metal-organic compounds
Bis(2-amino-4-methylpyrimidin-3-ium) trans-diaquabis(pyrazine-2,3-dicarboxylato)cobaltate(II) hexahydrate
aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
*Correspondence e-mail: heshtiagh@ferdowsi.um.ac.ir, mirzaei487@yahoo.com
In the 5H8N3)2[Co(C6H2N2O4)2(H2O)2]·6H2O or (ampymH)2[Co(pyzdc)2(H2O)2]·6H2O (ampym = 2-amino-4-methyl pyrimidine, pyzdcH2 = pyrazine-2,3-dicarboxylic acid), the CoII ion is hexacoordinated by two (pyzdc)2− groups in the equatorial plane and two water molecules in axial positions, giving an N2CoO4 bound set. The (pyzdc)2− anion acts as a bidentate ligand through one carboxylate group O atom and pyrazine ring N atom. There are diverse N—H⋯ O and O—H⋯O and O—H⋯N hydrogen-bonding interactions, which lead to the formation of a three-dimensional supramolecular architecture. Off-set or slipped π–π stacking interactions are also observed between adjacent pyrimidine rings with face-to-face distances of 3.6337 (9) Å.
of the mononuclear title compound, (CRelated literature
For the pyzdcH2 ligand, see: Aghabozorg et al. (2008). For the of pyrazine-2,3-dicarboxylic acid (pyzdcH2), see: Takusagawa & Shimada (1973). For complexes of pyzdcH2 with zinc and manganese, see: Eshtiagh-Hosseini et al. (2010a,b,c,d,e). The six uncoordinated water molecules increase the number of hydrogen bonds and lead to the formation of (H2O)n clusters throughout the crystal, see: Aghabozorg et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810037736/vm2043sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037736/vm2043Isup2.hkl
A solution of pyzdcH2 (0.60 mmol, 0.10 g), ampym (1.2 mmol, 0.13 g), and CoCl2.6H2O (0.02 mmol, 0.05 g) at 333 K lead to formation of (ampymH)2[Co(pyzdc)2(H2O)2].6H2O orange block crystals after slow evaporation of solvent at room temperature.
Carbon and nitrogen bound hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of their parent atoms. The C-H distances were set to 0.95 and 0.98 \%A for aromatic and methyl groups, respectively, the N-H distances used were 0.88 \%A. Oxygen bound hydrogen atoms were located in a difference Fourier map and refined isotropically.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Molecular structure of (ampymH)2[Co(pyzdc)2(H2O)2].6H2O compound. Ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Schematic representation of the present R22(8) and R46(12) graph-sets in the crystalline network. | |
Fig. 3. (a) Packing diagram along the a-axis. (b) The off-set or slipped π -π stacking interactions between aromatic rings of two (ampymH)+ fragments. |
(C5H8N3)2[Co(C6H2N2O4)2(H2O)2]·6H2O | Z = 1 |
Mr = 755.54 | F(000) = 393 |
Triclinic, P1 | Dx = 1.601 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5880 (4) Å | Cell parameters from 4417 reflections |
b = 8.0591 (5) Å | θ = 3.1–27.6° |
c = 15.0285 (8) Å | µ = 0.64 mm−1 |
