 (2)
O2—C6—C1118.9 (2)C32—C33—C34123.1 (2)
O1—C6—C1114.9 (3)N6—C34—C33119.7 (3)
O3—C7—C5115.7 (2)N6—C34—C35121.8 (2)
O4—C7—C5118.5 (2)C33—C34—C35118.5 (2)
O3—C7—O4125.8 (3)C34—C35—C40119.3 (2)
N2—C8—C13115.3 (2)C34—C35—C36123.4 (2)
C9—C8—C13123.6 (2)C36—C35—C40117.2 (3)
N2—C8—C9121.1 (2)C35—C36—C37121.6 (3)
C8—C9—C10119.5 (3)C36—C37—C38120.7 (3)
C9—C10—C11119.0 (3)C37—C38—C39119.7 (3)
C10—C11—C12119.3 (3)C38—C39—C40120.3 (2)
N2—C12—C11121.3 (3)N5—C40—C39119.8 (2)
C11—C12—C14122.6 (3)C35—C40—C39120.5 (2)
N2—C12—C14116.1 (2)N5—C40—C35119.8 (3)
O5—C13—O6126.4 (3)C28—C29—H29120.00
O5—C13—C8116.4 (3)C30—C29—H29120.00
O6—C13—C8117.2 (2)C31—C30—H30120.00
O7—C14—C12116.3 (2)C29—C30—H30120.00
O8—C14—C12115.6 (2)C32—C31—H31120.00
O7—C14—O8128.1 (3)C30—C31—H31120.00
C1—C2—H2120.00C31—C32—H32119.00
C3—C2—H2120.00C33—C32—H32120.00
C2—C3—H3120.00C35—C36—H36119.00
C4—C3—H3120.00C37—C36—H36119.00
C3—C4—H4121.00C38—C37—H37120.00
C5—C4—H4121.00C36—C37—H37120.00
C8—C9—H9120.00C37—C38—H38120.00
C10—C9—H9120.00C39—C38—H38120.00
C9—C10—H10120.00C38—C39—H39120.00
C11—C10—H10121.00C40—C39—H39120.00
O3—Cu1—O1—C611.1 (4)N1—C5—C7—O30.9 (4)
O5—Cu1—O1—C697.2 (2)C4—C5—C7—O3179.1 (3)
O7—Cu1—O1—C6110.5 (2)C4—C5—C7—O41.2 (5)
N1—Cu1—O1—C63.7 (2)N1—C5—C7—O4178.9 (2)
N2—Cu1—O1—C6172.3 (2)C9—C8—C13—O612.3 (4)
O1—Cu1—O3—C77.0 (3)C13—C8—C9—C10178.3 (2)
O5—Cu1—O3—C7100.75 (19)N2—C8—C13—O511.4 (3)
O7—Cu1—O3—C7107.40 (19)N2—C8—C9—C100.1 (4)
N1—Cu1—O3—C70.37 (19)C9—C8—C13—O5166.8 (2)
N2—Cu1—O3—C7176.27 (19)N2—C8—C13—O6169.5 (2)
O1—Cu1—O5—C1399.50 (19)C8—C9—C10—C111.0 (4)
O3—Cu1—O5—C1399.99 (19)C9—C10—C11—C121.2 (4)
O7—Cu1—O5—C133.1 (3)C10—C11—C12—N20.2 (4)
N1—Cu1—O5—C13179.57 (19)C10—C11—C12—C14178.4 (3)
N2—Cu1—O5—C135.00 (19)N2—C12—C14—O77.2 (4)
O1—Cu1—O7—C14106.32 (19)N2—C12—C14—O8172.0 (2)
O3—Cu1—O7—C1493.89 (19)C11—C12—C14—O86.3 (4)
O5—Cu1—O7—C144.4 (3)C11—C12—C14—O7174.5 (3)
N1—Cu1—O7—C14172.82 (19)N3—C15—C20—C210.0 (4)
N2—Cu1—O7—C142.56 (19)C16—C15—C20—C190.1 (4)
O1—Cu1—N1—C13.8 (2)N3—C15—C16—C17179.4 (3)
O1—Cu1—N1—C5177.5 (2)C20—C15—C16—C171.1 (5)
O3—Cu1—N1—C1178.8 (2)C16—C15—C20—C21179.5 (3)
O3—Cu1—N1—C50.2 (2)N3—C15—C20—C19179.5 (3)
O5—Cu1—N1—C185.9 (2)C15—C16—C17—C181.5 (5)
O5—Cu1—N1—C592.8 (2)C16—C17—C18—C190.6 (5)
O7—Cu1—N1—C195.4 (2)C17—C18—C19—C200.6 (5)
O7—Cu1—N1—C585.9 (2)C18—C19—C20—C150.9 (4)
O1—Cu1—N2—C889.28 (19)C18—C19—C20—C21179.7 (3)
O1—Cu1—N2—C1298.1 (2)C15—C20—C21—C223.9 (4)
O3—Cu1—N2—C891.90 (19)C19—C20—C21—N42.1 (4)
O3—Cu1—N2—C1280.76 (19)C19—C20—C21—C22176.7 (3)
O5—Cu1—N2—C81.46 (17)C15—C20—C21—N4177.3 (3)
O5—Cu1—N2—C12174.1 (2)C20—C21—C22—C274.4 (4)
O7—Cu1—N2—C8179.5 (2)N4—C21—C22—C237.5 (4)
O7—Cu1—N2—C126.80 (18)N4—C21—C22—C27176.8 (3)