α = 98.085 (5)° | T = 120 K |
β = 96.940 (4)° | Plate, pale orange |
γ = 91.261 (5)° | 0.40 × 0.40 × 0.20 mm |
V = 783.58 (8) Å3 |
Oxford Diffraction Xcalibur diffractometer with Sapphire2 (large Be window) detector | 2758 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2428 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
Detector resolution: 8.4353 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ω scan | h = −7→7 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | k = −9→9 |
Tmin = 0.903, Tmax = 1.000 | l = −17→17 |
5733 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0279P)2 + 0.458P] where P = (Fo2 + 2Fc2)/3 |
2758 reflections | (Δ/σ)max < 0.001 |
256 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
(C5H8N3)2[Co(C6H2N2O4)2(H2O)2]·6H2O | γ = 91.261 (5)° |
Mr = 755.54 | V = 783.58 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.5880 (4) Å | Mo Kα radiation |
b = 8.0591 (5) Å | µ = 0.64 mm−1 |
c = 15.0285 (8) Å | T = 120 K |
α = 98.085 (5)° | 0.40 × 0.40 × 0.20 mm |
β = 96.940 (4)° |
Oxford Diffraction Xcalibur diffractometer with Sapphire2 (large Be window) detector | 2758 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 2428 reflections with I > 2σ(I) |
Tmin = 0.903, Tmax = 1.000 | Rint = 0.011 |
5733 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.30 e Å−3 |
2758 reflections | Δρmin = −0.40 e Å−3 |
256 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co2 | 0.5000 | 0.5000 | 0.5000 | 0.01426 (11) | |
O1 | 0.58615 (17) | 0.62856 (14) | 0.25548 (7) | 0.0143 (3) | |
O2 | 0.62546 (18) | 0.51362 (15) | 0.38308 (8) | 0.0167 (3) | |
O3 | 0.33723 (18) | 0.93937 (14) | 0.19964 (8) | 0.0163 (3) | |
O4 | 0.17222 (18) | 0.69382 (14) | 0.14483 (8) | 0.0144 (3) | |
O5 | 0.6551 (2) | 0.72932 (17) | 0.55885 (9) | 0.0201 (3) | |
H5A | 0.572 (4) | 0.793 (3) | 0.5817 (18) | 0.053 (8)* | |
H5B | 0.748 (4) | 0.733 (3) | 0.5952 (17) | 0.037 (8)* | |
N1 | 0.0477 (2) | 0.84612 (18) | 0.33031 (9) | 0.0150 (3) | |
N2 | 0.2829 (2) | 0.64620 (17) | 0.43486 (9) | 0.0136 (3) | |
N3 | 0.7241 (2) | 0.96452 (17) | −0.03740 (9) | 0.0115 (3) | |
H3A | 0.7142 | 1.0023 | −0.0898 | 0.014* | |
N4 | 0.7962 (2) | 1.02237 (18) | 0.12227 (9) | 0.0142 (3) | |
N5 | 0.8275 (2) | 1.23050 (17) | 0.03349 (9) | 0.0132 (3) | |
H5C | 0.8654 | 1.3024 | 0.0827 | 0.016* | |
H5D | 0.8193 | 1.2640 | −0.0201 | 0.016* | |
C1 | 0.3367 (2) | 0.6769 (2) | 0.35513 (11) | 0.0111 (3) | |
C2 | 0.2154 (3) | 0.7745 (2) | 0.30243 (11) | 0.0114 (3) | |
C3 | −0.0026 (3) | 0.8140 (2) | 0.40958 (11) | 0.0154 (4) | |
H3 | −0.1212 | 0.8619 | 0.4311 | 0.018* | |
C4 | 0.1129 (3) | 0.7127 (2) | 0.46163 (11) | 0.0150 (4) | |
H4 | 0.0704 | 0.6903 | 0.5171 | 0.018* | |
C5 | 0.5328 (2) | 0.6005 (2) | 0.32850 (11) | 0.0115 (4) | |
C6 | 0.2498 (2) | 0.8028 (2) | 0.20784 (11) | 0.0123 (4) | |
C7 | 0.7832 (2) | 1.0727 (2) | 0.03993 (11) | 0.0115 (4) | |
C8 | 0.7472 (3) | 0.8626 (2) | 0.12403 (12) | 0.0157 (4) | |
H8 | 0.7518 | 0.8251 | 0.1814 | 0.019* | |
C9 | 0.6893 (3) | 0.7459 (2) | 0.04676 (12) | 0.0158 (4) | |
H9 | 0.6572 | 0.6322 | 0.0514 | 0.019* | |
C10 | 0.6801 (2) | 0.7997 (2) | −0.03562 (12) | 0.0133 (4) | |
C11 | 0.6237 (3) | 0.6941 (2) | −0.12543 (12) | 0.0174 (4) | |
H11A | 0.7309 | 0.7070 | −0.1641 | 0.026* | |
H11B | 0.4936 | 0.7298 | −0.1542 | 0.026* | |
H11C | 0.6096 | 0.5762 | −0.1170 | 0.026* | |
O21 | 0.9070 (2) | 0.46146 (16) | 0.19544 (9) | 0.0162 (3) | |
O22 | 0.9951 (2) | 0.2292 (2) | 0.31495 (9) | 0.0216 (3) | |
O23 | 0.6098 (2) | 0.07554 (19) | 0.35418 (10) | 0.0228 (3) | |
H21A | 0.809 (4) | 0.516 (3) | 0.2147 (16) | 0.039 (7)* | |
H21B | 0.987 (4) | 0.530 (3) | 0.1837 (15) | 0.030 (6)* | |
H22A | 1.001 (4) | 0.142 (4) | 0.2846 (18) | 0.054 (9)* | |
H22B | 0.973 (4) | 0.300 (3) | 0.2803 (18) | 0.049 (8)* | |
H23A | 0.708 (4) | 0.136 (3) | 0.3438 (17) | 0.048 (8)* | |
H23B | 0.544 (4) | 0.039 (3) | 0.3088 (19) | 0.049 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co2 | 0.01444 (19) | 0.0194 (2) | 0.01064 (18) | 0.00400 (14) | 0.00278 (13) | 0.00658 (13) |
O1 | 0.0159 (6) | 0.0177 (6) | 0.0109 (6) | 0.0020 (5) | 0.0042 (5) | 0.0054 (5) |
O2 | 0.0164 (6) | 0.0223 (7) | 0.0138 (6) | 0.0075 (5) | 0.0041 (5) | 0.0085 (5) |
O3 | 0.0210 (7) | 0.0146 (6) | 0.0137 (6) | −0.0042 (5) | −0.0001 (5) | 0.0054 (5) |
O4 | 0.0175 (6) | 0.0148 (6) | 0.0108 (6) | −0.0018 (5) | 0.0004 (5) | 0.0026 (5) |
O5 | 0.0173 (7) | 0.0245 (8) | 0.0181 (7) | 0.0034 (6) | 0.0006 (6) | 0.0024 (6) |
N1 | 0.0146 (7) | 0.0163 (8) | 0.0137 (7) | 0.0023 (6) | 0.0008 (6) | 0.0018 (6) |
N2 | 0.0142 (7) | 0.0164 (8) | 0.0105 (7) | 0.0000 (6) | 0.0017 (6) | 0.0027 (6) |
N3 | 0.0122 (7) | 0.0132 (7) | 0.0100 (7) | 0.0011 (6) | 0.0021 (6) | 0.0040 (6) |
N4 | 0.0136 (7) | 0.0171 (8) | 0.0127 (7) | 0.0004 (6) | 0.0016 (6) | 0.0054 (6) |
N5 | 0.0172 (8) | 0.0141 (8) | 0.0083 (7) | −0.0014 (6) | 0.0001 (6) | 0.0030 (6) |
C1 | 0.0128 (8) | 0.0110 (8) | 0.0095 (8) | −0.0017 (6) | 0.0006 (7) | 0.0019 (6) |
C2 | 0.0127 (8) | 0.0095 (8) | 0.0112 (8) | −0.0025 (6) | 0.0005 (7) | 0.0003 (6) |
C3 | 0.0141 (9) | 0.0179 (9) | 0.0139 (9) | 0.0023 (7) | 0.0028 (7) | 0.0002 (7) |
C4 | 0.0153 (9) | 0.0193 (9) | 0.0109 (8) | 0.0003 (7) | 0.0042 (7) | 0.0018 (7) |
C5 | 0.0128 (8) | 0.0101 (8) | 0.0113 (9) | −0.0009 (7) | 0.0003 (7) | 0.0011 (7) |
C6 | 0.0104 (8) | 0.0145 (9) | 0.0130 (9) | 0.0041 (7) | 0.0011 (7) | 0.0050 (7) |
C7 | 0.0067 (8) | 0.0162 (9) | 0.0120 (8) | 0.0019 (7) | 0.0019 (7) | 0.0028 (7) |
C8 | 0.0110 (8) | 0.0228 (10) | 0.0156 (9) | 0.0029 (7) | 0.0022 (7) | 0.0102 (7) |
C9 | 0.0130 (9) | 0.0140 (9) | 0.0217 (10) | 0.0004 (7) | 0.0023 (7) | 0.0071 (7) |
C10 | 0.0075 (8) | 0.0145 (9) | 0.0182 (9) | 0.0014 (7) | 0.0027 (7) | 0.0027 (7) |