Cu1—O1—C6—O2178.2 (2)C20—C21—C22—C23171.4 (3)
Cu1—O1—C6—C13.0 (3)C27—C22—C23—C242.1 (4)
Cu1—O3—C7—O4179.0 (2)C21—C22—C27—N30.9 (4)
Cu1—O3—C7—C50.8 (3)C21—C22—C27—C26179.3 (3)
Cu1—O5—C13—O6171.3 (2)C21—C22—C23—C24177.9 (3)
Cu1—O5—C13—C89.7 (3)C23—C22—C27—N3175.1 (3)
Cu1—O7—C14—O8177.6 (3)C23—C22—C27—C263.3 (4)
Cu1—O7—C14—C121.6 (3)C22—C23—C24—C250.3 (5)
Cu1—N1—C1—C2177.5 (2)C23—C24—C25—C261.7 (5)
Cu1—N1—C1—C63.3 (3)C24—C25—C26—C270.5 (5)
C5—N1—C1—C21.1 (4)C25—C26—C27—N3176.3 (3)
C5—N1—C1—C6178.1 (2)C25—C26—C27—C222.1 (5)
Cu1—N1—C5—C4179.4 (2)N5—C28—C29—C30179.7 (3)
Cu1—N1—C5—C70.6 (3)C33—C28—C29—C301.3 (4)
C1—N1—C5—C40.8 (4)N5—C28—C33—C32179.8 (2)
C1—N1—C5—C7179.2 (2)N5—C28—C33—C340.8 (4)
Cu1—N2—C8—C9171.50 (19)C29—C28—C33—C321.2 (4)
Cu1—N2—C8—C136.8 (3)C29—C28—C33—C34179.8 (3)
C12—N2—C8—C91.1 (4)C28—C29—C30—C310.1 (5)
C12—N2—C8—C13179.4 (2)C29—C30—C31—C321.3 (5)
Cu1—N2—C12—C11171.8 (2)C30—C31—C32—C331.4 (5)
Cu1—N2—C12—C149.9 (3)C31—C32—C33—C280.2 (4)
C8—N2—C12—C111.0 (4)C31—C32—C33—C34178.8 (3)
C8—N2—C12—C14177.3 (2)C28—C33—C34—N6177.9 (3)
C15—N3—C27—C26175.2 (3)C28—C33—C34—C351.7 (4)
C15—N3—C27—C223.2 (4)C32—C33—C34—N61.1 (5)
C27—N3—C15—C16176.8 (3)C32—C33—C34—C35179.3 (3)
C27—N3—C15—C203.7 (4)N6—C34—C35—C360.6 (5)
C28—N5—C40—C39179.1 (3)N6—C34—C35—C40177.4 (3)
C28—N5—C40—C350.8 (4)C33—C34—C35—C36179.0 (3)
C40—N5—C28—C29179.3 (3)C33—C34—C35—C402.2 (4)
C40—N5—C28—C330.3 (4)C34—C35—C36—C37177.3 (3)
C2—C1—C6—O1179.1 (3)C40—C35—C36—C370.4 (5)
C2—C1—C6—O20.2 (5)C34—C35—C40—N51.7 (5)
N1—C1—C6—O2179.0 (3)C34—C35—C40—C39178.2 (3)
C6—C1—C2—C3177.3 (3)C36—C35—C40—N5178.8 (3)
N1—C1—C6—O10.0 (4)C36—C35—C40—C391.1 (5)
N1—C1—C2—C31.8 (4)C35—C36—C37—C380.3 (5)
C1—C2—C3—C40.6 (4)C36—C37—C38—C390.2 (5)
C2—C3—C4—C51.2 (4)C37—C38—C39—C400.6 (5)
C3—C4—C5—C7178.0 (3)C38—C39—C40—N5178.7 (3)
C3—C4—C5—N11.9 (4)C38—C39—C40—C351.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H40···O1W0.93 (3)2.04 (3)2.927 (4)159 (2)
O2W—H41···O6i0.87 (4)1.93 (4)2.796 (3)177 (4)
N4—H42···O4ii0.86 (3)1.97 (3)2.808 (3)165 (3)
N4—H43···O7iii0.92 (4)1.99 (4)2.880 (3)161 (3)
O3W—H44···O2W0.86 (4)1.86 (4)2.720 (4)176 (3)
N6—H45···O60.86 (3)2.18 (3)2.965 (3)153 (3)
N5—H46···O8iii0.82 (3)1.91 (3)2.719 (3)173 (3)
O3W—H47···O4iv0.84 (4)1.95 (4)2.780 (4)168 (3)
O1W—H48···O50.87 (4)1.97 (4)2.828 (3)174 (4)
N3—H49···O3W0.84 (3)1.86 (3)2.698 (3)170 (3)
O1W—H50···O2v0.89 (5)1.96 (5)2.847 (4)176 (4)
O2W—H51···O60.86 (6)1.97 (5)2.812 (4)167 (4)
C3—H3···O2Wv0.942.573.266 (4)131
C10—H10···O3vi0.942.513.152 (3)126
C19—H19···O4ii0.942.493.401 (3)163
C23—H23···O7iii0.942.523.262 (3)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z1; (iv) x1, y, z; (v) x+1, y, z+1; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Cu(C7H3NO4)2]·3H2O