C11 | 0.0189 (9) | 0.0145 (9) | 0.0185 (9) | 0.0009 (7) | 0.0032 (7) | 0.0006 (7) |
O21 | 0.0162 (7) | 0.0146 (7) | 0.0184 (7) | −0.0007 (6) | 0.0054 (5) | 0.0013 (5) |
O22 | 0.0257 (8) | 0.0183 (7) | 0.0198 (7) | 0.0030 (6) | 0.0000 (6) | 0.0018 (6) |
O23 | 0.0199 (8) | 0.0266 (8) | 0.0198 (8) | −0.0015 (6) | 0.0007 (6) | −0.0016 (6) |
Co2—O2i | 2.0455 (12) | N5—H5C | 0.8800 |
Co2—O2 | 2.0455 (12) | N5—H5D | 0.8800 |
Co2—N2i | 2.1101 (14) | C1—C2 | 1.390 (2) |
Co2—N2 | 2.1101 (14) | C1—C5 | 1.517 (2) |
Co2—O5i | 2.1167 (14) | C2—C6 | 1.513 (2) |
Co2—O5 | 2.1167 (14) | C3—C4 | 1.386 (2) |
O1—C5 | 1.240 (2) | C3—H3 | 0.9500 |
O2—C5 | 1.263 (2) | C4—H4 | 0.9500 |
O3—C6 | 1.259 (2) | C8—C9 | 1.396 (2) |
O4—C6 | 1.249 (2) | C8—H8 | 0.9500 |
O5—H5A | 0.83 (3) | C9—C10 | 1.363 (2) |
O5—H5B | 0.77 (3) | C9—H9 | 0.9500 |
N1—C3 | 1.332 (2) | C10—C11 | 1.492 (2) |
N1—C2 | 1.342 (2) | C11—H11A | 0.9800 |
N2—C4 | 1.334 (2) | C11—H11B | 0.9800 |
N2—C1 | 1.343 (2) | C11—H11C | 0.9800 |
N3—C10 | 1.358 (2) | O21—H21A | 0.85 (3) |
N3—C7 | 1.361 (2) | O21—H21B | 0.81 (2) |
N3—H3A | 0.8800 | O22—H22A | 0.79 (3) |
N4—C8 | 1.325 (2) | O22—H22B | 0.83 (3) |
N4—C7 | 1.349 (2) | O23—H23A | 0.85 (3) |
N5—C7 | 1.318 (2) | O23—H23B | 0.78 (3) |
O2i—Co2—O2 | 180.0 | C1—C2—C6 | 124.49 (15) |
O2i—Co2—N2i | 80.00 (5) | N1—C3—C4 | 121.94 (16) |
O2—Co2—N2i | 100.00 (5) | N1—C3—H3 | 119.0 |
O2i—Co2—N2 | 100.00 (5) | C4—C3—H3 | 119.0 |
O2—Co2—N2 | 80.00 (5) | N2—C4—C3 | 120.86 (16) |
N2i—Co2—N2 | 180.000 (1) | N2—C4—H4 | 119.6 |
O2i—Co2—O5i | 89.61 (5) | C3—C4—H4 | 119.6 |
O2—Co2—O5i | 90.39 (5) | O1—C5—O2 | 126.40 (15) |
N2i—Co2—O5i | 86.62 (6) | O1—C5—C1 | 117.16 (14) |
N2—Co2—O5i | 93.38 (6) | O2—C5—C1 | 116.44 (14) |
O2i—Co2—O5 | 90.39 (5) | O4—C6—O3 | 126.31 (15) |
O2—Co2—O5 | 89.61 (5) | O4—C6—C2 | 116.05 (14) |
N2i—Co2—O5 | 93.38 (6) | O3—C6—C2 | 117.32 (14) |
N2—Co2—O5 | 86.62 (6) | N5—C7—N4 | 119.64 (15) |
O5i—Co2—O5 | 180.00 (7) | N5—C7—N3 | 118.68 (15) |
C5—O2—Co2 | 116.20 (10) | N4—C7—N3 | 121.68 (15) |
Co2—O5—H5A | 108.8 (19) | N4—C8—C9 | 124.00 (16) |
Co2—O5—H5B | 121.8 (18) | N4—C8—H8 | 118.0 |
H5A—O5—H5B | 105 (3) | C9—C8—H8 | 118.0 |
C3—N1—C2 | 116.87 (15) | C10—C9—C8 | 118.16 (16) |
C4—N2—C1 | 118.22 (14) | C10—C9—H9 | 120.9 |
C4—N2—Co2 | 130.55 (12) | C8—C9—H9 | 120.9 |
C1—N2—Co2 | 111.19 (11) | N3—C10—C9 | 117.89 (15) |
C10—N3—C7 | 121.63 (14) | N3—C10—C11 | 116.07 (15) |
C10—N3—H3A | 119.2 | C9—C10—C11 | 126.04 (16) |
C7—N3—H3A | 119.2 | C10—C11—H11A | 109.5 |
C8—N4—C7 | 116.59 (15) | C10—C11—H11B | 109.5 |
C7—N5—H5C | 120.0 | H11A—C11—H11B | 109.5 |
C7—N5—H5D | 120.0 | C10—C11—H11C | 109.5 |
H5C—N5—H5D | 120.0 | H11A—C11—H11C | 109.5 |
N2—C1—C2 | 120.13 (15) | H11B—C11—H11C | 109.5 |
N2—C1—C5 | 116.11 (14) | H21A—O21—H21B | 106 (2) |
C2—C1—C5 | 123.75 (14) | H22A—O22—H22B | 107 (3) |
N1—C2—C1 | 121.91 (15) | H23A—O23—H23B | 110 (3) |
N1—C2—C6 | 113.51 (14) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3ii | 0.88 | 1.77 | 2.6487 (17) | 172 |
N5—H5C···O21iii | 0.88 | 1.96 | 2.8350 (18) | 172 |
N5—H5D···O4ii | 0.88 | 1.96 | 2.8310 (18) | 171 |
O21—H21B···O4iv | 0.81 (2) | 1.97 (3) | 2.7777 (18) | 175 (2) |
O21—H21A···O1 | 0.85 (3) | 1.86 (3) | 2.7093 (18) | 177 (2) |
O5—H5B···O22v | 0.77 (3) | 2.02 (3) | 2.784 (2) | 172 (2) |
O5—H5A···O23i | 0.83 (3) | 1.88 (3) | 2.706 (2) | 173 (3) |
O23—H23B···O3vi | 0.78 (3) | 2.06 (3) | 2.8302 (19) | 172 (3) |
O22—H22B···O21 | 0.83 (3) | 1.97 (3) | 2.794 (2) | 177 (3) |
O23—H23A···O22 | 0.85 (3) | 2.13 (3) | 2.959 (2) | 165 (2) |
O22—H22A···N1vii | 0.79 (3) | 2.59 (3) | 3.152 (2) | 130 (2) |
O22—H22A···N4vi | 0.79 (3) | 2.68 (3) | 3.242 (2) | 130 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z; (iii) x, y+1, z; (iv) x+1, y, z; (v) −x+2, −y+1, −z+1; (vi) x, y−1, z; (vii) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | (C5H8N3)2[Co(C6H2N2O4)2(H2O)2]·6H2O |
Mr | 755.54 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 6.5880 (4), 8.0591 (5), 15.0285 (8) |
α, β, γ (°) | 98.085 (5), 96.940 (4), 91.261 (5) |
V (Å3) | 783.58 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.64 |
Crystal size (mm) | 0.40 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with Sapphire2 (large Be window) detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.903, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5733, 2758, 2428 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.064, 1.04 |
No. of reflections | 2758 |
No. of parameters | 256 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.40 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.88 | 1.77 | 2.6487 (17) | 172.0 |
N5—H5C···O21ii | 0.88 | 1.96 | 2.8350 (18) | 171.5 |
N5—H5D···O4i | 0.88 | 1.96 | 2.8310 (18) | 170.5 |
O21—H21B···O4iii | 0.81 (2) | 1.97 (3) | 2.7777 (18) | 175 (2) |
O21—H21A···O1 | 0.85 (3) | 1.86 (3) | 2.7093 (18) | 177 (2) |
O5—H5B···O22iv | 0.77 (3) | 2.02 (3) | 2.784 (2) | 172 (2) |
O5—H5A···O23v | 0.83 (3) | 1.88 (3) | 2.706 (2) | 173 (3) |
O23—H23B···O3vi | 0.78 (3) | 2.06 (3) | 2.8302 (19) | 172 (3) |
O22—H22B···O21 | 0.83 (3) | 1.97 (3) | 2.794 (2) | 177 (3) |
O23—H23A···O22 | 0.85 (3) | 2.13 (3) | 2.959 (2) | 165 (2) |
O22—H22A···N1vii | 0.79 (3) | 2.59 (3) | 3.152 (2) | 130 (2) |
O22—H22A···N4vi | 0.79 (3) | 2.68 (3) | 3.242 (2) | 130 (2) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) x, y−1, z; (vii) x+1, y−1, z. |
Acknowledgements
The Ferdowsi University of Mashhad and Masaryk University are gratefully acknowledged by the authors.
References
Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300. CrossRef CAS Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66, m882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M., Beyramabadi, S. A., Salimi, A. R., Shokrollahi, A., Karami, E. & Khavasi, H. R. (2010b). J. Mol. Struct. Submitted. Google Scholar
Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M., Beyramabadi, S. A., Salimi, A. R., Shokrollahi, A., Karami, E. & Khavasi, H. R. (2010c). Z. Anorg. Allg. Chem. Submitted. Google Scholar
Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010d). Acta Cryst. E66, m826–m827. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010e). J. Coord. Chem. 63, 3175–3186. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many organic aromatic ligands and metal ions may aggregate into supramolecular networks using coordination and hydrogen bonds and π –π stacking interactions. Metal pyrazine-(di)carboxylates may possess versatile structural motifs, which finally aggregate to various supramolecular architectures with interesting properties. For the first time, Takusagawa & Shimada (1973) determined the structure of pyzdcH2. Until now, several proton transfer compounds with pyzdcH2 have been synthesized by our research group such as, (ampyH)2[M(pyzdc)2(H2O)2].6H2O (M = Co (1), Cu, Zn and ampy = 2-amino-4-methyl pyridine) (Eshtiagh-Hosseini et al., 2010b,cd). Continuing our previous work on the syntheses of coordination compounds via proton transfer mechanism, we planned the reaction between pyzdcH2, ampym and cobaltII chloride in order to provide a new coordination compound containing a proton transfer ligand. The title compound, (ampymH)2[Co(pyzdcH)2(H2O)2].6H2O, is analogous to previously synthesized compound 1 in which ampy was replaced by ampym (Fig. 1). The equatorial plane is occupied by two (pyzdc)2- ligands coordinating through the pyrazine nitrogen and one oxygen of the deprotonated carboxylate groups. The two coordinated water molecules occupy the axial plane. This compound consists of an anionic moiety, trans-[Co(pyzdc)2(H2O)2]2- complex, counter-ions, (ampymH)+, and six uncoordinated water molecules. The Co—O and Co—N bond distances related to the (pyzdc)2- ligand are 2.0445 (12) Å, and 2.1086 (14) Å, respectively. The intermolecular forces between the anionic, cationic parts, and uncoordinated water molecules consist of hydrogen bonding interactions. The hydrogen bond interactions cause further stabilization for crystalline network using two types of graph-sets namely R22(8) and R46(12) (Fig. 2). Indeed, the arrangement of anionic parts in the network resulted in the creation of anionic holes for entering cationic parts; this arrangement results in off-set or slipped π -π stacking interactions with the distance of 3.6337 (9) Å between the centroids of the rings (Fig. 3). Moreover, six uncoordinated water molecules increase the number of hydrogen bonds in the crystalline network and lead to the formation of (H2O)n clusters throughout the crystalline network (Aghabozorg et al. 2010).