Mr838.27
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)10.8760 (16), 13.283 (2), 13.9820 (19)
α, β, γ (°)102.056 (12), 103.785 (11), 105.573 (12)
V3)1807.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.25 × 0.19 × 0.12
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionMulti-scan
(MULscanABS; Spek, 2009)
Tmin, Tmax0.845, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
19456, 6819, 4572
Rint0.060
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.073, 0.87
No. of reflections6819
No. of parameters571
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.40

Computer programs: X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H40···O1W0.93 (3)2.04 (3)2.927 (4)159 (2)
O2W—H41···O6i0.87 (4)1.93 (4)2.796 (3)177 (4)
N4—H42···O4ii0.86 (3)1.97 (3)2.808 (3)165 (3)
N4—H43···O7iii0.92 (4)1.99 (4)2.880 (3)161 (3)
O3W—H44···O2W0.86 (4)1.86 (4)2.720 (4)176 (3)
N6—H45···O60.86 (3)2.18 (3)2.965 (3)153 (3)
N5—H46···O8iii0.82 (3)1.91 (3)2.719 (3)173 (3)
O3W—H47···O4iv0.84 (4)1.95 (4)2.780 (4)168 (3)
O1W—H48···O50.87 (4)1.97 (4)2.828 (3)174 (4)
N3—H49···O3W0.84 (3)1.86 (3)2.698 (3)170 (3)
O1W—H50···O2v0.89 (5)1.96 (5)2.847 (4)176 (4)
O2W—H51···O60.86 (6)1.97 (5)2.812 (4)167 (4)
C3—H3···O2Wv0.942.573.266 (4)131
C10—H10···O3vi0.942.513.152 (3)126
C19—H19···O4ii0.942.493.401 (3)163
C23—H23···O7iii0.942.523.262 (3)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z1; (iv) x1, y, z; (v) x+1, y, z+1; (vi) x+2, y+1, z+1.
 

Acknowledgements

HSE thanks the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAghabozorg, H., Ahmadvand, S., Mirzaei, M. & Khavasi, H. R. (2010). Acta Cryst. E66, m1318–m1319.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Olmstead, M. M., Derikvand, Z. & Hooshmand, S. (2009). Acta Cryst. E65, m186–m187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Zabihi, F., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2091–m2093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDerikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, m642–m643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, M., Cai, H. & Zhao, X.-J. (2006). Inorg. Chim. Acta. 359, 673–679.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationYenikaya, C., Poyraz, M., Sarı, M., Demirci, F., Ilkimen, H. & Büyükgüngör, O. (2009). Polyhedron, 28, 3526–3532.  Web of Science CSD CrossRef CAS Google Scholar
First citationZafer Yeşilel, O., Ilker, I., Refat, M. S. & Ishida, H. (2010). Polyhedron, 29, 2345–2351.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1316-m1317
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds